
1
Overview and overture

Einstein’s theory of the classical relativistic dynamics of gravity is remark-
able, both in its simple elegance and in its profound statement about the
nature of spacetime. Before we rush into the diverse matters which concern
and motivate the search which leads to string theory and beyond, such
as the nature of the quantum theory, the unification with other forces,
etc., let us remind ourselves of some of the salient features of the classical
theory. This will usefully foreshadow many of the concepts which we will
encounter later.

1.1 The classical dynamics of geometry

Spacetime is of course a landscape of ‘events’, the points which make
it up, and as such it is a classical (but of course relativistic) concept.
Intuition from quantum mechanics points to a modification of this picture,
and there are many concrete mechanisms in string theory which support
this expectation and show that spacetime is at best a derived object or
effective description. We shall see some of these mechanisms in the sequel.
However, since string theory (as currently understood), seems to be devoid
of a complete definition that does not require us to refer to spacetime,
the language and concepts we will employ will have much in common
with those used by professional practitioners of General Relativity, and
of classical and quantum Field Theory. In fact, it will become clear to the
newcomer that success in the physics of string theory is greatly aided by
having technical facility in both of those fields. It is instructive to tour
a little of the foundations of our modern approach to classical gravity
and observe how the Relativist’s and the Field Theorist’s perspective are
muddled together. String theory makes good and productive use of this
sort of conflation.
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2 1 Overview and overture

It is useful to equip a description of spacetime with a set of coordinates
xµ, µ = 0, 1, . . . , D − 1, where x0 ≡ t (the time) and we shall remain
open-minded and work in D dimensions for much of the discussion. The
metric, with components gµν(x), is a function of the coordinates which
allows for a local measure of the distance between points separated by an
interval dxµ:

ds2 = gµν(x)dxµdxν .

The metric is a tensor field since under an arbitrary change of variables
xµ → x′µ(x) it transforms as

gµν −→ g′µν = gαβ
∂xα

∂x′µ
∂xβ

∂x′ν
. (1.1)

Of course, ‘distance’ here means the more generalised Special Relativistic
interval characterising how two events are separated, and it is negative,
zero or positive, giving us timelike, null or spacelike separations, according
to whether if it possible to connect the events by causal subluminal motion
(appropriate to a massive particle), or by moving at the speed of light
(massless particles), or not. This of course defines the signature of our
metric as being ‘mostly plus’: {−+++ · · ·} henceforth.

As a particle moves it sweeps out a path or ‘world-line’ xµ(τ) in space-
time (see figure 1.1), which is parametrised by τ . The wonderful thing is
that what we would have said in pre-Einstein times was ‘a particle moving
under the influence of the gravitational force’ is simply replaced by the
statement ‘a particle following a geodesic’, a path which is determined by
the metric in terms of the second order geodesic equation:

d2xλ

dτ2
= −Γλ

µν(g)
dxµ

dτ

dxν

dτ
, (1.2)

0X

X1

X2

τ
X µ(τ)τ

Fig. 1.1. A particle’s world-line. The function xµ(τ) embeds the world-
line, parametrised by τ , into spacetime, coordinatised by xµ.
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1.1 The classical dynamics of geometry 3

where the affine connection Γ(g) is made out of first derivatives of the
metric:

Γλ
µν(g) =

1
2
gλκ (∂µgκν + ∂νgκµ − ∂κgµν) .

Here and everywhere else, when working with curved spacetime we lower
and raise indices with the metric and its inverse, (which has components
gµν such that gµλgµα = δαλ ). Also note that ∂µ ≡ ∂/∂xµ.

Switching language again we see that since the term on the left hand
side of the equation (1.2) is what we think of as the ‘acceleration’, our
Newtonian intuition determines the right hand side to be the ‘applied
force’, attributed to gravity. In such language, gµν(x) is interpreted as a
potential for the gravitational field.

In the purely geometrical language, there are no forces. There is only
geometry, and the particle simply moves along geodesics. The above state-
ment in equation (1.2) about how a particle moves in response to the
metric is derivable from a simple action principle, which says that the
motion minimises (more properly, extremises) the total path length that
its motion sweeps out:

S = −m

∫
(−gµν(x)dxµdxν)1/2 = −m

∫ τf

τi

(−gµν(x)ẋµẋν)1/2dτ , (1.3)

where a dot denotes a derivative with respect to τ . (The reader might
consider checking this by application of the Euler–Lagrange equations or
by direct variation.)

The only question (which is of course one of the biggest) remaining
is the nature of what determines the metric itself. This turns out to be
governed by the distribution of stress-energy-momentum, and we must
write field equations which determine how the one sources the other,
just as we would in any field theory like Maxwell’s electromagnetism (see
insert 1.1).

The stress-energy-momentum contained in the matter is captured in
the elegant package that is the tensor Tµν(x), a second rank, symmetric,
divergence-free tensor which for an observer with four-velocity u, encodes
the energy density as Tµνu

µuν , the momentum density as −Tµνu
µxν , and

shear pressures (stresses) as Tµνx
µyν , where the unit vectors x and y are

orthogonal to u.
Einstein’s field equations are:

Rµν − 1
2
gµνR = 8�GNTµν , (1.6)

where GN is Newton’s constant. As one would expect, the quantity on the
left hand side is made up of the metric and its first and second derivatives,
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4 1 Overview and overture

Insert 1.1. A reminder of Maxwell’s field equations

‘Maxwell’s equations’ are second order partial differential equations
for the electromagnetic potentials

→
A (

→
x, t), φ(

→
x, t) from which the

magnetic (
→
B (

→
x, t)) and electric (

→
E (

→
x, t)) fields can be derived:

→
E (

→
x, t) = − →∇φ(

→
x · t)− ∂

→
A (

→
x, t)
∂t

→
B (

→
x, t) =

→∇ × →
A (

→
x, t). (1.4)

In terms of the fields, Maxwell’s equations are:

→∇ · →
E = 4�ρ

→∇ · →
B = 0

→∇ × →
E+

∂
→
B

∂t
= 0

→∇ × →
B−∂

→
E

∂t
= 4�

→
J . (1.5)

Here, the functions
→
J (

→
x, t) and ρ(

→
x, t), the current density and the

charge density are the ‘sources’ in the field equations.
We have written the equations with the sources on the right hand

side and the expression for the derivatives of the resulting fields
(to which the sources give rise) on the left hand side. We will write
these much more covariantly in insert 1.3.

where the Ricci scalar and tensor,

R ≡ gµνRµν , Rµν ≡ gκρgλρR
λ
µκν , (1.7)

are the only two contentful contractions of the Riemann tensor:

Rλ
µκν ≡ ∂µΓλ

κν − ∂νΓλ
κµ + Γρ

κµΓ
λ
ρν − Γρ

κνΓ
λ
ρµ. (1.8)

Except for the metric itself, the quantity on the left hand side of equa-
tion (1.6) is the unique rank two, divergenceless and symmetric tensor
made from the metric (and its first and second derivatives), and hence
can be allowed to be equated to the stress tensor.

When the stress tensor is zero, i.e. when there is no matter to act as a
source, the vanishing of the left hand side is equivalent to the vanishing
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1.1 The classical dynamics of geometry 5

Rµν = 0, and solutions of this equation are said to be ‘Ricci-flat’. This
includes highly non-trivial spacetimes such as Schwarzschild black holes,
which follows from the non-linearity of the left hand side, representing
the fact that the stress-energy in the gravitational field itself can act as
its own source (‘gravity gravitates’).

The physical foundation behind the geometric approach is of course
the Principle of Equivalence, which begins by observing that gravity is
indistinguishable from acceleration, and tells one how to find a locally
inertial frame: one must simply ‘fall’ under the influence of gravity (i.e.
just follow a geodesic) and one does not feel one’s own weight, and so
one is in an inertial frame where the Laws of Special Relativity hold. See
insert 1.2 for a reminder of this in equations. The sourceless field equations
then follow from the recasting of the relative motion observed between
frames on neighbouring geodesics in terms of an apparent ‘tidal’ force.

The full statement of the field equations to include sources is also guided
by covariance, which means that it is a physical equation between ten-
sors of the same type, and with the same divergenceless property (which
is a physical statement of continuity). The equations are therefore true
in all coordinate systems obtained by an arbitrary change of variables
xµ → x′µ(x), since they transform as tensors in a way generalising the
transformation of the metric in equation (1.1).

Note that the statement of divergencelessness is a covariant one too,
i.e. ∇µT

µν = 0 uses the covariant derivative∗, which is designed to yield
a tensor after acting on one, say V :

∇κV
µ···
ν··· ≡ ∂κV

µ···
ν··· + Γµ

λκV
λ···
ν··· + · · · − Γλ

κνV
µ···
λ··· − · · · . (1.9)

Finally, note that the field equations themselves may be derived from
an action principle, the extremising of the Einstein–Hilbert action coupled
to matter:

S = SM + SEH

SEH =
1

16�GN

∫
dDx

√−g R

Tµν ≡ − 2√−g

δSM
δgµν

, (1.10)

where g is the determinant of the metric.

∗ In fact, this (not entirely unambiguous) procedure of replacing the ordinary derivative
by the covariant derivative, together with the replacement of the Minkowski metric
ηµν by the curved spacetime metric gµν(x) is often called the principle of ‘minimal
coupling’ as a procedure for how to generalise Special Relativistic quantities to curved
spacetime.
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Insert 1.2. Finding an inertial frame by freely falling

In order to find an inertial frame, we must find coordinates so that
at least locally, at a point xνo , say, we can can do special relativity.
This means that we perform a change of coordinates xµ → x′µ(x) so
that when the metric changes, according to (1.1), the result is

gµν(xνo) = ηµν ,

where ηµν is the Minkowski metric, diag(−1,+1, . . . , ). How accu-
rately can we achieve this? In our coordinate transformation, we have
in the neighbourhood of xνo :

xµ(xν) = xµ(xνo) +
∂xµ

∂x′ν
(x′ν − x′νo )

+
1
2

∂2xµ

∂x′ν∂x′κ
(x′ν − x′νo )(x

′κ − x′κo )

+
1
6

∂3xµ

∂x′ν∂x′κ∂x′λ
(x′ν − x′νo )(x

′κ − x′κo )(x
′λ − x′λo ) . . .

so we have, at first order, D2 coefficients to adjust. Since g′µν has
D(D + 1)/2 components, we are left with

D2 − D(D + 1)
2

=
D(D − 1)

2

transformations at our disposal. Happily, this is precisely the dimen-
sion of the Lorentz group, SO(D−1, 1) of rotations and boosts avail-
able in our inertial frame. At second order, we have D2(D + 1)/2
coefficients to adjust, which is precisely the same number of first
derivatives ∂g′µν/∂x′κ of the metric that we need to adjust to zero,
cancelling all of the ‘forces’ in the geodesic equation (1.2). At third
order, we have D2(D+1)(D+2)/6 coefficients to adjust, while there
are D2(D + 1)2/4 second derivatives of the metric, ∂2g′µν/∂x′κ∂x′λ ,
to adjust, which is rather more. In fact, this failure to adjust

D2(D + 1)2

4
− D2(D + 1)(D + 2)

6
=

D2(D2 − 1)
12

second derivatives is of course a statement of physics. This is pre-
cisely the number of independent components of the Riemann tensor
Rλ

κµν , which appears in the field equations determining the metric.
So everything fits together rather nicely.
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1.2 Gravitons and photons 7

A favourite example of a stress tensor for a matter system is the Maxwell
system of electromagnetism. Combining the electric potential φ and vector
potential �A into a four-vector A(x) = (φ,

→
A), with components Aµ, the

magnetic induction �B and electric field �E are captured in the rank two
antisymmetric tensor field strength:

Fµν = ∂µAν − ∂νAµ,

and an observer with four-velocity u reads the fields as:

Eµ = Fµνu
ν , Bµ = ε κλ

µν Fκλu
ν , (1.11)

where εµνκλ is the totally antisymmetric tensor in four dimensions, with
ε0123 = −1. (See insert 1.3 for more on this covariant presentation of
electromagnetism.) The action is:

SM =
∫

dDxL = − 1
16�

∫
(−g)1/2FµνF

µνdDx, (1.12)

and so it is easily verified that the Euler–Lagrange equations

∂L
∂Aµ

− ∂

∂xν

(
∂L

∂(∂νAµ)

)
= 0,

give the field equations
∇νF

µν = 0,

where we have used a very useful identity which is easily derived:

δ(−g)1/2 = 1
2(−g)1/2gµνδgµν . (1.13)

On the other hand, since

∂L
∂gµν

= −(−g)1/2

8�

(
gλβF

µλF νβ − 1
4g

µνFσρF
σρ

)
(1.14)

the stress tensor is

Tµν =
1
4�

(
gλβF

µλF νβ − 1
4g

µνFσρF
σρ

)
. (1.15)

1.2 Gravitons and photons

The quantum Field Theorist’s most sacred tool is the idea of associating
a particle to every sort of field, whether it be matter or force. So a force is
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8 1 Overview and overture

Insert 1.3. Maxwell written covariantly

Probably most familiar is the flat space writing:

Fµν =

⎛
⎜⎜⎝

0 E1 E2 E3
−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0

⎞
⎟⎟⎠ (1.16)

for the Maxwell tensor. In addition to the four-vector A(x) = (φ,
→
A),

one in general will have a four-current for the source, which com-
bines the current and electric charge density: J(x) = (ρ,

→
J ). With

these definitions, Maxwell’s equations take on a particularly simple
covariant form:

∇νF
µν = −4�Jµ, ∂µFνκ + ∂νFκµ + ∂κFµν = 0, (1.17)

for the equations with sources, and the source-free equations (Bianchi
identity). The energy-momentum tensor for electromagnetism is
given in terms of F in equation (1.15), and is subject to the con-
servation equation (when the sources Jµ = 0): ∇µT

µν = 0. This
contains familiar physics. Specialising to flat space:

T00 =
1
8�

((
→
E)2 + (

→
B)2), T0i = − 1

4�
(
→
E × →

B),

which is the familiar expression for the energy density and the mo-
mentum density (Poynting vector) of the electromagnetic field

mediated by a particle which propagates along in spacetime between ob-
jects carrying the charges of that interaction. There is great temptation to
do this for gravity (by allowing all sources of stress-energy-momentum to
emit and absorb appropriate quanta), but we immediately run into a con-
ceptual log jam. On the one hand, we have just reminded ourselves of the
beautiful picture that gravity is associated to the dynamics of spacetime
itself, while on the other hand we would like to think of the gravitational
force as mediated by gravitons which propagate on a spacetime back-
ground. A technical way of separating out this problem into manageable
pieces (up to a point) is to study the linearised theory.

The idea is to treat the metric as split between the background which is
say, flat spacetime given by the Minkowski metric ηµν , diag(−1,+1, . . . , ),
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1.2 Gravitons and photons 9

and some position dependent fluctuation hµν(x) which is to be small
hµν(x) � 1. Then the equations determining hµν(x) are derived from
Einstein’s equations (1.6) by substituting this ansatz:

gµν = ηµν + hµν(x),

and keeping only terms linear in hµν .
Let us carry this out. We will raise and lower indices with ηµν , and

note that gµν will continue to be the inverse metric, which is distinct
from ηµαηνβgαβ . Note also that gµν = ηµν−hµν , to the accuracy to which
we are working. The affine connection becomes:

Γρ
µν = 1

2η
ρα (∂µhνα + ∂νhµα − ∂αhµν) , (1.18)

and to this order, the Ricci tensor and scalar are:

Rµν = ∂α∂(νhµ)α − 1
2∂

α∂αhµν − 1
2∂

µ∂νh+O(h2),

R = ∂α∂βhαβ − ∂α∂αh+O(h2), (1.19)

where h = hµµ. Thus we learn that

Rµν − 1
2ηµνR = ∂α∂(νhµ)α − 1

2∂
α∂αhµν − 1

2∂
µ∂νh

−1
2ηµν

(
∂α∂βhαβ − ∂α∂αh

)
+O(h2).

Defining γ̄µν = hµν − 1
2ηµνh, we find our linearised field equations:

−1
2∂

α∂αh̄µν + ∂α∂(µh̄µ)α − 1
2ηµν∂

α∂βh̄βγ = 8�GNTµν . (1.20)

There is an explicit gauge degree of freedom (recognisable from equa-
tion (1.1) as an infinitesimal coordinate transformation)

hµν → hµν + ∂µξν + ∂νξµ, (1.21)

for arbitrary an arbitrary vector ξµ. Using this freedom, we choose the
gauge ∂ν h̄µν = 0 (using a gauge transformation satisfying ∂ν∂νξµ +
∂ν h̄µν = 0), which implies

∂α∂αh̄µν = −16�GNTµν . (1.22)

This is highly suggestive. Consider the system of electromagnetism, with
equations of motion (1.17). The equations are invariant under the gauge
transformation

Aµ → Aµ + ∂µΛ,
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10 1 Overview and overture

where Λ is an arbitrary scalar. We can use this freedom to choose a gauge
∂µA

µ = 0, (with a parameter satisfying ∂µ∂
µΛ + ∂νAν = 0), which gives

the simple equation
∂µ∂

µAν = −4�Jν .

This is of a very similar form to what we achieved in equation (1.22)
for the system of linearised gravity. The analogy is clear. The Maxwell
system has yielded a field equation for a vector (spin one) particle (the
photon Aµ(x)) sourced by a vector current (Jµ(x)), while the gravitational
system yields the precisely analogous equation for a spin two particle (the
graviton hµν(x)) sourced by the stress tensor Tµν(x).
This is the starting point for treating gravity on the same footing as

field theory, and in many places later we will have cause to use the word or
idea ‘graviton’, and it is in this sense (a spin two particle propagating on
a reference background) that we will mean it. We have seen how to make
the delicate journey from the Relativist’s geometrical understanding of
gravity to a perturbative Field Theorist’s. To make the return journey,
reconstructing a picture of, say the non-trivial spacetime metric due to
a star by starting from the graviton picture is a bit harder, but roughly
it is conceptually similar to the same problem in electromagnetism. How
does one go from the picture of the photon moving along in spacetime
to building up a picture of the strong magnetic fields around a pair of
Helmholtz coils? Words and phrases which are offered include ‘coherent
state of photons’, or ‘condensation of photons’, and these should invoke
the idea that the coils’ field cannot be constructed using only the per-
turbative photon picture. One can instead use the photon description to
describe processes in the background of the Helmholtz field, and we can
similarly do the same thing for gravity, describing the propagation of
gravitons in the background fields produced by a star. In this way, we see
that there is a possibility that there are situations where the conceptual
separation between particle quanta and background in principle needs be
no more dangerous in gravitation than it is in electromagnetism.

Eventually, however, we would like to compute beyond tree level, and
the celebrated problems of the theory of gravity treated as a quantum
theory will be encountered. Then, the linearised Einstein–Hilbert action

S =
1

16�GN

∫
dDx

(
∂α∂βhαβ − ∂α∂αh

)
, (1.23)

will eventually reveal itself to be non-renormalisable once we add interac-
tions coming from the next order above linear. In particular, the process
of recursively adding counterterms to the bare action in order to define
physically measurable quantities does not terminate. As Field Theorists
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