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1

Invariants and moduli

This chapter explores some examples of parameter spaces which can be con-
structed by elementary means and with little previous knowledge as an intro-
duction to the general theory developed from Chapter 3 onwards. To begin, we
consider equivalence classes of plane conics under Euclidean transformations
and use invariants to construct a parameter space which essentially corresponds
to the eccentricity of a conic.

This example already illustrates several essential features of the construction
of moduli spaces. In addition we shall look carefully at some cases of finite
group actions, and in particular at the question of how to determine the ring
of invariants, the fundamental tool of the theory. We prove Molien’s Formula,
which gives the Hilbert series for the ring of invariants when a finite group acts
linearly on a polynomial ring.

In Section 1.3, as an example of an action of an algebraic group, we use classi-
cal invariants to construct a parameter space for GL(2)-orbits of binary quartics.

In Section 1.4 we review plane curves as examples of algebraic varieties. A
plane curve without singularities is a Riemann surface, and in the particular case
of a plane cubic this can be seen explicitly by means of doubly periodic complex
functions. This leads to another example of a quotient by a discrete group action,
in this case parametrising lattices in the complex plane. The group here is the
modular group SL(2, Z) (neither finite nor connected), and the Eisenstein series
are invariants. Among them one can use two, g2 and g3, to decide when two
lattices are isomorphic.

1.1 A parameter space for plane conics

Consider the curve of degree 2 in the (real or complex) (x, y) plane

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0. (1.1)

1
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2 1 Invariants and moduli

If the left-hand side factorises as a product of linear forms, then the curve is
a union of two lines; otherwise we say that it is nondegenerate (Figure 1.1).

Nondegenerate
conics Line pair Double line

Degenerate conics

Figure 1.1

Let us consider the classification of such curves of degree 2, up to Euclidean
transformations, from the point of view of their invariants. The Euclidean trans-
formation group G contains the set of translations

x �→ x + l, y �→ y + m

as a normal subgroup and is generated by these and the rotations. Alternatively,
G can be viewed as the group of matrices

X =
 p q l

−q p m
0 0 1

 , p2 + q2 = 1. (1.2)

Curves of degree 2 correspond to symmetric 3 × 3 matrices by writing the
equation (1.1) as

(x, y, 1)

 a b d
b c e
d e f

  x
y
1

 = 0,

and then under the Euclidean transformation (1.2) the symmetric matrix of the
curve transforms by a b d

b c e
d e f

 �→ X t

 a b d
b c e
d e f

 X.

In other words, the 6-dimensional vector space V of symmetric 3 × 3 matri-
ces is a representation of the Euclidean transformation group G (see Section
1.21.10). Now, geometry studies properties which are invariant under groups
of transformations, so let us look for invariants under this group action, in the
form of polynomials F(a, b, . . . , f ).
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The transformation matrix (1.2) has determinant 1, and so the first invariant
polynomial we encounter is

D = det

 a b d
b c e
d e f

 .

Here D �= 0 exactly when the degree 2 curve is nondegenerate, and for this
reason D is called the discriminant of the curve. Next we observe that the

trace and determinant of the 2 × 2 submatrix

(
a b
b c

)
are also invariant; we

will denote these by T = a + c and E = ac − b2. Moreover, any invariant
polynomial can be (uniquely) expressed as a polynomial in D, T, E . In other
words, the following is true.

Proposition 1.1. The set of polynomials on V invariant under the action
of G is a subring of C[a, b, c, d, e, f ] and is generated by D, T, E. More-
over, these elements are algebraically independent; that is, the subring is
C[D, T, E]. �

Proof. Let G0 ⊂ G be the translation subgroup, with quotient G/G0
∼= O(2),

the rotation group of the plane. We claim that it is enough to show that the
subring of polynomials invariant under G0 is

C [a, b, c, d, e, f ]G0 = C [a, b, c, D] . (1.3)

This is because the polynomials in C [a, b, c] invariant under the rotation group
O(2) are generated by the trace T and discriminant E .

We also claim that if we consider polymonials in a, b, c, d, e, f and 1/E ,
then

C

[
a, b, c, d, e, f,

1

E

]G0

= C

[
a, b, c, D,

1

E

]
. (1.4)

It is clear that this implies (1.3), and so we are reduced to proving (1.4). The
point here is that the determinant D can be written

D = E f + (2bde − ae2 − cd2),

so that

f = D + ae2 + cd2 − 2bde

E
,

and hence

C

[
a, b, c, d, e, f,

1

E

]
= C

[
a, b, c, d, e, D,

1

E

]
.
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So a polynomial F in this ring (that is, a polynomial in a, b, c, d, e, f with
coefficients which may involve powers of 1/E) which is invariant under G0 has
to satisfy

F(a, b, c, d + al + bm, e + bl + cm, D) = F(a, b, c, d, e, D)

for arbitrary translations (l, m). Taking (l, m) = (−bt, at) shows that F cannot
have terms involving e, while taking (l, m) = (−ct, bt) shows that it cannot
have terms involving d; so we have shown (1.4). �

Remark 1.2. One can see that Proposition 1.1 is consistent with a dimension
count as follows. First, V has dimension 6. The Euclidean group G has dimen-
sion 3 (that is, Euclidean motions have 3 degrees of freedom). A general curve
of degree 2 is preserved only by the finitely many elements of G (namely, 180◦

rotation about the centre and the trivial element), and hence we expect that ‘the
quotient V/G has dimension 3’. Thus we may think of the three invariants
D, T, E as three ‘coordinate functions on the quotient space’. �

The space of all curves of degree 2 is V ∼= C
6, but here we are only concerned

with polynomials, viewed as functions, on this space. Viewed in this sense the
space is called an affine space and denoted A

6. (See Chapter 3.) We shall denote
the subset corresponding to nondegenerate curves by U ⊂ V . This is an open
set defined by the condition D �= 0. The set of ‘regular functions’ on this open
set is the set of rational functions on V whose denominator is a power of D,
that is,

C

[
a, b, c, d, e, f,

1

D

]
.

Up to now we have been thinking not in terms of curves but rather in terms
of their defining equations of degree 2. In the following we shall want to think
in terms of the curves themselves. Since two equations that differ only by a
scalar multiple define the same curve, we need to consider functions that are
invariant under the larger group G̃ generated by G and the scalar matrices X =
r I . The scalar matrix r I multiplies the three invariants D, E, T by r6, r4, r2,
respectively. It follows that the set

C

[
a, b, c, d, e, f,

1

D

]G̃
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of G̃-invariant polynomial functions on U is generated by

A = E3

D2
, B = T 3

D
, C = ET

D
.

Among these three expressions there is a relation

AB − C3 = 0,

so that:

a moduli space for nondegenerate curves of degree 2 in the Euclidean plane is
the affine surface in A

3 defined by the equation xz − y3 = 0.

(The origin is a singular point of this surface called a rational double point of
type A2.)

One can also see this easily in the following way. By acting on the defining
equation (1.1) of a nondegenerate degree 2 curve with a scalar matrix r I for
a suitable r ∈ C we can assume that D(a, b, . . . , f ) = 1. The set of curves
normalised in this way is then an affine plane with coordinates T, E . Now, the
ambiguity in choosing such a normalisation is just the action ofωI , whereω ∈ C

is an imaginary cube root of unity, and so the parameter space for nondegenerate
degree 2 curves is the surface obtained by dividing out the (T, E) plane by the
action of the cyclic group of order 3,

(T, E) �→ (ωT, ω2 E).

The origin is a fixed point of this action, and so it becomes a quotient singularity
in the parameter space.

Next, let us look at the situation over the real numbers R. We note that here
cube roots are uniquely determined, and so by taking that of the discriminant
D of equation (1.1) we see that for real curves of degree 2 we can take as
coordinates the numbers

α = E
3
√

D2
, β = T

3
√

D
.

In this way the curves are parametrised simply by the real (α, β) plane:

(i) Points in the (open) right-hand parabolic region β2 < 4α and the (closed)
4th quadrant α ≥ 0, β ≤ 0 do not correspond to any curves over the real
numbers. (It is natural to refer to the union of these two sets as the ‘imag-
inary region’ of the (α, β) plane. See Figure 1.2.) The points of the pa-
rameter space are real, but the coefficients of the defining equation (1.1)
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always require imaginary complex numbers. For example, the origin (0, 0)
corresponds to the curve

√−1(x2 − y2) + 2xy = 2x .

(ii) Points of the parabola β2 = 4α in the 1st quadrant correspond to circles
of radius

√
2/β.

(iii) Points of the open region β2 > 4α > 0 between the parabola and the
β-axis parametrise ellipses.

(iv) Points of the positive β-axis α = 0, β > 0 parametrise parabolas.
(v) Points in the left half-plane α < 0 parametrise hyperbolas. Within this

region, points along the negative α-axis parametrise rectangular hyper-
bolas (the graph of the reciprocal function), while points in the 2nd and
3rd quadrants correspond respectively to acute angled and obtuse angled
hyperbolas.

Acute
angled

Obtuse
angled

Rectangular

Ellipses

Circles

αHyperbolas
Imaginary
region

β2 = 4α

β
Parabolas

Figure 1.2: The parameter space of real curves of degree 2

Let us now follow a rotation of this figure in the positive direction about the
origin.

Beginning with a circle (eccentricity e = 0), our curve grows into an ellipse
through a parabolic phase (e = 1) before making a transition to a hyperbola.
The angle between the asymptotes of this hyperbola is initially close to zero and
gradually grows to 180◦, at which point (e = ∞) the curve enters the imaginary
region. After passing through this region it turns once again into a circle. (This
is Kepler’s Principle.)
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e � √
–
2

(e � �)

Circle (e � 0)

(e � 1)
Parabola

Ellipse
Acute angled

hyperbola

Right angled
hyperbola

Obtuse angled
hyperbola

Figure 1.3: Transmigration of a conic

Remark 1.3. In the case of an ellipse, our curve has a (Euclidean invariant) area
which is equal to π/

√
α. In particular, this area increases as the curve approaches

the β-axis, and one may think of a parabola, corresponding to a point on the
axis, as having infinite area. Taking this point of view a step further, one may
think of a hyperbola as having imaginary area. �

We have thus established a correspondence between real curves of degree 2
up to Euclidean transformations and points of the (α, β) plane. The group G
does not have the best properties (it is not linearly reductive – this will be
explained in Chapter 4), but nevertheless in this example we are lucky and
every point of the (α, β) plane corresponds to some curve.

Plane curves of degree 2 are also called conics, as they are the curves obtained
by taking plane cross sections of a circular cone (an observation which goes
back to Apollonius and Pappus). From this point of view, the eccentricity e of
the curve is determined by the angle of the plane (Figure 1.4).

To be precise, let φ be the angle between the axis of the cone and the circular
base, and let ψ be the angle between the axis and the plane of the conic. If we
now let

e = sin ψ

sin φ
,
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Hyperbola

Parabola

Ellipse

Circle

Figure 1.4: Plane sections of a cone

then for e < 1, e = 1 and e > 1, respectively, the conic section is an el-
lipse, a parabola or a hyperbola. As is well known, the eccentricity can also be
expressed as

e = distance from the focus

distance to the directrix
.

(For a curve with equation (x/a)2 ± (y/b)2 = 1, where a ≤ b, we find that e =√
1 ∓ (a/b)2.) This is not an invariant polynomial function, but it satisfies an

algebraic equation whose coefficients are invariants. Namely, it is the invariant
multivalued function satisfying the quartic equation

(e2 − 1) + 1

e2 − 1
= 2 − T 2

2E
.

Although e is properly speaking multivalued, we can take advantage of the fact
that we are considering conics over the real numbers. In this case it is possible
to choose a branch so that the function is single-valued for conics with real
coefficients.

Suppose we extend the Euclidean transformation group to include also sim-
ilarities (dilations and contractions). Transforming a conic by a scale factor k
multiplies α by 3

√
k2 and multiplies β by 3

√
k. So the ‘moduli space’ is now the
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(α, β) plane, minus the origin, divided out by the action of scalars

(α, β) �→ (
3
√

k2α,
3
√

kβ).

In other words, it is a projective line (more precisely, the weighted projective
line P(1 : 2); see Example 3.46 in Chapter 3). The one dimensional parameter
that we obtain in this way is essentially the eccentricity e.

The aim of the first part of this book is to generalise the construction of this sort
of parameter space to equivalence classes of polynomials in several variables
under the action of the general linear group. In geometric language, our aim is
to construct parameter spaces for equivalence classes of general-dimensional
projective hypersurfaces with respect to projective transformations.

1.2 Invariants of groups

To say that a polynomial f (x1, . . . , xn) in n variables is an invariant with respect
to an n × n matrix A = (ai j ) can have one of two meanings:

(i) f is invariant under the coordinate transformation determined by A. That
is, it satisfies

f (Ax) := f

(∑
i

a1i xi , . . . ,
∑

i

ani xi

)
= f (x). (1.5)

(ii) f is invariant under the derivation

DA =
∑
i, j

ai j xi
∂

∂x j

determined by A. In other words, it satisfies

DA f =
∑
i, j

ai j xi
∂ f

∂x j
= 0. (1.6)

In both cases, the invariant polynomials under some fixed set of matrices form
a subring of C[x1, . . . , xn]. The idea of a Lie group and of a Lie algebra,
respectively, arises in a natural way out of these two notions of invariants.

(a) Hilbert series

To begin, we review the first notion 1.2(i) of invariance. (The second will
reappear in Chapter 4.) Given a set of nonsingular matrices T ⊂ GL(n), we
consider the set of all invariant polynomials

{ f ∈ C[x1, . . . , xn] | f (Ax) = f (x) for all A ∈ T }.
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Clearly this is a subring of C[x1, . . . , xn], called the ring of invariants of T .
Notice that if f (x) is an invariant under matrices A and B, then it is an invariant
under the inverse A−1 and the product AB. It follows that in the definition
of the ring of invariants we may assume without loss of generality that T is
closed under taking products and inverses. This is just the definition of a group;
moreover, in essence we have here the definition of a group representation.

Definition 1.4. Let G ⊂ GL(n) be a subgroup. A polynomial f ∈
C[x1, . . . , xn] satisfying

f (Ax) = f (x) for all A ∈ G

is called a G-invariant. �

We shall write S = C[x1, . . . , xn] for the polynomial ring and SG for the
ring of invariants of G. Let us examine some cases in which G is a finite group.

Example 1.5. Let G be the symmetric group consisting of all n×n permutation
matrices – that is, having a single 1 in each row and column, and 0 elsewhere.
The invariants of G in C[x1, . . . , xn] are just the symmetric polynomials. These
form a subring which includes the n elementary symmetric polynomials

σ1(x) = ∑
i xi

σ2(x) = ∑
i< j xi x j

. . .

σn(x) = x1 . . . xn,

and it is well known that these generate the subring of all symmetric
polynomials. �

Example 1.6. Suppose G is the alternating group consisting of all even permu-
tation matrices (matrices as in the previous example, that is, with determinant
+1). In this case a G-invariant polynomial can be uniquely expressed as the
sum of a symmetric and an alternating polynomial:

{
invariant
polynomials

}
∼=

{
symmetric
polynomials

}
⊕

{
alternating
polynomials

}
.
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Moreover, the set of alternating polynomials is a free module over the ring of
symmetric polynomials with the single generator

�(x) =
∏

1≤i< j≤n

(xi − x j ).

�

Example 1.7. Let G = {±In} ⊂ GL(n), the subgroup of order 2, where In is
the identity matrix. This time the set of invariant polynomials is a vector space
with basis consisting of all monomials of even degree. As a ring it is generated
by the monomials of degree 2; in the case n = 2, for example, it is generated
by x2

1 , x1x2, x2
2 . �

Let S = C[x1, . . . , xn]. Any polynomial f (x) = f (x1, . . . , xn) can written
as a sum of homogeneous polynomials:

f (x) = f0 + f1(x) + f2(x) + · · · + ftop(x) with deg fi (x) = i .

Invariance of f (x) is then equivalent to invariance of all the summands fi (x).
Denoting by Sd ⊂ S the subspace of homogeneous polynomials of degree d, it
follows that there are direct sum decompositions

S =
⊕
d≥0

Sd , SG =
⊕
d≥0

SG ∩ Sd .

(S and SG are graded rings. See Section 2.5(a).) We can introduce a generating
function for the dimensions of the homogeneous components of SG . This is the
formal power series in an indeterminate t , called the Hilbert series (also called
the Poincaré series, or the Molien series) of the graded ring SG :

P(t) :=
∑
d≥0

(dim SG ∩ Sd )td ∈ Z[[t]].

Example 1.8. The Hilbert series of the matrix groups in Examples 1.5 and 1.6
are given, respectively, by the generating functions:

(i)
1

(1 − t)(1 − t2) · · · (1 − tn)
,

(ii)
1 + tn(n−1)/2

(1 − t)(1 − t2) · · · (1 − tn)
.
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One sees this in the following way. First, if we expand the expression

1

(1 − σ1)(1 − σ2) · · · (1 − σn)

as a formal series, the terms form a basis of the infinite-dimensional vector
space of symmetric polynomials. So, substituting t i for σi we obtain (i) for the
Hilbert series of Example 1.5. For Example 1.6, a similar argument gives (ii)
after noting that

SG = C[σ1, . . . , σn] ⊕ C[σ1, . . . , σn]�,

where deg � = n(n − 1)/2. �

Note that by a similar argument the full polynomial ring S = ⊕
Sd has

Hilbert series P(t) = (1 − t)−n . In particular, this gives the familiar fact that
dim Sd = (n−1+d

n−1

)
. We will make more systematic use of this idea in the proof

of Molien’s Theorem below.
The Hilbert series is a very important invariant of the ring SG which, as these

examples illustrate, measures its ‘size and shape’:

Proposition 1.9. If SG is generated by homogeneous polynomials f1, . . . , fr of
degrees d1, . . . , dr , then the Hilbert series of SG is the power series expansion
at t = 0 of a rational function

P(t) = F(t)

(1 − td1 ) · · · (1 − tdr )

for some F(t) ∈ Z[t].

Proof. We use induction on r , observing that when r = 1 the ring SG is just
C[ f1] with the Hilbert series

P(t) = 1 + td1 + t2d1 + · · · = 1

1 − td−1
.

For r > 1 we consider the (injective complex linear) map SG → SG defined
by h �→ f − rh. We denote the image by R ⊂ SG and consider the Hilbert
series for the graded rings R and SG/R. These satisfy

PSG (t) = PR(t) + PSG/R(t).


