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Solving the Pell equation
HENDRIK W. LENSTRA, JR.

ABSTRACT. We illustrate recent developments in computational number the-
ory by studying their implications for solving the Pell equation. We shall see
that, if the solutions to the Pell equation are properly represented, the tradi-
tional continued fraction method for solving the equation can be significantly
accelerated. The most promising method depends on the use of smooth num-
bers. As with many algorithms depending on smooth numbers, its run time can
presently only conjecturally be established; giving a rigorous analysis is one
of the many open problems surrounding the Pell equation.

1. Pell’s equation

The Pell equation is the equation

x2 D dy2 C 1;

to be solved in positive integers x, y for a given nonzero integer d . For example,
for d D 5 one can take x D 9, y D 4. We shall always assume that d is positive
but not a square, since otherwise there are clearly no solutions.

The English mathematician John Pell (1611–1685) has nothing to do with the
equation. Euler (1707–1783) mistakenly attributed to Pell a solution method that
had in fact been found by another English mathematician, William Brouncker
(1620–1684), in response to a challenge by Fermat (1601–1665); but attempts
to change the terminology introduced by Euler have always proved futile.

Pell’s equation has an extraordinarily rich history, to which Weil [1984] is the
best guide; see also [Dickson 1920, Chapter XII; Konen 1901; Whitford 1912].
Brouncker’s method is in substance identical to a method that was known to
Indian mathematicians at least six centuries earlier. As we shall see, the equation
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2 HENDRIK W. LENSTRA, JR.

also occurred in Greek mathematics, but no convincing evidence that the Greeks
could solve the equation has ever emerged.

A particularly lucid exposition of the “Indian” or “English” method of solv-
ing the Pell equation is found in Euler’s Algebra [Euler 1770, Abschnitt 2,
Capitel 7]. Modern textbooks usually give a formulation in terms of contin-
ued fractions, which is also due to Euler (see for example [Niven et al. 1991,
Chapter 7]). Euler, as well as his Indian and English predecessors, appears to
take it for granted that the method always produces a solution. That is true, but it
is not obvious — all that is obvious is that if there is a solution, the method will
find one. Fermat was probably in possession of a proof that there is a solution
for every d (see [Weil 1984, Chapter II, ~ XIII]), and the first to publish such a
proof was Lagrange (1736–1813) [1773].

One may rewrite Pell’s equation as

.x C y
p

d/ � .x � y
p

d/ D 1;

so that finding a solution comes down to finding a nontrivial unit of the ring
�Œ

p
d � of norm 1; here the norm �Œ

p
d �� ! �� D f˙1g between unit groups

multiplies each unit by its conjugate, and the units ˙1 of �Œ
p

d � are considered
trivial. This reformulation implies that once one knows a solution to Pell’s equa-
tion, one can find infinitely many. More precisely, if the solutions are ordered
by magnitude, then the n-th solution xn, yn can be expressed in terms of the
first one, x1, y1, by

xn C yn

p
d D .x1 C y1

p
d/n:

Accordingly, the first solution x1, y1 is called the fundamental solution to the
Pell equation, and solving the Pell equation means finding x1, y1 for given d .
By abuse of language, we shall also refer to x C y

p
d instead of the pair x, y

as a solution to Pell’s equation and call x1 C y1

p
d the fundamental solution.

One may view the solvability of Pell’s equation as a special case of Dirichlet’s
unit theorem from algebraic number theory, which describes the structure of the
group of units of a general ring of algebraic integers [Stevenhagen 2008a]; for
the ring �Œ

p
d �, it is the product of f˙1g and an infinite cyclic group.

As an example, consider d D 14. One has

p
14 D 3 C 1

1 C 1

2 C 1

1 C 1

3 C p
14

;
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SOLVING THE PELL EQUATION 3

so the continued fraction expansion of 3 C p
14 is purely periodic with period

length 4. Truncating the expansion at the end of the first period, one finds that
the fraction

3 C 1

1 C 1

2 C 1

1

1

D 15

4

is a fair approximation to
p

14. The numerator and denominator of this fraction
yield the fundamental solution x1 D 15, y1 D 4; indeed one has 152 D 14�42C1.
Furthermore, one computes .15 C 4

p
14/2 D 449 C 120

p
14, so x2 D 449,

y2 D 120; and so on. One finds:

n xn yn

1 15 4

2 449 120

3 13455 3596

4 403201 107760

5 12082575 3229204

6 362074049 96768360

The shape of the table reflects the exponential growth of xn and yn with n.
For general d , the continued fraction expansion of Œ

p
d �Cp

d is again purely
periodic, and the period displays a symmetry similar to the one visible for d D
14. If the period length is even, one proceeds as above; if the period length is
odd, one truncates at the end of the second period [Buhler and Wagon 2008].

2. The cattle problem

An interesting example of the Pell equation, both from a computational and
from a historical perspective, is furnished by the cattle problem of Archimedes
(287–212 B.C.). A manuscript containing this problem was discovered by Less-
ing (1729–1781) in the Wolffenbüttel library, and published by him in 1773 (see
[Lessing 1773; Heiberg 1913, pp. 528–534]). It is now generally credited to
Archimedes [Fraser 1972; Weil 1984]. In twenty-two Greek elegiac distichs,
the problem asks for the number of white, black, dappled, and brown bulls and
cows belonging to the Sun god, subject to several arithmetical restrictions. A
version in English heroic couplets, published in [Archimedes 1999], is shown
on page 4. In modern mathematical notation the problem is no less elegant.
Writing x, y, z, t for the numbers of white, black, dappled, and brown bulls,
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4 HENDRIK W. LENSTRA, JR.

PROBLEM
that Archimedes conceived in verse

and posed to the specialists at Alexandria
in a letter to Eratosthenes of Cyrene.

The Sun god’s cattle, friend, apply thy care
to count their number, hast thou wisdom’s share.
They grazed of old on the Thrinacian floor
of Sic’ly’s island, herded into four,
colour by colour: one herd white as cream,
the next in coats glowing with ebon gleam,
brown-skinned the third, and stained with spots the last.
Each herd saw bulls in power unsurpassed,
in ratios these: count half the ebon-hued,
add one third more, then all the brown include;
thus, friend, canst thou the white bulls’ number tell.
The ebon did the brown exceed as well,
now by a fourth and fifth part of the stained.
To know the spotted — all bulls that remained —
reckon again the brown bulls, and unite
these with a sixth and seventh of the white.
Among the cows, the tale of silver-haired
was, when with bulls and cows of black compared,
exactly one in three plus one in four.
The black cows counted one in four once more,
plus now a fifth, of the bespeckled breed
when, bulls withal, they wandered out to feed.
The speckled cows tallied a fifth and sixth
of all the brown-haired, males and females mixed.
Lastly, the brown cows numbered half a third
and one in seven of the silver herd.
Tell’st thou unfailingly how many head
the Sun possessed, o friend, both bulls well-fed
and cows of ev’ry colour — no-one will
deny that thou hast numbers’ art and skill,
though not yet dost thou rank among the wise.
But come! also the foll’wing recognise.
Whene’er the Sun god’s white bulls joined the black,
their multitude would gather in a pack
of equal length and breadth, and squarely throng
Thrinacia’s territory broad and long.
But when the brown bulls mingled with the flecked,
in rows growing from one would they collect,
forming a perfect triangle, with ne’er
a diff’rent-coloured bull, and none to spare.
Friend, canst thou analyse this in thy mind,
and of these masses all the measures find,
go forth in glory! be assured all deem
thy wisdom in this discipline supreme!
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SOLVING THE PELL EQUATION 5

respectively, one reads in lines 8–16 the restrictions

x D .1
2

C 1
3
/y C t;

y D .1
4

C 1
5
/z C t;

z D .1
6

C 1
7
/x C t:

Next, for the numbers x0, y0, z0, t 0 of cows of the same respective colors, the
poet requires in lines 17–26

x0 D .1
3

C 1
4
/.y C y0/;

y0 D .1
4

C 1
5
/.z C z0/;

z0 D .1
5

C 1
6
/.t C t 0/;

t 0 D .1
6

C 1
7
/.x C x0/:

Whoever can solve the problem thus far is called merely competent by Archi-
medes; to win the prize for supreme wisdom, one should also meet the conditions
formulated in lines 33–40 that x C y be a square and that z C t be a triangular
number.

The first part of the problem is just linear algebra, and there is indeed a solu-
tion in positive integers. The general solution to the first three equations is given
by .x; y; z; t/ D m�.2226; 1602; 1580; 891/, where m is a positive integer. The
next four equations turn out to be solvable if and only if m is divisible by 4657;
with m D 4657 � k one has

.x0; y0; z0; t 0/ D k � .7206360; 4893246; 3515820; 5439213/:

The true challenge is now to choose k such that x C y D 4657 � 3828 � k is
a square and z C t D 4657 � 2471 � k is a triangular number. From the prime
factorization 4657 � 3828 D 22 � 3 � 11 � 29 � 4657 one sees that the first condition
is equivalent to k D al2, where a D 3 � 11 � 29 � 4657 and l is an integer. Since
z C t is a triangular number if and only if 8.z C t/ C 1 is a square, we are led
to the equation h2 D 8.z C t/ C 1 D 8 � 4657 � 2471 � al2 C 1, which is the Pell
equation h2 D dl2 C 1 for

d D 2 � 3 � 7 � 11 � 29 � 353 � .2 � 4657/2 D 410 286423 278424:

Thus, by Lagrange’s theorem, the cattle problem admits infinitely many solu-
tions.

In 1867 the otherwise unknown German mathematician C. F. Meyer set out
to solve the equation by the continued fraction method [Dickson 1920, p. 344].
After 240 steps in the continued fraction expansion for

p
d he had still not

detected the period, and he gave up. He may have been a little impatient; it
was later discovered that the period length equals 203254; see [Grosjean and
De Meyer 1991]. The first to solve the cattle problem in a satisfactory way
was A. Amthor in 1880 (see [Krumbiegel and Amthor 1880]). Amthor did not
directly apply the continued fraction method; what he did do we shall discuss
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6 HENDRIK W. LENSTRA, JR.

below. Nor did he spell out the decimal digits of the fundamental solution to the
Pell equation or the corresponding solution of the cattle problem. He did show
that, in the smallest solution to the cattle problem, the total number of cattle
is given by a number of 206545 digits; of the four leading digits 7766 that he
gave, the fourth was wrong, due to the use of insufficiently precise logarithms.
The full number occupies forty-seven pages of computer printout, reproduced
in reduced size on twelve pages of the Journal of Recreational Mathematics
[Nelson 1980/81]. In abbreviated form, it reads

77602714 : : : 237983357 : : : 55081800;

each of the six dots representing 34420 omitted digits.
Several nineteenth century German scholars were worried that so many bulls

and cows might not fit on the island of Sicily, contradicting lines 3 and 4 of the
poem; but, as Lessing remarked, the Sun god, to whom the cattle belonged, will
have coped with it.

The story of the cattle problem shows that the continued fraction method is
not the last word on the Pell equation.

3. Efficiency

We are interested in the efficiency of solution methods for the Pell equation.
Thus, how much time does a given algorithm for solving the Pell equation take?
Here time is to be measured in a realistic way, which reflects, for example,
that large positive integers are more time-consuming to operate with than small
ones; technically, one counts bit operations. The input to the algorithm is d , and
the running time estimates are accordingly expressed as functions of d . If one
supposes that d is specified in binary or in decimal, then the length of the input is
approximately proportional to log d . An algorithm is said to run in polynomial
time if there is a positive real number c0 such that for all d the running time is
at most .1 C log d/c0 , in other words, if the time that it takes the algorithm to
solve the Pell equation is not much greater than the time required to write down
the equation.

How fast is the continued fraction method? Can the Pell equation be solved
in polynomial time? The central quantity that one needs to consider in order to
answer such questions is the regulator Rd , which is defined by

Rd D log.x1 C y1

p
d/;

where x1 C y1

p
d denotes, as before, the fundamental solution to Pell’s equa-

tion. The regulator coincides with what in algebraic number theory would
be called the regulator of the kernel of the norm map �Œ

p
d �� ! ��. From
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SOLVING THE PELL EQUATION 7

x1 � y1

p
d D 1=.x1 C y1

p
d/ one deduces that 0 < x1 � y1

p
d < 1=.2

p
d/,

and combining this with x1 C y1

p
d D eRd , one finds that

eRd

2
< x1 <

eRd

2
C 1

4
p

d
;

eRd

2
p

d
� 1

4d
< y1 <

eRd

2
p

d
:

This shows that Rd is very close to log.2x1/ and to log.2y1

p
d/. That is, if x1

and y1 are to be represented in binary or in decimal, then Rd is approximately
proportional to the length of the output of any algorithm solving the Pell equa-
tion. Since the time required for spelling out the output is a lower bound for the
total running time, we may conclude: there exists c1 such that any algorithm for
solving the Pell equation takes time at least c1Rd . Here c1 denotes, just as do
c2, c3, . . . below, a positive real number that does not depend on d .

The continued fraction method almost meets this lower bound. Let l be the
period length of the continued fraction expansion of Œ

p
d � C p

d if that length
is even and twice that length if it is odd. Then one has

log 2

2
� l < Rd <

log.4d/

2
� l I

see [Lenstra 1982, (11.4)]. Thus Rd and l are approximately proportional. Us-
ing this, one estimates easily that the time taken by a straightforward implemen-
tation of the continued fraction method is at most R2

d
� .1 C log d/c2 for suit-

able c2; and a more refined implementation, which depends on the fast Fourier
transform, reduces this to Rd � .1 C log d/c3 for suitable c3; see [Schönhage
1971]. We conclude that the latter version of the continued fraction method is
optimal, apart from a logarithmic factor.

In view of these results it is natural to ask how the regulator grows as a
function of d . It turns out that it fluctuates wildly. One has

log.2
p

d/ < Rd <
p

d � .log.4d/ C 2/;

the lower bound because of the inequality y1 < eRd =.2
p

d/ above and the upper
bound by [Hua 1942]. The gap between the two bounds is very large, but it
cannot be helped: if d ranges over numbers of the form k2 � 1, for which one
has x1 D k and y1 D 1, then Rd � log.2

p
d/ tends to 0; and one can show that

there exist an infinite set D of d ’s and a constant c4 such that all d 2 D have
Rd D c4

p
d . In fact, if d0, d1 are integers greater than 1 and d0 is not a square,

then there exists a positive integer m D m.d0; d1/ such that D D fd0d2n
1

W n 2 �,
n � mg has this property for some c4 D c4.d0; d1/.

It is believed that for most d the upper bound is closer to the truth. More
precisely, a folklore conjecture asserts that there is a set D of nonsquare positive
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8 HENDRIK W. LENSTRA, JR.

integers that has density 1 in the sense that limx!1 #fd 2 D W d � xg=x D 1,
and that satisfies

lim
d2D

log Rd

log
p

d
D 1:

This conjecture, however, is wide open. The same is true for the much weaker
conjecture that lim supd .log Rd /= log

p
d , with d ranging over the squarefree

integers > 1, is positive.
If the folklore conjecture is true, then for most d the factor Rd entering the

running time is about
p

d , which is an exponential function of the length log d

of the input.
Combining the preceding results, one concludes that the continued fraction

method takes time at most
p

d �.1Clog d/c5 ; that conjecturally it is exponentially
slow for most values of d ; and that any method for solving the Pell equation that
spells out x1 and y1 in full is exponentially slow for infinitely many d and will
therefore fail to run in polynomial time.

If we want to improve upon the continued fraction method, then we need a
way of representing x1 and y1 that is more compact than the decimal or binary
notation.

4. Amthor’s solution

Amthor’s solution to the cattle problem depended on the observation that
the number d D 410 286423 278424 can be written as .2 � 4657/2 � d 0, where
d 0 D 4 729494 is squarefree. Hence, if x, y solves the Pell equation for d , then
x, 2 � 4657 � y solves the Pell equation for d 0 and will therefore for some n be
equal to the n-th solution x0

n, y0
n (say) of that equation:

x C 2 � 4657 � y �
p

d 0 D .x0
1 C y0

1

p
d 0/n:

This reduces the cattle problem to two easier problems: first, solving the Pell
equation for d 0; and second, finding the least value of n for which y0

n is divisible
by 2 � 4657.

Since d 0 is much smaller than d , Amthor could use the continued fraction
algorithm for d 0. In a computation that could be summarized in three pages,
as in [Krumbiegel and Amthor 1880], he found the period length to be 92 and
x0

1
C y0

1

p
d 0 to be given by

u D 109 931986 732829 734979 866232 821433 543901 088049

C 50549 485234 315033 074477 819735 540408 986340 � p4 729494:

In order to save space, one can write

u D �
300 426607 914281 713365�p609C84 129507 677858 393258�p7766

�2
:
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SOLVING THE PELL EQUATION 9

w D 300 426607 914281 713365 � p609 C 84 129507 677858 393258 � p7766

kj D .w4658�j � w�4658�j /2=368 238304 .j D 1; 2; 3; : : : /

j -th solution bulls cows all cattle

white 10 366482 � kj 7 206360 � kj 17 572842 � kj

black 7 460514 � kj 4 893246 � kj 12 353760 � kj

dappled 7 358060 � kj 3 515820 � kj 10 873880 � kj

brown 4 149387 � kj 5 439213 � kj 9 588600 � kj

all colors 29 334443 � kj 21 054639 � kj 50 389082 � kj

All solutions to the cattle problem of Archimedes.

This is derived from the identity x C y
p

d D �p
.x � 1/=2 C p

.x C 1/=2
�2,

which holds whenever x2 D dy2 C 1. The regulator is found to be Rd 0 ‡
102:101583.

In order to determine the least feasible value for n, Amthor developed a little
theory, which one would nowadays cast in the language of finite fields and rings.
Using that p D 4657 is a prime number for which the Legendre symbol

�
d 0

p

�
equals �1, he deduced from his theory that the least value for n divides pC1 D
4658; had he been a little more careful, he would have found that it must divide
.p C 1/=2 D 2329 D 17 � 137 (see [Vardi 1998]). In any case, trying a few
divisors, one discovers that the least value for n is actually equal to 2329. One
has Rd D 2329 � Rd 0 ‡ 237794:586710.

The conclusion is that the fundamental solution to the Pell equation for d

itself is given by x1 C y1

p
d D u2329, with u as just defined. Amthor failed to

put everything together, but I did this for the convenience of the reader: for the
first time in history, all infinitely many solutions to the cattle problem displayed
in a handy little table! It does, naturally, not contain the full decimal expansion
of any of the numbers asked for, but what it does contain should be considered
more enlightening. For example, it enables the reader not only to verify easily
that the total number of cattle in the smallest solution has 206545 decimal digits
and equals 77602714 : : : 55081800, but also to discover that the number of dap-
pled bulls in the 1494 195300th solution equals 111111 : : : 000000, a number of
308 619694 367813 digits. (Finding the middle digits is probably much harder.)
There is no doubt that Archimedes, who wrote a lengthy epistle about the repre-
sentation of large numbers to King Gelon (see [Dijksterhuis 1956] or [Heiberg
1913, pp. 215–259]), would have been pleased and satisfied by the solution as
expressed in the table.
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10 HENDRIK W. LENSTRA, JR.

5. Power products

Suppose one wishes to solve the Pell equation x2 D dy2 C 1 for a given
value of d . From Amthor’s approach to the cattle problem we learn that for two
reasons it may be wise to find the smallest divisor d 0 of d for which d=d 0 is a
square: it saves time when performing the continued fraction algorithm, and it
saves both time and space when expressing the final answer. There is no known
algorithm for finding d 0 from d that is essentially faster than factoring d . In
addition, if we want to determine which power of the fundamental solution for d 0
yields the fundamental solution for d — that is, the number n from the previous
section — we also need to know the prime factorization of

p
d=d 0, as well as the

prime factorization of p � �
d 0

p

�
for each prime p dividing

p
d=d 0. Thus, if one

wants to solve the Pell equation, one may as well start by factoring d . Known
factoring algorithms may not be very fast for large d , but for most values of d

they are still expected to be orders of magnitudes faster than any known method
for solving the Pell equation [Stevenhagen 2008b].

Let it now be assumed that d is squarefree, and write x1 C y1

p
d for the

fundamental solution of the Pell equation, which is a unit of �Œ
p

d �. Then
x1 C y1

p
d may still be a proper power in the field �.

p
d/ of fractions of

�Œ
p

d �. For example, the least d with y1 > 6 is d D 13, for which one has
x1 D 649, y1 D 180, and

649 C 180
p

13 D
�3 C p

13

2

�6
:

Also in the case d D 109, which Fermat posed as a challenge problem in 1657,
the fundamental solution is a sixth power:

158 070671 986249 C 15 140424 455100
p

109 D
�261 C 25

p
109

2

�6
:

However, this is as far as it goes: it is an elementary exercise in algebraic number
theory to show that if n is a positive integer for which x1 C y1

p
d has an n-th

root in �.
p

d/, then n D 1, 2, 3, or 6, the case n D 2 being possible only for
d � 1, 2, or 5 mod 8, and the cases n D 3 and 6 only for d � 5 mod 8. Thus, for
large squarefree d one cannot expect to save much space by writing x1 Cy1

p
d

as a power. This is also true when one allows the root to lie in a composite of
quadratic fields, as we did for the cattle problem.

Let d again be an arbitrary positive integer that is not a square. Instead of
powers, we consider power products in �.

p
d/, that is, expressions of the form

tY
iD1

.ai C bi

p
d/ni
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