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Introduction: Basic Theory of Surface Waves

Here we give a brief account of physical assumptions (first section) and the
mathematical approximation (second section) used for developing a mathe-
matical model of water waves. The resulting linear boundary value problems
are formulated in the third and fourth sections for the wave–body interaction
and ship waves, respectively.

Mathematical Formulation

Conventions

Water waves (the terms surface waves and gravity waves are also in use) are
created normally by a gravitational force in the presence of a free surface
along which the pressure is constant. There are two ways to describe these
waves mathematically. It is possible to trace the paths of individual particles
(a Lagrangian description), but in this book an alternative form of equations
(usually referred to as Eulerian) is adopted. The motion is determined by
the velocity field in the domain occupied by water at every moment of the
time t .

Water is assumed to occupy a certain domain W bounded by one or more
moving or fixed surfaces that separate water from some other medium. Actu-
ally we consider boundaries of two types: the above-mentioned free surface
separating water from the atmosphere, and rigid surfaces including the bottom
and surfaces of bodies floating in and/or beneath the free surface.

It is convenient to use rectangular coordinates (x1, x2, y) with origin in the
free surface at rest (which usually coincides with the mean free surface), and
with the y axis directed opposite to the acceleration caused by gravity. For
the sake of brevity we will write x instead of (x1, x2). This has the obvious
advantage that two- and three-dimensional problems can be treated simulta-
neously, where it is possible. Two-dimensional problems form an important
class of problems considering water motions that are the same in every plane

1
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2 Introduction: Basic Theory of Surface Waves

orthogonal to a certain direction. Subscripts will be used to denote (partial)
derivatives, for example:

ut = ∂u

∂t
, uy = ∂u

∂y
, uxi = ∂u

∂xi
, i = 1, 2.

When this notation is inconvenient, we will apply the following one:

∂t u, ∂yu, ∂xi u, . . . .

As usual, ∇u = (ux1, ux2, uy), and the horizontal component of ∇ will be
denoted by ∇x , that is, ∇x u = (ux1, ux2, 0). Clearly, ∇u = (ux , uy) and ∇x u =
(ux , 0) in two-dimensional problems.

In several chapters, in particular in those concerned with the forward mo-
tion of a body, we use (x, z) instead of (x1, x2).

Equations of Motion and Boundary Conditions

In the Eulerian formulation one seeks the velocity vector v, the pressure p,
and the fluid density ρ as functions of (x, y) ∈ W̄ and t ≥ t0, where t0 denotes
a certain initial moment. Assuming the fluid to be inviscid without surface
tension, one obtains the equations of motion from conservation laws (for
details see, for example, books by Lamb [179], Le Méhauté [186], and Stoker
[312]).

The conservation of mass implies the continuity equation

ρt + ∇ · (ρv) = 0 in W.

Under the assumption that the fluid is incompressible (which is usual in the
water-wave theory), the last equation becomes

∇ · v = 0 in W. (I.1)

The conservation of momentum in inviscid fluid leads to the so-called
Euler equations. Taking into account the gravity force, one can write these
three (or two) equations in the following vector form:

vt + v · ∇v = −ρ−1∇ p + g. (I.2)

Here g is the vector of the gravity force having zero horizontal components
and the vertical one equal to −g, where g denotes the acceleration caused by
gravity.

An irrotational character of motion is another usual assumption in the
water-wave theory; that is,

∇ × v = 0 in W.
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Mathematical Formulation 3

Note that one can prove that the motion is irrotational if it has this property at
the initial moment (see, for example, books by Lamb [179] and Stoker [312]
for the proof of this assertion known as the Helmholtz theorem). The last
equation guarantees the existence of a velocity potential φ, so that

v = ∇φ in W̄ . (I.3)

This is obvious for simply connected domains; otherwise (for example, when
one considers a two-dimensional problem for a totally immersed body), the
so-called no flow condition, see (I.8) below, should be taken into account.

From (I.1) and (I.3) one obtains the Laplace equation

∇2φ = 0 in W. (I.4)

This greatly facilitates the theory but, in general, solutions of (I.4) do not
manifest wave character. Waves are created by the boundary conditions on
the free surface.

Let y = η(x, t) be the equation of the free surface valid for x ∈ F , where
F is a union of some domains (generally depending on t) in R

n, with n = 1, 2.
The pressure is prescribed to be equal to the constant atmospheric pressure
p0 on y = η(x, t), and the surface tension is neglected. From (I.2) and (I.3)
one immediately obtains Bernoulli’s equation,

φt + |∇φ|2/2 = −ρ−1 p − gy + C in W̄ , (I.5)

where C is a function of t alone. Indeed, applying ∇ to both sides in (I.5) and
using (I.2) and (I.3), one obtains ∇C = 0. Then, by changing φ by a suitable
additive function of t , one can convert C into a constant having, for example,
the value

C = ρ−1 p0. (I.6)

Now (I.5) gives the dynamic boundary condition on the free surface:

gη + φt + |∇φ|2/2 = 0 for y = η(x, t), x ∈ F. (I.7)

Another boundary condition holds on every “physical” surfaceS bounding
the fluid domain W and expresses the kinematic property that there is no
transfer of matter across S. Let s(x, y, t) = 0 be the equation of S; then

ds/dt = v · ∇s + st = 0 on S. (I.8)

Under assumption (I.3) this takes the form of

∂φ

∂n
= − st

|∇s| = vn on S, (I.9)
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4 Introduction: Basic Theory of Surface Waves

where vn denotes the normal velocity of S. Thus the kinematic boundary
condition (I.9) means that the normal velocity of particles is continuous across
a physical boundary.

On the fixed part of S, (I.9) takes the form of

∂φ/∂n = 0. (I.10)

On the free surface, condition (I.8), written as follows,

ηt + ∇xφ · ∇xη − φy = 0 for y = η(x, t), x ∈ F, (I.11)

complements the dynamic condition (I.7). Thus, in the present approach, two
nonlinear conditions (I.7) and (I.11) on the unknown boundary are responsible
for waves, which constitutes the main characteristic feature of water–surface
wave theory.

This brief account of governing equations can be summarized as follows.
In the water-wave problem one seeks the velocity potential φ(x, y, t) and

the free surface elevation η(x, t) satisfying (I.4), (I.7), (I.9), and (I.11). The
initial values of φ and η should also be prescribed, as well as the conditions
at infinity (for unbounded W ) to complete the problem, which is known as the
Cauchy–Poisson problem.

Energy and Its Flow

Let W0 be a subdomain of W bounded by a “geometric” surface ∂W0 that
may not be related to physical obstacles and that is permitted to vary in time
independently of moving water unlike “physical” surfaces described below.
Let s0(x, y, t) = 0 be the equation of ∂W0. The total energy contained in W0

consists of kinetic and potential components and is given by

E = ρ

∫
W0

[gy + |∇φ|2/2] dxdy. (I.12)

The first term related to the vertical displacement of a water particle cor-
responds to the potential energy, whereas the second one gives the kinetic
energy that is proportional to the velocity squared. Using (I.5) and (I.6), one
can write this in the form of

E = −ρ

∫
W0

(ρφt + p − p0) dxdy.

Differentiating (I.12) with respect to t we get

dE

dt
= ρ

∫
W0

∇φ · ∇φt dxdy +
∫

∂W0

s0t

|∇s0| (ρφt + p − p0) dS.
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Green’s theorem applied to the first integral here leads to

dE

dt
=

∫
∂W0

[
ρφt

(
∂φ

∂n
− vn

)
− (p − p0)vn

]
dS, (I.13)

where (I.4) is taken into account and vn denotes the normal velocity of ∂W0.
Hence the integrand in (I.13) is the rate of energy flow from W0 through
∂W0 taken per units of time and area. The velocity of energy propagation is
known as the group velocity. However, it does not play any significant role in
considerations presented in this book, and we restrict ourselves to references
to works of Stoker [312] and Wehausen and Laitone [354], where further
details can be found.

If a portion of ∂W0 is a fixed geometric surface, then vn = 0 on this portion;
the rate of energy flow is given by −ρφt (∂φ/∂n).

If a portion of ∂W0 is a “physical” boundary that is not penetrable by water
particles, then (I.9) shows that the integrand in (I.13) is equal to (p0 − p)vn.

Therefore, there is no energy flow through this portion of ∂W0 if either of two
factors vanishes. In particular, this is true for the free surface (p = p0) and
for the bottom (vn = 0).

Linearized Unsteady Problem

Linearization: Its Applicability and Justification

About 50 years ago, John [125] assessed the problem formulated at the end
of the subsection on equations of motion and boundary conditions as follows:

In this generality little can be done either toward a discussion of the motion or toward
an explicit solution of the equations. The difficulties arising from the fact that φ is a
solution of the potential equation determined by non-linear boundary conditions on a
variable boundary are considerable, and have only been overcome in the special cases
of permanent waves treated by Levi-Civita and Struik.

Here works [194, 314] by Levi-Civita and Struik, respectively, are cited (see
also Nekrasov’s work [261]).

Since then a large number of papers has been published and great progress
has been achieved in the mathematical treatment of nonlinear water-wave
problems (we list only a few works: Debnath [46], Kirchgässner [138], Olver
[272] and Ovsyannikov et al. [273], where further references can be found).
However, all rigorous results in this direction are concerned with water waves
in the absence of floating bodies, and the present state of the art for the non-
linear problem for floating bodies is the same as 50 years ago. Of course,
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6 Introduction: Basic Theory of Surface Waves

a substantial body of numerical results treating different aspects of the non-
linear problem has emerged during the past three decades, but this approach
is beyond our scope.

To be in a position to describe water waves in the presence of bodies,
the equations should be approximated by more tractable ones. The usual and
rather reasonable simplification consists of a linearization of the problem un-
der certain assumptions concerning the motion of a floating body. An example
of such assumptions (there are other ones leading to the same conclusions)
suggests that a body’s motion near the equilibrium position is so small that it
produces only waves having a small amplitude and a small wavelength. There
are three characteristic geometric parameters:

1. A typical value of the wave height H .
2. A typical wavelength L .
3. The water depth D.

They give three characteristic quotients: H/L , H/D, and L/D. The relative
importance of these quotients is different in different situations. Nevertheless,
it was found (see, for example, Le Méhauté [186], Sections 15-2 and 15-3)
that if

H

D
� 1 and

H

L

(
L

D

)3

� 1,

then the linearization can be justified by some heuristic considerations. The
last parameter (H/L)(L/D)3 = (H/D)(L/D)2 is usually referred to as
Ursell’s number. Its role in a classification of water waves is presented in
detail by Le Méhauté [186], Section 15-2. Further results treating the problem
of linearization can be found in the paper [22] by Beale, Hou, and Lowengrub.

The linearized theory leads to results that are in a rather good agreement
with experiments and observations. During the 1940s and 1950s, a substantial
work in this direction was carried out by Ursell and his coauthors. Thus
Barber and Ursell [19] discovered a good agreement between predictions of
the linear theory for group velocity and values resulting from observations,
and Ursell [325] demonstrated the same for frequencies. Some experiments
were carried out by Dean, Ursell, and Yu [45] and by Ursell and Yu [343], and
in a certain range of wave steepnesses a very close agreement was obtained
between the measured wave amplitude (up to some corrections inevitable in
an experiment) and theoretical predictions made on the base of the linear
problem.

Furthermore, there is mathematical evidence that the linearized problem
provides an approximation to the nonlinear one. For the Cauchy–Poisson



P1: GFM/GIO P2: GFM/GIO QC: LAY/FGU T1: ...

CB436-Int CB436/Kuznetsov March 22, 2002 15:52 Char Count= 0

Linearized Unsteady Problem 7

problem describing waves in a water layer caused by prescribed initial con-
ditions, the linear approximation is justified rigorously by Nalimov (see the
book by Ovsyannikov et al. [273], Chapter 3). More precisely, under the as-
sumption that the undisturbed water occupies a layer of constant depth, the
following are proved:

1. The nonlinear problem is solvable for sufficiently small values of the
linearization parameter.

2. As this parameter tends to zero, solutions of the nonlinear problem do
converge to the solution of the linearized problem in the norm of some
suitable function space.

Equations for Small Amplitude Waves

A formal perturbation procedure leading to a sequence of linear problems
can be developed as follows. Let us assume that the velocity potential φ and
the free surface elevation η admit expansions with respect to a certain small
parameter ε:

φ(x, y, t) = εφ(1)(x, y, t) + ε2φ(2)(x, y, t) + ε3φ(3)(x, y, t) + · · · , (I.14)

η(x, t) = η(0)(x, t) + εη(1)(x, t) + ε2η(2)(x, t) + · · · , (I.15)

where φ(1), φ(2), . . . , η(0), η(1), . . . , and all their derivatives are bounded.
Consequently, the velocities of water particles are supposed to be small (pro-
portional to ε), and ε = 0 corresponds to water permanently at rest.

Substituting (I.14) into (I.4) gives

∇2φ(k) = 0 in W, k = 1, 2, . . . . (I.16)

Furthermore, η(0) describing the free surface at rest cannot depend on t .
When the expansions for φ and η are substituted into the Bernoulli boundary
condition (I.7) and grouped according to powers of ε, one obtains

η(0) ≡ 0 for x ∈ F.

This and Taylor’s expansion of φ[x, η(x, t), t] in powers of ε yield the fol-
lowing for orders higher than zero:

φ
(1)
t + gη(1) = 0 for y = 0, x ∈ F, (I.17)

φ
(2)
t + gη(2) = −η(1)φ

(1)
t y − ∣∣∇φ(1)

∣∣2/
2 for y = 0, x ∈ F, (I.18)

and so on; that is, all these conditions hold on the mean position of the free
surface at rest.
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8 Introduction: Basic Theory of Surface Waves

Similarly, the kinematic condition (I.11) leads to

φ(1)
y − η

(1)
t = 0 for y = 0, x ∈ F, (I.19)

φ(2)
y − η

(2)
t = −η(1)φ(1)

yy + ∇xφ
(1) · ∇xη

(1) for y = 0, x ∈ F, (I.20)

and so on. Eliminating η(1) between (I.17) and (I.19), one finds the classical
first-order linear free-surface condition:

φ
(1)
t t + gφ(1)

y = 0 for y = 0, x ∈ F. (I.21)

In the same way, one obtains from (I.18) and (I.20) the following:

φ
(2)
t t + gφ(2)

y = −φ
(1)
t ∇2

x φ
(1) − 1

g2

[
φ

(1)
t φ

(1)
t t t + ∣∣∇xφ

(1)
∣∣2]

t for y = 0, x ∈ F.

Further free-surface conditions can be obtained for terms in (I.14) having
higher orders in ε. All these conditions have the same operator in the left-hand
side, and the right-hand term depends nonlinearly on terms of smaller orders.
It is worth mentioning that all of the high-order problems are formulated in
the same domain W occupied by water at rest. In particular, the free-surface
boundary conditions are imposed at {y = 0, x ∈ F}.

Boundary Condition on an Immersed Rigid Surface

First, we note that the homogeneous Neumann condition (I.10) is linear on
fixed surfaces. Hence, this condition is true for φ(k), k = 1, 2, . . . . The situ-
ation reverses for the inhomogeneous Neumann condition (I.9) on a moving
surface S, which can be subjected, for example, to a prescribed motion or
freely floating. The problem of a body freely floating near its equilibrium
position will not be treated in the book (for linearization of this problem
see John’s paper [125]). We restrict ourselves to the linearization of (I.9) for
S = S(t, ε) undergoing a given small amplitude motion near an equilibrium
position S, that is, when S(t, ε) tends to S as ε → 0.

It is convenient to carry out the linearization locally. Let us consider a
neighborhood of (x (0), y(0)) ∈ S, where the surface is given explicitly in local
Cartesian coordinates (ξ, ζ ), where in the three-dimensional case ξ = (ξ1, ξ2),
having an origin at (x (0), y(0)) and the ζ axis directed into water normally to
S. Let ζ = ζ (0)(ξ ) be the equation of S, and S(t, ε) be given by ζ = ζ (ξ, t, ε),
where

ζ (ξ, t, ε) = ζ (0)(ξ ) + εζ (1)(ξ, t) + ε2ζ (2)(ξ, t) + · · · . (I.22)

After substituting (I.14) and s = ζ − ζ (ξ, t, ε) into (I.8), we use (I.3), (I.22),
and Taylor’s expansion in the same way as in the subsection on equations for
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small amplitude waves. This gives the following first-order equation:

φ
(1)
ζ

(
ξ, ζ (0), t

) − ∇ξφ
(1)

(
ξ, ζ (0), t

) · ∇ξ ζ
(0)(ξ ) = ζ

(1)
t (ξ, t),

which implies the linearized boundary condition:

∂φ(1)/∂n = v(1)
n on S, (I.23)

where

v(1)
n = ζ

(1)
t

/[
1 + ∣∣∇ξ ζ

(0)
∣∣2]1/2

is the first-order approximation of the normal velocity of S(t, ε).
The second-order boundary condition on S has the form

∂φ(2)

∂n
= ζ

(2)
t[

1 + ∣∣∇ξ ζ (0)
∣∣2]1/2 − ζ (1) ∂

2φ(1)

∂n2
−

[
1 + ∣∣∇ξ ζ

(1)
∣∣2

1 + ∣∣∇ξ ζ (0)
∣∣2

]1/2
∂φ(1)

∂n(1)
,

where ∂φ(1)/∂n(1) is the derivative in the direction of normal to ζ = ζ (1)(ξ, t)
calculated on S. In addition, further conditions on S of the Neumann type can
be obtained for terms of higher order in ε.

Thus, all φ(k) satisfy the same linear boundary value problem with different
right-hand-side terms in conditions on the free surface at rest and on the
equilibrium surfaces of immersed bodies. These right-hand-side terms depend
on solutions obtained on previous steps. Solving these problems successively,
beginning with problems (I.16), (I.21), and (I.23) complemented by some
initial conditions, one can, generally speaking, find a solution to the nonlinear
problem in the form of (I.14) and (I.15). However, this procedure is not
justified mathematically up to the present time. Therefore, in this book we
restrict ourselves to the first-order approximation, which in its own right gives
rise to an extensive mathematical theory. Investigations in this field are far
from being exhausted.

We conclude this subsection by summarizing the boundary value problem
for the first-order velocity potential φ(1)(x, y, t). It is defined in W occupied
by water at rest with a boundary consisting of the free surface F, the bottom
B, and the wetted surface of immersed bodies S, and it must satisfy

∇2φ(1) = 0 in W, (I.24)

φ
(1)
t t + gφ(1) = 0 for y = 0, x ∈ F, (I.25)

∂φ(1)/∂n = v(1)
n on S, (I.26)

∂φ(1)/∂n = 0 on B, (I.27)

φ(1)(x, 0, 0) = φ0(x) and φ
(1)
t (x, 0, 0) = −gη0(x), (I.28)
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10 Introduction: Basic Theory of Surface Waves

where φ0, v(1)
n , and η0 are given functions, and η0(x) = η(1)(x, 0); see (I.17).

Then

η(1)(x, t) = −g−1φ
(1)
t (x, 0, t)

gives the first-order approximation for the elevation of the free surface.
In conclusion of the section, it should be mentioned that for the case of a

rigid body freely floating near an equilibrium position, a linearized system of
coupled equations was proposed by John [125]. This system was investigated
by John [126], Beale [21], and Licht [197, 200]. Another coupled initial-
boundary value problem dealing with a fixed elastic body immersed in water
was considered by Licht [198, 199].

Linear Time-Harmonic Waves (the Water-Wave Problem)

Separation of the t variable

We pointed out in the preface that this book is concerned with the steady-
state problem of radiation and scattering of water waves by bodies floating in
and/or beneath the free surface, assuming all motions to be simple harmonic
in the time. The corresponding radian frequency is denoted by ω. Thus, the
right-hand-side term in (I.23) is

v(1)
n = Re{e−iωt f } on S, (I.29)

where f is a complex function independent of t , and the first-order velocity
potential φ(1) can then be written in the form

φ(1)(x, y, t) = Re{e−iωt u(x, y)}. (I.30)

The latter assumption is justified by the so-called limiting amplitude prin-
ciple, which is concerned with the large-time behavior of a solution to the
initial-boundary value problem having (I.29) as the right-hand-side term. Ac-
cording to this principle, such a solution tends to the potential (I.30) as t → ∞,
and u satisfies a steady-state problem. The limiting amplitude principle has
general applicability in the theory of wave motions, and its particular form
for water waves was proved by Vullierme-Ledard [349]. Thus the problem
of our interest describes waves developing at large time from time-periodic
disturbances.

A complex function u in (I.30) is also referred to as velocity potential (this
does not lead to confusion, because it will always be clear what kind of time
dependence is considered in one part of the book or another). We recall that
u is defined in the fixed domain W occupied by water at rest outside any
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bodies present. The boundary ∂W consists of three disjoint sets: (i) S, which
is the union of the wetted surfaces of bodies in equilibrium; (ii) F, denoting
the free surface at rest that is the part of y = 0 outside all the bodies; and
(iii) B, which denotes the bottom positioned below F ∪ S. Sometimes we will
consider W unbounded below and corresponding to infinitely deep water. In
this case ∂W = F ∪ S.

Substituting (I.29) and (I.30) into (I.24)–(I.27) gives the boundary value
problem for u:

∇2u = 0 in W, (I.31)

uy − νu = 0 on F, (I.32)

∂u/∂n = f on S, (I.33)

∂u/∂n = 0 on B, (I.34)

where ν = ω2/g. Throughout the book a normal n to a surface always directs
into the water domain W.

For deep water (B = ∅), condition (I.34) should be replaced by the fol-
lowing one:

sup
(x,y)εW

|u(x, y)| ≤ const < ∞. (I.35)

Despite the fact that this condition has no direct hydrodynamic meaning, we
impose it because it is essential for certain proofs in what follows. Be-
sides, (I.35) implies the following natural behavior of the velocity filed (see
Subsection 1.1.1.1 for the proof):

|∇u| → 0 as y → −∞; (I.36)

that is, the water motion decays with depth. Conditions at infinity that are
similar to the last two conditions are usually imposed in the boundary value
problems for the Laplacian in domains exterior to a compact set in R

2 and R
3.

A natural requirement that a solution to (I.31)–(I.35) should be unique also
imposes a certain restriction on the behavior of u as |x | → ∞. We discuss
conditions providing uniqueness in the subsection after the following one.

Examples

Let us consider some simple examples of waves existing in the absence of
bodies. The corresponding potentials can be easily obtained by separation of
variables.

For a layer W of constant depth d , F = {x ∈ R
2, y = 0} and B = {x ∈ R

2,

y = −d} are the free surface and bottom, respectively. A plane progressive
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wave propagating in the direction of a wave vector k = (k1, k2) has the fol-
lowing velocity potential:

Re{A exp[i(k · x − ωt)]} cosh k0(y + d). (I.37)

Here A is an arbitrary complex constant, k0 = |k|, and the following relation-
ship,

ν = ω2/g = k0 tanh k0d, (I.38)

holds between ω and k0. Tending d to infinity, we note that k0 becomes equal
to ν and instead of (I.37) we have

Re{A exp[i(k · x − ωt)]}eνy

for the velocity potential of plane progressive wave in deep water.
A sum of two potentials (I.37) corresponding to identical progressive waves

propagating in opposite directions gives a standing wave. Putting exp νy in-
stead of cosh k0(y + d) in (I.37) and omitting tanh k0d in (I.38), one gets the
potential of a progressive wave in deep water.

A standing cylindrical wave in a water layer of depth d has the following
potential:

wst(x, y) cos ωt, where wst(x, y) = C1 cosh k0(y + d)J0(k0|x |),
where k0 is defined by (I.38), C1 is a real constant, and J0 denotes the Bessel
function of order zero. The same manipulation as above gives the standing
wave in deep water.

A cylindrical wave having an arbitrary phase at infinity may be obtained as
a combination of wst and a similar potential with J0 replaced by Y0, which is
another solution of Bessel’s equation. This allows one to construct a potential
of outgoing wave as follows:

Re{e−iωtwout(x, y)}, where wout(x, y) = C2 cosh k0(y + d)H (1)
0 (k0|x |),

where k0 is defined by (I.38), C2 is a complex constant, and H (1)
0 denotes the

first Hankel function of order zero. Outgoing behavior of this wave becomes
clear from the asymptotic formula (see handbooks by Abramowitz & Stegun
[1], and Gradshteyn and Ryzhik [96]):

H (1)
0 (k0|x |) =

(
2

πk0|x |
)1/2

ei(k0|x |−π/4)[1 + O(|x |−1)] as |x | → ∞.

Therefore, wave wout behaves at large distances like a radially outgoing pro-
gressive wave, but it is singular on the axis |x | = 0. This is natural from a
physical point of view, because outgoing waves should be radiated by a certain
disturbance. In the case under consideration, the wave is produced by sources
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distributed with a suitable density over {|x | = 0, −d < y < 0}. Replacing H (1)
0

in wout by the second Hankel function, H (2)
0 , one obtains an incoming wave.

Radiation Conditions

Examples in the previous subsection demonstrate that problem (I.31)–(I.34)
should be complemented by an appropriate condition as |x | → ∞ to avoid
non-uniqueness of the solution, which follows from the fact that there are
infinitely many solutions of the form of (I.37). On the other hand, the energy
dissipates when waves are radiated or scattered; that is, there exists a flow of
energy to infinity. On the contrary, there is no such a flow for standing waves
and no net flow for progressive waves. Since we are going to describe radiation
and scattering phenomena, a condition should be introduced for eliminating
waves having no flow of energy to infinity. For this purpose a mathematical
expression is used known as a radiation condition. To formulate this condition
we have to specify the geometry of the water domain at infinity.

Let W be an (m + 1)-dimensional domain (m = 1, 2), which at infinity
coincides with the layer {x ∈ R

m, −d < y < 0}, where 0 < d ≤ ∞. We say
that u satisfies the radiation condition of the Sommerfeld type if

u|x | − ik0u = σ (y)o
[|x |(1−m)/2

]
as |x | → ∞ uniformly in y, θ. (I.39)

Here σ (y) = (1 + |y|)−m if d = ∞, σ (y) = 1 if d < ∞, k0 is defined by
(I.38) for d < ∞, and k0 = ν for d = ∞, and θ ∈ [0, 2π ) is polar angle
in the plane {y = 0}. Uniformity in θ should be imposed only for the three-
dimensional problem (m = 2).

Let us show that (I.39) guarantees dissipation of energy. For the sake of
simplicity we assume that d < ∞. By Cr we denote a cylindrical surface W ∩
{|x | = r} contained inside W. By (I.13) the average energy flow to infinity
through Cr over one period of oscillations is equal to

Fr = −ρω

2π

∫ 2π/ω

0
dt

∫
Cr

∂φ

∂t

∂φ

∂|x | dS.

Substituting (I.30) and taking into account that
∫ 2π/ω

0
e±2iωt dt = 0,

one finds that

Fr = −ρω2

8π

∫ 2π/ω

0
dt

∫
Cr

(ieiωt ū − ie−iωt u)
(
e−iωt u|x | + eiωt ū|x |

)
dS

= −ρω

4π

∫
Cr

(
i ūu|x | − iuū|x |

)
dS = ρω

2
Im

∫
Cr

ū u|x | dS. (I.40)
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This can be written as follows:

Fr = ρω

4k0

{∫
Cr

(∣∣u|x |
∣∣2 + k2

0 |u|2) dS −
∫
Cr

∣∣u|x | − ik0u
∣∣2

dS

}
. (I.41)

Moreover, Fr does not depend on r when the obstacle surface S lies inside
the cylinder {|x | = r}, which can be proved as follows.

By Wr and Fr we denote W ∩ {|x | < r} and F ∩ {|x | < r}, respectively.
Let us multiply (I.31) by ū and integrate the result over Wr . Then applying
the divergence theorem we obtain∫

Wr

|∇u|2 dxdy = −
∫

∂Wr

ū
∂u

∂n
dS,

where n is directed into Wr . Using (I.32) and (I.34) we get∫
Wr

|∇u|2 dxdy = ν

∫
Fr

|u|2 dx +
∫
Cr

ū u|x | dS −
∫

S
ū

∂u

∂n
dS.

Comparing this with (I.40) we find that

Fr = ρω

2
Im

∫
S

ū
∂u

∂n
dS

is independent of r .
This fact yields that Fr ≥ 0 because (I.39) implies that the last integral in

(I.41) tends to zero as r → ∞.
The crucial point in the proof that Fr ≥ 0 is equality (I.41). It suggests

that (I.39) can be replaced by a “weaker” radiation condition of the Rellich
type, ∫

Cr

∣∣u|x | − ik0u
∣∣2

dS = o(1) as r → ∞. (I.42)

Actually, (I.39) and (I.42) are equivalent (see the Subsection 1.3.2).
So, in what follows we consider problem (I.31)–(I.34) complemented by

either (I.39) or (I.42). In various papers this problem appears under different
names: the floating-body problem, the sea-keeping problem, the wave–body
interaction problem, the water-wave radiation (scattering) problem, and so
on. In what follows we use the simplest name: the water-wave problem.

Other Time-Harmonic Problems

In conclusion of the present section, we mention some boundary value prob-
lems that couple time-harmonic water waves with oscillations in other media.
Hazard and Lenoir [113] considered scattering of an incident water wave
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by an elastic body immersed in water (the corresponding initial-boundary
value problem was treated by Licht [199]). A linearized model of water-wave
motion in a porous structure was proposed by Sollitt and Cross [308] for
describing the interaction of water waves with rubble-mound breakwaters.
This model was investigated by McIver [237], where further references are
given. The most recent coupled problem was advanced by Pinkster [289]
and investigated by Newman [267]. It is concerned with acoustic waves in a
bounded air chamber placed on the free surface of water and open from below
for interaction with water waves.

Linear Ship Waves on Calm Water (the Neumann–Kelvin Problem)

Separation of the t variable

Here we turn to waves created by a rigid body moving uniformly with constant
velocity U on a calm water of constant depth d. It is convenient to denote the
horizontal coordinates by (x, z) instead of (x1, x2). We assume (without loss
of generality) that the motion is along the x axis of a fixed coordinate system.
Moreover, we suppose waves to be steady with respect to a moving coordinate
system attached to the body, or, in other words, one may speak about a uniform
running flow about the body. The flow carries steady waves downstream (from
the body to x = −∞), so we set the following in (I.24)–(I.27):

φ(1)(x, y, z, t) = u(x − Ut, y, z), (I.43)

where the (x, y, z)-coordinate system is fixed. Using the same notation (x, y,

z) for the system attached to the body (since we use only these coordinates
in what follows, this does not lead to any confusion), we see that the velocity
potential u(x, y, z) is defined in a fixed domain W occupied by water at rest
outside the body’s surface S. Since the water depth is constant, W is bounded
below by y = −d (d ∈ (0, +∞] and d = +∞ for deep water), and we assume
that S has no common points with this plane when d < +∞. As in the third
major section (the water-wave problem), we denote by F the free surface at
rest that is the part of y = 0 outside the body.

Substituting (I.43) into (I.24)–(I.27), one obtains the following for u:

∇2u = 0 in W, (I.44)

uxx + νuy = 0 on F, (I.45)

∂u/∂n = f on S, (I.46)

uy = 0 when y = −d, (I.47)

where ν = g/U 2 in (I.45), and f = Un · x in (I.46) (by n and x we denote


