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CHAPTER ONE

Examples and Basic Concepts

Dynamical systems is the study of the long-term behavior of evolving
systems. The modern theory of dynamical systems originated at the end
of the 19th century with fundamental questions concerning the stability and
evolution of the solar system. Attempts to answer those questions led to
the development of a rich and powerful field with applications to physics,
biology, meteorology, astronomy, economics, and other areas.

By analogy with celestial mechanics, the evolution of a particular state of
a dynamical system is referred to as an orbit. A number of themes appear
repeatedly in the study of dynamical systems: properties of individual orbits;
periodic orbits; typical behavior of orbits; statistical properties of orbits;
randomness vs. determinism; entropy; chaotic behavior; and stability under
perturbation of individual orbits and patterns. We introduce some of these
themes through the examples in this chapter.

We use the following notation throughout the book: N is the set of
positive integers; N0 = N ∪ {0}; Z is the set of integers; Q is the set of rational
numbers; R is the set of real numbers; C is the set of complex numbers; R+

is the set of positive real numbers; R+
0 = R+ ∪ {0}.

1.1 The Notion of a Dynamical System

A discrete-time dynamical system consists of a non-empty set X and a map
f : X → X. For n ∈ N, the nth iterate of f is the n-fold composition f n =
f ◦ · · · ◦ f ; we define f 0 to be the identity map, denoted Id. If f is invertible,
then f −n = f −1 ◦ · · · ◦ f −1(n times). Since f n+m = f n ◦ f m, these iterates
form a group if f is invertible, and a semigroup otherwise.

Although we have defined dynamical systems in a completely abstract
setting, where X is simply a set, in practice X usually has additional structure

1
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2 1. Examples and Basic Concepts

that is preserved by the map f . For example, (X, f ) could be a measure space
and a measure-preserving map; a topological space and a continuous map;
a metric space and an isometry; or a smooth manifold and a differentiable
map.

A continuous-time dynamical system consists of a space X and a one-
parameter family of maps of { f t : X → X}, t ∈ R or t ∈ R+

0 , that forms a one-
parameter group or semigroup, i.e., f t+s = f t ◦ f s and f 0 = Id. The dynam-
ical system is called a flow if the time t ranges over R, and a semiflow if t
ranges over R+

0 . For a flow, the time-t map f t is invertible, since f −t = ( f t )−1.
Note that for a fixed t0, the iterates ( f t0 )n = f t0n form a discrete-time dynam-
ical system.

We will use the term dynamical system to refer to either discrete-time
or continuous-time dynamical systems. Most concepts and results in dy-
namical systems have both discrete-time and continuous-time versions. The
continuous-time version can often be deduced from the discrete-time ver-
sion. In this book, we focus mainly on discrete-time dynamical systems, where
the results are usually easier to formulate and prove.

To avoid having to define basic terminology in four different cases, we
write the elements of a dynamical system as f t , where t ranges over Z, N0, R,

or R+
0 , as appropriate. For x ∈ X, we define the positive semiorbit O+

f (x) =⋃
t≥0 f t (x). In the invertible case, we define the negative semiorbit O−

f (x) =⋃
t≤0 f t (x), and the orbit O f (x) = O+

f (x) ∪ O−
f (x) = ⋃

t f t (x) (we omit the
subscript “ f ” if the context is clear). A point x ∈ X is a periodic point of
period T > 0 if f T(x) = x. The orbit of a periodic point is called a periodic
orbit. If f t (x) = x for all t , then x is a fixed point. If x is periodic, but not
fixed, then the smallest positive T, such that f T(x) = x, is called the minimal
period of x. If f s(x) is periodic for some s > 0, we say that x is eventu-
ally periodic. In invertible dynamical systems, eventually periodic points are
periodic.

For a subset A⊂ Xand t > 0, let f t (A) be the image of Aunder f t , and let
f −t (A) be the preimage under f t , i.e., f −t (A) = ( f t )−1(A) = {x ∈ X: f t (x) ∈
A}. Note that f −t ( f t (A)) contains A, but, for a non-invertible dynamical
system, is generally not equal to A. A subset A⊂X is f -invariant if f t (A) ⊂A
for all t ; forward f -invariant if f t (A) ⊂ A for all t ≥ 0; and backward
f -invariant if f −t (A) ⊂ A for all t ≥ 0.

In order to classify dynamical systems, we need a notion of equivalence.
Let f t : X→ X and gt : Y → Y be dynamical systems. A semiconjugacy from
(Y, g) to (X, f ) (or, briefly, from g to f ) is a surjective map π : Y→X sat-
isfying f t ◦ π = π ◦ gt , for all t . We express this formula schematically by
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1.2. Circle Rotations 3

saying that the following diagram commutes:

Y −→g Y
| |↓ ↓π π

X −→f X

An invertible semiconjugacy is called a conjugacy. If there is a conju-
gacy from one dynamical system to another, the two systems are said to
be conjugate; conjugacy is an equivalence relation. To study a particular
dynamical system, we often look for a conjugacy or semiconjugacy with a
better-understood model. To classify dynamical systems, we study equiva-
lence classes determined by conjugacies preserving some specified structure.
Note that for some classes of dynamical systems (e.g., measure-preserving
transformations) the word isomorphism is used instead of “conjugacy.”

If there is a semiconjugacy π from g to f , then (X, f ) is a factor of (Y, g),
and (Y, g) is an extension of (X, f ). The map π : Y → X is also called a fac-
tor map or projection. The simplest example of an extension is the direct
product

( f1 × f2)t : X1 × X2 → X1 × X2

of two dynamical systems f t
i : Xi →Xi , i = 1, 2, where ( f1 × f2)t (x1, x2) =

( f t
1 (x1), f t

2 (x2)). Projection of X1 × X2 onto X1 or X2 is a semiconjugacy, so
(X1, f1) and (X2, f2) are factors of (X1 × X2, f1 × f2).

An extension (Y, g) of (X, f ) with factor map π : Y→X is called a skew
product over (X, f ) if Y = X × F , and π is the projection onto the first factor
or, more generally, if Y is a fiber bundle over X with projection π .

Exercise 1.1.1. Show that the complement of a forward invariant set is
backward invariant, and vice versa. Show that if f is bijective, then an in-
variant set A satisfies f t (A) = A for all t . Show that this is false, in general,
if f is not bijective.

Exercise 1.1.2. Suppose (X, f ) is a factor of (Y, g) by a semiconjugacy
π : Y → X. Show that if y ∈ Y is a periodic point, then π(y) ∈ X is periodic.
Give an example to show that the preimage of a periodic point does not
necessarily contain a periodic point.

1.2 Circle Rotations

Consider the unit circle S1 = [0, 1] / ∼, where ∼ indicates that 0 and 1 are
identified. Addition mod 1 makes S1 an abelian group. The natural distance
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on [0, 1] induces a distance on S1; specifically,

d(x, y) = min(|x − y|, 1 − |x − y|).
Lebesgue measure on [0, 1] gives a natural measure λ on S1, also called
Lebesgue measure λ.

We can also describe the circle as the set S1 = {z ∈ C: |z| = 1}, with com-
plex multiplication as the group operation. The two notations are related by
z = e2π i x, which is an isometry if we divide arc length on the multiplicative
circle by 2π . We will generally use the additive notation for the circle.

For α ∈ R, let Rα be the rotation of S1 by angle 2πα, i.e.,

Rαx = x + α mod 1.

The collection {Rα : α ∈ [0, 1)} is a commutative group with composition as
group operation, Rα ◦ Rβ = Rγ , where γ = α + β mod 1. Note that Rα is an
isometry: It preserves the distance d. It also preserves Lebesgue measure λ,
i.e., the Lebesgue measure of a set is the same as the Lebesgue measure of
its preimage.

If α = p/q is rational, then Rq
α = Id, so every orbit is periodic. On the

other hand, if α is irrational, then every positive semiorbit is dense in S1.
Indeed, the pigeon-hole principle implies that, for any ε > 0, there are m, n <

1/ε such that m < n and d(Rm
α , Rn

α) < ε. Thus Rn−m is rotation by an angle
less than ε, so every positive semiorbit is ε-dense in S1 (i.e., comes within
distance ε of every point in S1). Since ε is arbitrary, every positive semiorbit
is dense.

For α irrational, density of every orbit of Rα implies that S1 is the only
Rα-invariant closed non-empty subset. A dynamical system with no proper
closed non-empty invariant subsets is called minimal. In Chapter 4, we show
that any measurable Rα-invariant subset of S1 has either measure zero or
full measure. A measurable dynamical system with this property is called
ergodic.

Circle rotations are examples of an important class of dynamical systems
arising as group translations. Given a group G and an element h ∈ G, define
maps Lh: G→G and Rh: G→G by

Lhg = hg and Rhg = gh.

These maps are called left and right translation by h. If G is commutative,
Lh = Rh.

A topological group is a topological space G with a group structure
such that group multiplication (g, h) �→ gh, and the inverse g �→ g−1 are
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continuous maps. A continuous homomorphism of a topological group to
itself is called an endomorphism; an invertible endomorphism is an automor-
phism. Many important examples of dynamical systems arise as translations
or endomorphisms of topological groups.

Exercise 1.2.1. Show that for any k∈ Z, there is a continuous semiconju-
gacy from Rα to Rkα .

Exercise 1.2.2. Prove that for any finite sequence of decimal digits there is
an integer n > 0 such that the decimal representation of 2n starts with that
sequence of digits.

Exercise 1.2.3. Let G be a topological group. Prove that for each g ∈ G, the
closure H(g) of the set {gn}∞n=−∞ is a commutative subgroup of G. Thus, if
G has a minimal left translation, then G is abelian.

*Exercise 1.2.4. Show that Rα and Rβ are conjugate by a homeomorphism
if and only if α = ±β mod 1.

1.3 Expanding Endomorphisms of the Circle

For m ∈ Z, |m| > 1, define the times-m map Em: S1 →S1 by

Emx = mx mod 1.

This map is a non-invertible group endomorphism of S1. Every point has
m preimages. In contrast to a circle rotation, Em expands arc length and
distances between nearby points by a factor of m: If d(x, y) ≤ 1/(2m), then
d(Emx, Emy) = md(x, y). A map (of a metric space) that expands distances
between nearby points by a factor of at least µ > 1 is called expanding.

The map Em preserves Lebesgue measure λ on S1 in the following sense:
if A⊂ S1 is measurable, then λ(E−1

m (A)) = λ(A) (Exercise 1.3.1). Note, how-
ever, that for a sufficiently small interval I, λ(Em(I)) = mλ(I). We will show
later that Em is ergodic (Proposition 4.4.2).

Fix a positive integer m > 1. We will now construct a semiconjugacy from
another natural dynamical system to Em. Let � = {0, . . . , m − 1}N be the set
of sequences of elements in {0, . . . , m − 1}. The shift σ : � → � discards the
first element of a sequence and shifts the remaining elements one place to
the left:

σ ((x1, x2, x3, . . .)) = (x2, x3, x4, . . .).

A base-m expansion of x ∈ [0, 1] is a sequence (xi )i∈N ∈ � such that
x = �∞

i=1xi/mi . In analogy with decimal notation, we write x = 0.x1x2x3 . . . .
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Base-m expansions are not always unique: A fraction whose denominator
is a power of m is represented both by a sequence with trailing m − 1s and
a sequence with trailing zeros. For example, in base 5, we have 0.144 . . . =
0.200 . . . = 2/5.

Define a map

φ: � → [0, 1], φ((xi )i∈N) =
∞∑

i=1

xi

mi
.

We can consider φ as a map into S1 by identifying 0 and 1. This map is
surjective, and one-to-one except on the countable set of sequences with
trailing zeros or m − 1’s. If x = 0.x1x2x3 . . . ∈ [0, 1), then Emx = 0.x2x3 . . . .
Thus, φ ◦ σ = Em ◦ φ, so φ is a semiconjugacy from σ to Em.

We can use the semiconjugacy of Em with the shift σ to deduce properties
of Em. For example, a sequence (xi ) ∈ � is a periodic point for σ with period
k if and only if it is a periodic sequence with period k, i.e., xk+i = xi for all
i . It follows that the number of periodic points of σ of period k is mk. More
generally, (xi ) is eventually periodic for σ if and only if the sequence (xi ) is
eventually periodic. A point x ∈ S1 = [0, 1] /∼ is periodic for Em with period
k if and only if x has a base-m expansion x = 0.x1x2 . . . that is periodic with
period k. Therefore, the number of periodic points of Em of period k is mk − 1
(since 0 and 1 are identified).

Let Fm = ⋃∞
k=1{0, . . . , m − 1}k be the set of all finite sequences of ele-

ments of the set {0, . . . , m − 1}. A subset A⊂ [0, 1] is dense if and only if
every finite sequence w ∈ Fm occurs at the beginning of the base-m expan-
sion of some element of A. It follows that the set of periodic points is dense
in S1. The orbit of a point x = 0.x1x2 . . . is dense in S1 if and only if every
finite sequence from Fm appears in the sequence (xi ). Since Fm is countable,
we can construct such a point by concatenating all elements of Fm.

Although φ is not one-to-one, we can construct a right inverse to φ. Con-
sider the partition of S1 = [0, 1] /∼ into intervals

Pk = [k/m, (k + 1)/m), 0 ≤ k ≤ m − 1.

For x ∈ [0, 1], define ψi (x) = k if Ei
mx ∈ Pk. The map ψ : S1 → �, given by

x �→ (ψi (x))∞
i=0, is a right inverse for φ, i.e., φ ◦ ψ = Id: S1 →S1. In particular,

x ∈ S1 is uniquely determined by the sequence (ψi (x)).
The use of partitions to code points by sequences is the principal motiva-

tion for symbolic dynamics, the study of shifts on sequence spaces, which is
the subject of the next section and Chapter 3.
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Exercise 1.3.1. Prove that λ(E−1
m ([a, b])) = λ([a, b]) for any interval

[a, b] ⊂ [0, 1].

Exercise 1.3.2. Prove that Ek ◦ El = El ◦ Ek = Ekl . When is Ek ◦ Rα =
Rα ◦ Ek?

Exercise 1.3.3. Show that the set of points with dense orbits is uncountable.

Exercise 1.3.4. Prove that the set

C = {
x ∈ [0, 1]: Ek

3 x /∈ (1/3, 2/3) ∀ k ∈ N0
}

is the standard middle-thirds Cantor set.

*Exercise 1.3.5. Show that the set of points with dense orbits under Em has
Lebesgue measure 1.

1.4 Shifts and Subshifts

In this section, we generalize the notion of shift space introduced in the
previous section. For an integer m > 1 set Am = {1, . . . , m}. We refer to Am

as an alphabet and its elements as symbols. A finite sequence of symbols
is called a word. Let �m = AZ

m be the set of infinite two-sided sequences of
symbols in Am, and �+

m = AN
m be the set of infinite one-sided sequences. We

say that a sequence x = (xi ) contains the word w = w1w2 . . . wk (or that w
occurs in x) if there is some j such that wi = xj+i for i = 1, . . . , k.

Given a one-sided or two-sided sequence x = (xi ), let σ (x) = (σ (x)i ) be
the sequence obtained by shifting x one step to the left, i.e., σ (x)i = xi+1.
This defines a self-map of both �m and �+

m called the shift. The pair (�m, σ ) is
called the full two-sided shift; (�+

m, σ ) is the full one-sided shift. The two-sided
shift is invertible. For a one-sided sequence, the leftmost symbol disappears,
so the one-sided shift is non-invertible, and every point has m preimages.
Both shifts have mn periodic points of period n.

The shift spaces �m and �+
m are compact topological spaces in the product

topology. This topology has a basis consisting of cylinders

Cn1,...,nk
j1,..., jk = {x = (xl): xni = ji , i = 1, . . . , k},

where n1 < n2 < · · · < nk are indices in Z or N, and ji ∈Am. Since the preim-
age of a cylinder is a cylinder, σ is continuous on �+

m and is a homeomorphism
of �m. The metric

d(x, x′) = 2−l , where l = min{|i |: xi �= x′
i }
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2

32

1

1

1 1 0
1 0 1
0 0 1

1 1
1 1

Figure 1.1. Examples of directed graphs with labeled vertices and the corresponding
adjacency matrices.

generates the product topology on �m and �+
m (Exercise 1.4.3). In �m,

the open ball B(x, 2−l) is the symmetric cylinder C−l,−l+1,...,l
x−l ,x−l+1,...,xl

, and in �+
m,

B(x, 2−l) = C1,...,l
x1,...,xl

. The shift is expanding on �+
m; if d(x, x′) < 1/2, then

d(σ (x), σ (x′)) = 2d(x, x′).
In the product topology, periodic points are dense, and there are dense

orbits (Exercise 1.4.5).
Now we describe a natural class of closed shift-invariant subsets of the full

shift spaces. These subshifts can be described in terms of adjacency matrices
or their associated directed graphs. An adjacency matrix A= (ai j ) is an m ×
m matrix whose entries are zeros and ones. Associated to A is a directed
graph �A with m vertices such that ai j is the number of edges from the
ith vertex to the jth vertex. Conversely, if � is a finite directed graph with
vertices v1, . . . , vm, then � determines an adjacency matrix B, and � = �B.
Figure 1.1 shows two adjacency matrices and the associated graphs.

Given an m × m adjacency matrix A= (ai j ), we say that a word or in-
finite sequence x (in the alphabet Am) is allowed if axi xi+1 > 0 for every i ;
equivalently, if there is a directed edge from xi to xi+1 for every i . A word
or sequence that is not allowed is said to be forbidden. Let �A ⊂ �m be the
set of allowed two-sided sequences (xi ), and �+

A ⊂ �+
m be the set of allowed

one-sided sequences. We can view a sequence (xi ) ∈ �A (or �+
A) as an infinite

walk along directed edges in the graph �A, where xi is the index of the vertex
visited at time i . The sets �A and �+

A are closed shift-invariant subsets of �m

and �+
m, and inherit the subspace topology. The pairs (�A, σ ) and (�+

A, σ )
are called the two-sided and one-sided vertex shifts determined by A.

A point (xi ) ∈ �A (or �+
A) is periodic of period n if and only if xi+n = xi

for every i . The number of periodic points of period n (in �A or �+
A) is equal

to the trace of An (Exercise 1.4.2).

Exercise 1.4.1. Let A be a matrix of zeros and ones. A vertex vi can be
reached (in n steps) from a vertex v j if there is a path (consisting of n edges)
from vi to v j along directed edges of �A. What properties of A correspond
to the following properties of �A?
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(a) Any vertex can be reached from some other vertex.
(b) There are no terminal vertices, i.e., there is at least one directed edge

starting at each vertex.
(c) Any vertex can be reached in one step from any other vertex .
(d) Any vertex can be reached from any other vertex in exactly n steps.

Exercise 1.4.2. Let Abe an m × m matrix of zeros and ones. Prove that:
(a) the number of fixed points in �A (or �+

A) is the trace of A;
(b) the number of allowed words of length n + 1 beginning with the sym-

bol i and ending with j is the i, jth entry of An; and
(c) the number of periodic points of period n in �A (or �+

A) is the trace
of An.

Exercise 1.4.3. Verify that the metrics on �m and �+
m generate the product

topology.

Exercise 1.4.4. Show that the semiconjugacy φ: � → [0, 1] of §1.3 is con-
tinuous with respect to the product topology on �.

Exercise 1.4.5. Assume that all entries of some power of A are positive.
Show that in the product topology on �A and �+

A, periodic points are dense,
and there are dense orbits.

1.5 Quadratic Maps

The expanding maps of the circle introduced in §1.3 are linear maps in the
sense that they come from linear maps of the real line. The simplest non-
linear dynamical systems in dimension one are the quadratic maps

qµ(x) = µx(1 − x), µ > 0.

Figure 1.2 shows the graph of q3 and successive images xi = qi
3(x0) of a point

x0.
If µ > 1 and x /∈ [0, 1], then qn

µ(x) → −∞ as n → ∞. For this reason, we
focus our attention on the interval [0, 1]. For µ ∈ [0, 4], the interval [0, 1]
is forward invariant under qµ. For µ > 4, the interval (1/2 − √

1/4 − 1/µ,

1/2 + √
1/4 − 1/µ) maps outside [0, 1]; we show in Chapter 7 that the set of

points �µ whose forward orbits stay in [0, 1] is a Cantor set, and (�µ, qµ) is
equivalent to the full one-sided shift on two symbols.

Let X be a locally compact metric space and f : X → X a continuous
map. A fixed point p of f is attracting if it has a neighborhood U such that Ū
is compact, f (Ū) ⊂ U, and

⋂
n≥0 f n(U) = {p}. A fixed point p is repelling
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x0 q3(x0) q3
2
(x0)

0.2

0.4

0.6

0.8

Figure 1.2. Quadratic map of q3.

if it has a neighborhood U such that Ū ⊂ f (U), and
⋂

n≥0 f −n(U) = {p}.
Note that if f is invertible, then p is attracting for f if and only if it is
repelling for f −1, and vice versa. A fixed point p is called isolated if there is
a neighborhood of p that contains no other fixed points.

If x is a periodic point of f of period n, then we say that f is an attracting
(repelling) periodic point if x is an attracting (repelling) fixed point of f n. We
also say that the periodic orbit O(x) is attracting or repelling, respectively.

The fixed points of qµ are 0 and 1 − 1/µ. Note that q′
µ(0) = µ and that

q′
µ(1 − 1/µ) = 2 − µ. Thus, 0 is attracting for µ < 1 and repelling for µ > 1,

and 1 − 1/µ is attracting for µ ∈ (1, 3) and repelling for µ /∈ [1, 3]
(Exercise 1.5.4).

The maps qµ, µ > 4, have interesting and complicated dynamical be-
havior. In particular, periodic points abound. For example,

qµ([1/µ, 1/2]) ⊃ [1 − 1/µ, 1],

qµ([1 − 1/µ, 1]) ⊃ [0, 1 − 1/µ] ⊃ [1/µ, 1/2].

Hence, q2
µ([1/µ, 1/2]) ⊃ [1/µ, 1/2], so the Intermediate Value Theorem

implies that q2
µ has a fixed point p2 ∈ [1/µ, 1/2]. Thus, p2 and qµ(p2) are

non-fixed periodic points of period 2. This approach to showing existence
of periodic points applies to many one-dimensional maps. We exploit this
technique in Chapter 7 to prove the Sharkovsky Theorem (Theorem 7.3.1),
which asserts, for example, that for continuous self-maps of the interval the
existence of an orbit of period three implies the existence of periodic orbits
of all orders.

Exercise 1.5.1. Show that for any x /∈ [0, 1], qn
µ(x) → −∞ as n → ∞.

Exercise 1.5.2. Show that a repelling fixed point is an isolated fixed point.
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Exercise 1.5.3. Suppose p is an attracting fixed point for f . Show that there
is a neighborhood U of p such that the forward orbit of every point in U
converges to p.

Exercise 1.5.4. Let f : R → R be a C1 map, and p be a fixed point. Show
that if | f ′(p)| < 1, then p is attracting, and if | f ′(p)| > 1, then p is repelling.

Exercise 1.5.5. Are 0 and 1 − 1/µ attracting or repelling for µ = 1? for
µ = 3?

Exercise 1.5.6. Show the existence of a non-fixed periodic point of qµ of
period 3, for µ > 4.

Exercise 1.5.7. Is the period-2 orbit {p2, qµ(p2)} attracting or repelling for
µ > 4?

1.6 The Gauss Transformation

Let [x] denote the greatest integer less than or equal to x, for x ∈ R. The
map ϕ: [0, 1] → [0, 1] defined by

ϕ(x) =
{

1/x − [1/x] if x ∈ (0, 1],
0 if x = 0

was studied by C. Gauss, and is now called the Gauss transformation. Note
that ϕ maps each interval (1/(n + 1), 1/n] continuously and monotonically
onto [0, 1); it is discontinuous at 1/n for all n ∈ N. Figure 1.3 shows the graph
of ϕ.

1/4 1/3 1/2 1

0.2

0.4

0.6

0.8

1

Figure 1.3. Gauss transformation.
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Gauss discovered a natural invariant measure µ for ϕ. The Gauss measure
of an interval A= (a, b) is

µ(A) = 1
log 2

∫ b

a

dx
1 + x

= (log 2)−1 log
1 + b
1 + a

.

This measure is ϕ-invariant in the sense that µ(ϕ−1(A)) = µ(A) for any inter-
val A= (a, b). To prove invariance, note that the preimage of (a, b) consists
of infinitely many intervals: In the interval (1/(n + 1), 1/n), the preimage is
(1/(n + b), 1/(n + a)). Thus,

µ(ϕ−1((a, b))) = µ

( ∞⋃
n=1

(
1

n + b
,

1
n + a

))

= 1
log 2

∞∑
n=1

log
(

n + a + 1
n + a

· n + b
n + b + 1

)
= µ((a, b)).

Note that in general µ(ϕ(A)) �= µ(A).
The Gauss transformation is closely related to continued fractions. The

expression

[a1, a2, . . . , an] = 1

a1 + 1

a2 + · · · 1
an

, a1, . . . , an ∈ N,

is called a finite continued fraction. For x ∈ (0, 1], we have x = 1/([ 1
x ] + ϕ(x)).

More generally, if ϕn−1(x) �= 0, set ai = [1/ϕi−1(x)] ≥ 1 for i ≤ n. Then,

x = 1

a1 + 1

a2 + 1

· · · + 1
an + ϕn(x)

Note that x is rational if and only ifϕm(x) = 0 for some m ∈ N (Exercise 1.6.2).
Thus any rational number is uniquely represented by a finite continued frac-
tion.

For an irrational number x ∈ (0, 1), the sequence of finite continued
fractions

[a1, a2, . . . , an] = 1

a1 + 1

a2 + 1

· · · + 1
an
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converges to x (where ai = [1/ϕi−1(x)]) (Exercise 1.6.4). This is expressed
concisely with the infinite continued fraction notation

x = [a1, a2, . . .] = 1

a1 + 1
a2 + · · ·

.

Conversely, given a sequence (bi )i∈N, bi ∈ N, the sequence [b1, b2, . . . , bn]
converges, as n → ∞, to a number y ∈ [0, 1], and the representation y =
[b1, b2, . . .] is unique (Exercise 1.6.4). Hence ϕ(y) = [b2, b3, . . .], because
bn = [1/ϕn−1(y)].

We summarize this discussion by saying that the continued fraction rep-
resentation conjugates the Gauss transformation and the shift on the space
of finite or infinite integer-valued sequences (bi )ω

i=1, ω ∈ N ∪ {∞}, bi ∈ N. (By
convention, the shift of a finite sequence is obtained by deleting the first term;
the empty sequence represents 0.) As an immediate consequence, we obtain
a description of the eventually periodic points of ϕ (see Exercise 1.6.3).

Exercise 1.6.1. What are the fixed points of the Gauss transformation?

Exercise 1.6.2. Show that x ∈ [0, 1] is rational if and only if ϕm(x) = 0 for
some m∈ N.

Exercise 1.6.3. Show that:
(a) a number with periodic continued fraction expansion satisfies a

quadratic equation with integer coefficients; and
(b) a number with eventually periodic continued fraction expansion

satisfies a quadratic equation with integer coefficients.
The converse of the second statement is also true, but is more difficult to
prove [Arc70], [HW79].

*Exercise 1.6.4. Show that given any infinite sequence bk ∈ N, k = 1, 2, . . . ,
the sequence [b1, . . . , bn] of finite continued fractions converges. Show that
for any x ∈ R, the continued fraction [a1, a2, . . .], ai = [1/φi−1(x)], converges
to x, and that this continued fraction representation is unique.

1.7 Hyperbolic Toral Automorphisms

Consider the linear map of R2 given by the matrix

A=
(

2 1
1 1

)
.

The eigenvalues are λ = (3 + √
5)/2 > 1 and 1/λ. The map expands by a fac-

tor of λ in the direction of the eigenvector vλ = ((1 + √
5)/2, 1), and contracts
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(0, 0)

(1, 1)

(3, 0)

(2, 1)

Figure 1.4. The image of the torus under A.

by 1/λ in the direction of v1/λ = ((1 − √
5)/2, 1). The eigenvectors are per-

pendicular because A is symmetric.
Since A has integer entries, it preserves the integer lattice Z2 ⊂ R2 and

induces a map (which we also call A) of the torus T2 = R2/Z2. The torus
can be viewed as the unit square [0, 1] × [0, 1] with opposite sides identified:
(x1, 0) ∼ (x1, 1) and (0, x2) ∼ (1, x2), x1, x2 ∈ [0, 1]. The map A is given in
coordinates by

A
(

x1

x2

)
=

(
(2x1 + x2) mod 1

(x1 + x2) mod 1

)

(see Figure 1.4). Note that T2 is a commutative group and A is an automor-
phism, since A−1 is also an integer matrix.

The periodic points of A: T2 → T2 are the points with rational coordinates
(Exercise 1.7.1).

The lines in R2 parallel to the eigenvector vλ project to a family Wu of
parallel lines on T2. For x ∈ T2, the line Wu(x) through x is called the unstable
manifold of x. The family Wu partitions T2 and is called the unstable folia-
tion of A. This foliation is invariant in the sense that A(Wu(x)) = Wu(Ax).
Moreover, A expands each line in Wu by a factor of λ. Similarly, the stable
foliation Ws is obtained by projecting the family of lines in R2 parallel to
v1/λ. This foliation is also invariant under A, and A contracts each stable
manifold Ws(x) by 1/λ. Since the slopes of vλ and v1/λ are irrational, each of
the stable and unstable manifolds is dense in T2 (Exercise 1.11.1).

In a similar way, any n × n integer matrix B induces a group endomor-
phism of the n-torus Tn = Rn/Zn = [0, 1]n/ ∼. The map is invertible (an
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automorphism) if and only if B−1 is an integer matrix, which happens if and
only if | det B| = 1 (Exercise 1.7.2). If B is invertible and the eigenvalues do
not lie on the unit circle, then B: Tn → Tn has expanding and contracting
subspaces of complementary dimensions and is called a hyperbolic toral
automorphism. The stable and unstable manifolds of a hyperbolic toral
automorphism are dense in Tn (§5.10). This is easy to show in dimension
two (Exercise 1.7.3 and Exercise 1.11.1).

Hyperbolic toral automorphisms are prototypes of the more general class
of hyperbolic dynamical systems. These systems have uniform expansion and
contraction in complementary directions at every point. We discuss them in
detail in Chapter 5.

Exercise 1.7.1. Consider the automorphism of T2 corresponding to a non-
singular 2 × 2 integer matrix whose eigenvalues are not roots of 1.

(a) Prove that every point with rational coordinates is eventually periodic.
(b) Prove that every eventually periodic point has rational coordinates.

Exercise 1.7.2. Prove that the inverse of an n × n integer matrix B is also
an integer matrix if and only if | det B| = 1.

Exercise 1.7.3. Show that the eigenvalues of a two-dimensional hyperbolic
toral automorphism are irrational (so the stable and unstable manifolds are
dense by Exercise 1.11.1).

Exercise 1.7.4. Show that the number of fixed points of a hyperbolic toral
automorphism A is det(A − I) (hence the number of periodic points of
period n is det(An − I)).

1.8 The Horseshoe

Consider a region D ⊂ R2 consisting of two semicircular regions D1 and D5

together with a unit square R = D2 ∪ D3 ∪ D4 (see Figure 1.5).
Let f : D → D be a differentiable map that stretches and bends D into

a horseshoe as shown in Figure 1.5. Assume also that f stretches D2 ∪ D4

uniformly in the horizontal direction by a factor of µ > 2 and contracts

D4 pD3D1 D2 D5

Figure 1.5. The horseshoe map.


