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4.2.2 Sketch of the proof of the generalized CLT 45
4.2.3 A few mathematical results 47

4.3 Qualitative discussion of some properties of Lévy sums 49
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9.6 Features of the optimized cooling 133
9.7 Random walk interpretation of the optimized solution 135

10 Conclusion 137
10.1 What has been done in this book 137
10.2 Significance and importance of the results 138

10.2.1 From the point of view of Ĺevy statistics 138
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1

Introduction

This book deals with the important developments that have recently occurred
in two different research fields, laser manipulation of atoms on the one hand,
non-Gaussian statistics and anomalous diffusion processes on the other hand. It
turns out that fruitful exchanges of ideas and concepts have taken place between
these two apparently disconnected fields. This has led to cross-fertilization of
each of them, providing new physical insights into the most efficient laser cooling
mechanisms as well as simple and mathematically soluble examples of anomalous
random walks.

We thought that it would be useful to present in this book a detailed report1

of these developments. Our ambition is to try to improve the dialogue between
different communities of scientists and, hopefully, to stimulate new, interesting
developments. This book is therefore written as a case study accessible to the
non-specialist.

Our aim is also to promote, within the atomic physics and quantum optics
community, a way to approach and solve problems that is less based on exact
solutions, but relies more on the identification of the physically relevant features,
thus allowing one to construct simplified, idealized models and qualitative (and
sometimes quantitative) solutions. This approach is of course common in statis-
tical physics, where, often, details do not matter, and only robust global features
determine the relevant physical properties. Laser cooling is an ideal case study,
where the power of this methodology is clearly illustrated.

1.1 Laser cooling

During the last two decades, atomic physics has undergone spectacular progress
based on a new experimental method, called laser cooling and trapping. By using

1 Only a preliminary brief report of this work has been published [BBE94]. More detailed versions have been
presented in an unpublished thesis work [Bar95] and in lecture notes [Coh96].
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2 Introduction

resonant or quasi-resonant exchanges of energy and momentum between atoms
and laser light, it is now possible to obtain samples of atoms at temperatures in
the microkelvin and even in the nanokelvin range, i.e. with velocities in the cm/s
or in the mm/s range [Chu98, Coh98, Phi98]. Further cooling and increase of the
density in phase space can then be achieved by using another recently developed
method, called evaporative cooling. This has opened the way to a wealth of new
investigations, ranging from ultrahigh resolution spectroscopy and atomic clocks
to atomic interferometry and Bose–Einstein condensation (for a review of these
fields see, for example, [AdR97, APS92, MeV99, BEC]).

In standard laser cooled atomic samples, called ‘optical molasses’, the ensemble
of atoms interacting with appropriate sets of laser beams reaches a steady-state
resulting from competition between two effects: damping of the atomic momenta
due to afriction force originating from various types of velocity-dependent mecha-
nisms (‘Doppler’ or ‘Sisyphus’ cooling) on the one hand and increaseof the atomic
momenta, ormomentum diffusion, due to the fluctuations of the radiative forces,
on the other. These fluctuations are associated with the random atomic recoils
occurring in spontaneous emission processes which are generally unavoidable in
any cooling scheme and which make the evolution of the atomic momentum look
like arandom walk. For a single spontaneous emission event, therecoil momentum
of the atom has a magnitude (single photon recoil)

pR = h̄k, (1.1)

whereh̄k is the momentum of a photon (k is the optical wave-vector). It is therefore
not surprising that, usually, the steady-staterms atomic momentumδp cannot be
smaller thanpR: this is the so-calledsingle photon recoil limitof laser cooling.

1.2 Subrecoil laser cooling

A completely different approach to laser cooling can be followed, which is not
based on a friction force and where the single photon recoil no longer appears as
a fundamental limit. The basic idea, presented in Fig. 1.1, is to create a ‘trap’
in momentum space, consisting of a small volume aroundp = 0 (p denotes the
atomic momentum), which the atoms can reach during their random walk and
where they stay for a very long time, which increases indefinitely whenp → 0.
Such a situation is achieved by making the photon scattering rate (fluorescence
rate) R(p) vanish whenp → 0. The random walk in momentum space slows
down whenp decreases and stops whenp = 0, so that atoms remain stuck in the
neighbourhood ofp = 0. Up to now, this has been demonstrated by two methods,
Velocity Selective Coherent Population Trapping (VSCPT) [AAK88] and Raman
cooling [KaC92].
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Fig. 1.1. Principle of subrecoil cooling. (a) The fluorescence rateR(p) vanishes at mo-
mentump = 0. (b) The atoms perform a random walk inp-space and accumulate in the
vicinity of p = 0.

Cooling, i.e. an increase of the momentum space density in a narrow range
aroundp = 0, no longer results here from a friction force pushing the atoms
towardsp = 0, but from a combination of two effects: momentum diffusion
and vanishing of the jump rate of the random walk whenp → 0. Another
important difference between this and other cooling schemes is the absence of a
steady-state value of the momentum distribution: the longer the interaction timeθ ,
the narrower the rangeδp aroundp = 0 in which the atoms can remain trapped
duringθ . Because of the absence of a steady-state and because of the existence of
atomic characteristic times (trapping times) that can be longer than the observation
time, here we will call such coolingnon-ergodic cooling. It has also been called
subrecoil coolingbecause nothing now prevents the atomic momentum spreadδp
reaching values smaller than the photon momentumh̄k.

1.3 Subrecoil cooling and Ĺevy statistics

We present in this book a new general description of non-ergodic or subrecoil
cooling in terms of a competition between trapping processes (i.e. the atom falls
in the trap) and recycling processes (i.e. the atom leaves the trap and eventually
returns to it). The fundamental feature which has stimulated the new approach
presented in this book is that the distributions of trapping times and escape times
can be very broad, so broad that the usualCentral Limit Theorem(CLT) can no
longer be applied to study the distributions of the total trapping time and of the
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total recycling time afterN entries in the trap separated byN exits. We show in
this book that the so-calledLévy statistics, which generalizes the CLT to broad
distributions with power-law tails, is the appropriate tool for this problem and that
it can provide quantitative results for all the important characteristics of cooled
atoms.

Lévy statistics is an outcome of some fundamental mathematical work per-
formed in the 1930’s [Lev37, GnK54]. The goal was then to find stable distribution
laws for the sum ofN independent random variables, i.e. the distribution laws that
keep the same mathematical form whenN → ∞. Gaussian distributions and Lévy
distributions are the solutions of this problem. While the immense applicability
of Gaussian distributions was recognized long ago, Lévy laws have been unduly
ignored in the natural sciences and have been considered a sheer mathematical
curiosity. However, the situation has completely changed over the last 15 years.
Lévy statistics is now recognized as the best tool for studying many anomalous
diffusion problems for which standard statistics are inadequate. Application fields
include not only physics (anomalous diffusion, chaotic dynamics, mechanics of
sandpiles,. . . ) but also finance, biology, etc. (see [BoG90, SZF95, Bak96, BCK97,
Man97, Zas99, MaS99, PaB99, BoP00, CoR00, GoL01]). Lévy statistics can
handle situations in which the standard deviation (or even the average value) of
the studied random variable does not exist. It provides technical tools for per-
forming calculations. Importantly, Ĺevy statistics implies properties that depart
very strongly, not only quantitatively but even qualitatively, from usual statistical
behaviour. For instance, when the average value of a random variablex is infinite,
the sum

∑N
i =1 xi is no longer proportional to the numberN of terms (usual law of

large numbers), but a differentscalingbehaviour is obtained. This of course has
dramatic phenomenological consequences, as we will see for the specific case of
subrecoil laser cooling.

From the point of view of laser cooling, the study of subrecoil cooling by Lévy
statistics turns out to be extremely fruitful. First, it allows one to extract the key
ingredients of the cooling process from the relatively complicated microscopic
description of the problem provided by atomic physics. Moreover, the statistical
approach leads to unique analytical predictions for the asymptotic properties of the
cooled atoms, independent of the details of the particular cooling scheme consid-
ered, as expected when one goes from a microscopic description to a statistical
description.

From the point of view of statistics, this work can also be considered as a
case study for the application of Lévy statistics in a privileged situation where
the statistical model can be derived from first principles, developed analytically
and, finally, precisely compared to microscopic theoretical approaches and to ex-
perimental results.
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1.4 Content of the book

This book is intended for two different communities working in two different fields:
atomic physics and quantum optics on the one hand and statistical processes on
the other. We have thus considered it useful to include a summary of important
results already known to each community, but not necessarily by both. These
basic results are presented in Chapter 2 (laser cooling, see also Appendix A) and
Chapter 4 (Ĺevy statistics), while Chapter 3 introduces the models that connect
both fields. We then proceed in Chapters 5 and 6 with the derivation of the central
results of this work. These results are then interpreted, discussed and extended in
Chapters 7, 8 and 9. Appendices present several technical developments, either on
Lévy statistics, or on subrecoil cooling processes.

More precisely, inChapter 2, we recall some atomic physics results on laser
cooling and subrecoil cooling. We point out the difficulties of an exact quantum
treatment of subrecoil cooling using the generalized optical Bloch equations, and
we present a more efficient quantum approach based on stochastic descriptions
of the evolution of the wave function of the system,in terms of quantum jumps
occurring at random times. This approach provides Monte Carlo simulations of
the quantum evolution of the atomic momentum which allow one to describe, in a
rigorous way, the cooling process by inhomogeneous random walks in momentum
space with a momentum-dependent jump rateR(p) vanishing forp = 0.

Such an approach suggests a simplified model where we make a partition be-
tween two classes of atoms: (i) the cold atoms, which are in a trapping volume in
momentum space where the momentump is close to zero, and which stay for a long
timeτ (trapping time) in this trapping volume (trapped atoms); (ii) atoms outside of
the trapping volume, which make a random walk of durationτ̂ in momentum space,
under the effect of radiation, until they come back again in the trapping volume (τ̂

is a first return time). We calculate inChapter 3the probability distributionsP(τ )

and P̂(τ̂ ) of the trapping times and first return times, and we show that in several
important cases these distributions are broad distributions with power-law tails, for
which Lévy statistics provides the relevant statistical treatment.

Chapter 4summarizes the main results of Lévy statistics needed for the deriva-
tion and the interpretation of the results presented in this work. We will not give
here all the detailed proofs, but rather emphasize the physical meaning of the results
and the important differences between Lévy statistics and usual Gaussian statistics.
More details may be found in [GnK54, Lev37, BoG90]. We also introduce a
‘sprinkling distribution’ which will be the basic tool for the calculations of the
following chapters.

The concepts introduced in Chapter 4 are used in the following chapters for the
derivation of quantitative predictions concerning laser cooling. We first study, in
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Chapter 5, the proportionftrap(θ) of cooled atoms after a cooling timeθ , for the
various cases considered in Chapter 3. We find not only the asymptotic behaviour
of ftrap(θ), but the rate at which this asymptotic behaviour is reached whenθ −→
∞. This allows us to give a first characterization of the efficiency of the cooling
process. An important result of this chapter is also thatftrap(θ), defined here as
an ensemble average, can be different from the corresponding time average. This
clearly shows thenon-ergodiccharacter of the laser cooling process considered
here.

A further step is achieved inChapter 6by calculating the momentum distribution
P(p) of the cold (trapped) atoms and the momentum distributionπ(p) along a
given axis. We show that there is always inπ(p) a narrow peak whose widthδp
tends to zero whenθ −→ ∞, and the fraction of atoms contained in this peak
is calculated in several important cases. The tails ofπ(p) at large p are also
studied. Their decrease is described by a power law, which shows thatπ(p) is
not a Gaussian distribution so that it is not possible, strictly speaking, to define a
thermodynamic temperature. Finally, the increase of the density of atoms in mo-
mentum space and in phase space is evaluated for the various situations considered
in this work.

The physical content of the results obtained in the preceding chapters is dis-
cussed in detail inChapter 7. We re-interpret them in terms of rate equations
describing a competition between a rate of entry in the trapping volume and a rate a
departure. The rate of entrySR(t) is in fact nothing but the ‘sprinkling distribution’
introduced in Chapter 4. This enables one to interpret the behaviour of the height
and of the peak of the momentum distribution. We also discuss in Chapter 7 a
few other problems: the effect of a non-vanishing jump rate whenp → 0 and the
connection between non-stationarity, non-ergodicity and broad distributions.

In Chapter 8we compare the analytical predictions of the statistical approach
presented in this book with experimental results, as well as with predictions
of microscopic theoretical approaches based on microscopic quantum treatments
(stochastic wave function simulations or generalized optical Bloch equations).
The excellent agreement between the various results gives us confidence in the
approach developed in this work and in the approximations upon which it is based.

In Chapter 9we present an example of application of the approach developed
in this book to a specific problem: the optimization of the height of the peak of
cooled atoms. This brings into play both the insights and the technical results
obtained in previous chapters and deepens our understanding of some properties of
non-ergodic cooling.

We finally summarize inChapter 10the main results derived in this book. We
also mention a few possible extensions and a few open problems.




