Lévy Statistics and Laser Cooling

How Rare Events Bring Atoms to Rest

Laser cooling of atoms provides an ideal case study for the application of Lévy statistics in a privileged situation where statistical models can be derived from first principles. This book establishes profitable connections between these two research fields, and demonstrates how the most efficient laser cooling techniques can be simply and quantitatively understood in terms of non-ergodic random processes dominated by a few rare events.

Lévy statistics is now recognized as the proper framework for analysing many different problems (in physics, biology, earth sciences, finance, etc.) for which standard Gaussian statistics is inadequate. Lévy statistics involves random variables with such broad distributions that the usual Central Limit Theorem no longer holds. Laser cooling allows atoms to be cooled to very low temperatures and brought to rest, and is a new research field with many applications. It provides a fruitful example of how approaches based on Lévy statistics can yield analytic predictions that can then be compared with both microscopic quantum optics treatments and experimental results.

The authors of this book are world leaders in the fields of laser cooling, lightatom interactions and statistical physics, and are also renowned for their clarity of exposition. Since the subject of this book embraces several different research areas, the authors have made every effort to ensure that it remains comprehensible to the non-specialist. They explain the important concepts of laser cooling and give an introduction to the concept of random walks and Lévy statistics, such that no detailed prior knowledge is required. This book will therefore be of great interest to researchers in the fields of atomic physics, quantum optics and statistical physics, as well as to engineers and mathematicians interested in stochastic processes. It will also be most useful for illustrating graduate courses on these topics.

FRANÇOIS BARDOU is a researcher at the Centre National de la Recherche Scientifique (CNRS) and currently works on problems in quantum stochastics at the Institut de Physique et de Chimie des Matériaux de Strasbourg. He received the 1995 Aimé Cotton prize (Atomic Physics prize of the French Physical Society) for his experimental and theoretical studies of laser cooling performed at the École Normale Supérieure de Paris. These studies, in collaboration with his co-authors, provided the basis for this book.

JEAN-PHILIPPE BOUCHAUD is a Senior Expert at the Service de Physique de l'État Condensé and at CEA-Saclay. In 1994 he founded his own company, 'Science and Finance', and continues to have diverse research interests which include statistical physics, granular matter and theoretical finance. In 1996 he won the

CNRS Silver Medal. He is in charge of a number of statistical physics and finance courses in various Grandes Écoles, Paris, and is the co-author of *Theory of Financial Risk* (Cambridge University Press, 2000).

ALAIN ASPECT is a Director of Research at CNRS and a Professor at the École Polytechnique, Palaiseau. After completing, in the early 1980s, a series of experiments on the foundations of quantum mechanics, he joined Claude Cohen-Tannoudji at the École Normale Supérieure to work on laser cooling of atoms. He is now head of the Atom Optics group of Institut d'Optique at Orsay and is the co-author of *Introduction to Lasers and Quantum Optics* (Cambridge University Press, in preparation).

CLAUDE COHEN-TANNOUDJI is Professor of Atomic and Molecular Physics at the Collège de France in Paris and was honoured with the Nobel Prize for Physics in 1997 for his work on the development of methods to cool and trap atoms with laser light. He is also the co-author of three other books: *Quantum Mechanics* (1992), *Photons and Atoms: Introduction to Quantum Electrodynamics* (1989), and *Atom–Photon Interactions: Basic Processes and Applications* (1998).

Lévy Statistics and Laser Cooling

How Rare Events Bring Atoms to Rest

FRANÇOIS BARDOU, JEAN-PHILIPPE BOUCHAUD,

ALAIN ASPECT and CLAUDE COHEN-TANNOUDJI

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014, Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

CFrançois Bardou, Jean-Philippe Bouchaud, Alain Aspect, Claude Cohen-Tannoudji 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14pt. *System* $LATEX 2_{\varepsilon}$ [DBD]

A catalogue record of this book is available from the British Library

Library of Congress Cataloguing in Publication data

Lévy statistics and laser cooling: how rare events bring atoms to rest / François Bardou ... [et al.].

p. cm. Includes bibliographical references and index. ISBN 0 521 80821 9 – ISBN 0 521 00422 5 (pb.)
1. Laser manipulation (Nuclear physics). 2. Laser cooling.
3. Atoms-Cooling. 4. Lévy processes. I. Bardou, François, 1967–

> QC689.5.L35 L48 2001 539.7-dc21 2001025939

ISBN 0521808219 hardback ISBN 0521004225 paperback

Contents

Foreword page Acknowledgements		vage xi
		xiii
1	Introduction	1
1.1	Laser cooling	1
1.2	Subrecoil laser cooling	2
1.3	Subrecoil cooling and Lévy statistics	3
1.4	Content of the book	5
2	Subrecoil laser cooling and anomalous random walks	7
2.1	Standard laser cooling: friction forces and the recoil limit	7
	2.1.1 Friction forces and cooling	7
	2.1.2 The recoil limit	9
2.2	Laser cooling based on inhomogeneous random walks in momentun	ı
	space	9
	2.2.1 Physical mechanism	9
	2.2.2 How to create an inhomogeneous random walk	10
	2.2.3 Expected cooling properties	11
2.3	Quantum description of subrecoil laser cooling	12
	2.3.1 Wave nature of atomic motion	12
	2.3.2 Difficulties of the standard quantum treatment	13
	2.3.3 Quantum jump description. The delay function	14
	2.3.4 Simulation of the atomic momentum stochastic evolution	15
	2.3.5 Generalization. Stochastic wave functions and random walks	
	in Hilbert space	16
2.4	From quantum optics to classical random walks	19
	2.4.1 Fictitious classical particle associated with the quantum random	n
	walk	19
	2.4.2 Simplified jump rate	20
	2.4.3 Discussion	21

Cambridge University Press
0521808219 - Levy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest - Francois Bardou,
Jean-Philippe Bouchaud, Alain Aspect and Claude Cohen-Tannoudji
Frontmatter
More information

vi	Contents	
3	Trapping and recycling. Statistical properties	22
3.1	Trapping and recycling regions	22
3.2	Models of inhomogeneous random walks	25
	3.2.1 Friction	25
	3.2.2 Trapping region	25
	3.2.3 Recycling region	26
	3.2.4 Momentum jumps	28
	3.2.5 Discussion	28
3.3	Probability distribution of the trapping times	28
	3.3.1 One-dimensional quadratic jump rate	28
	3.3.2 Generalization to higher dimensions	32
	3.3.3 Generalization to a non-quadratic jump rate	32
	3.3.4 Discussion	33
3.4	Probability distribution of the recycling times	34
	3.4.1 Presentation of the problem: first return time in Brownian motion	34
	3.4.2 The unconfined model in one dimension	35
	3.4.3 The Doppler model in one dimension	37
	3.4.4 The confined model: random walk with walls	39
	3.4.5 Discussion	40
4	Broad distributions and Lévy statistics: a brief overview	42
4.1	Power-law distributions. When do they occur?	42
4.2	Generalized Central Limit Theorem	44
	4.2.1 Lévy sums. Asymptotic behaviour and Lévy distributions	44
	4.2.2 Sketch of the proof of the generalized CLT	45
	4.2.3 A few mathematical results	47
4.3	Qualitative discussion of some properties of Lévy sums	49
	4.3.1 Dependence of a Lévy sum on the number of terms for $\mu < 1$	49
	4.3.2 Hierarchical structure in a Lévy sum	50
		50
	4.3.3 Large fluctuations	52
	4.3.3 Large fluctuations4.3.4 Illustration with numerical simulations	52 53
4.4	4.3.3 Large fluctuations4.3.4 Illustration with numerical simulationsSprinkling distribution	52 53 55
4.4	4.3.3 Large fluctuations4.3.4 Illustration with numerical simulationsSprinkling distribution4.4.1 Definition. Laplace transform	52 53 55 55
4.4	4.3.3 Large fluctuations4.3.4 Illustration with numerical simulationsSprinkling distribution4.4.1 Definition. Laplace transform4.4.2 Examples taken from other fields	52 53 55 55 57
4.4	 4.3.3 Large fluctuations 4.3.4 Illustration with numerical simulations Sprinkling distribution 4.4.1 Definition. Laplace transform 4.4.2 Examples taken from other fields 4.4.3 Asymptotic behaviour. Broad versus narrow distributions 	52 53 55 55 57 58
4.4 5	 4.3.3 Large fluctuations 4.3.4 Illustration with numerical simulations Sprinkling distribution 4.4.1 Definition. Laplace transform 4.4.2 Examples taken from other fields 4.4.3 Asymptotic behaviour. Broad versus narrow distributions The proportion of atoms trapped in quasi-dark states 	52 53 55 55 57 58 60
4.4 5 5.1	 4.3.3 Large fluctuations 4.3.4 Illustration with numerical simulations Sprinkling distribution 4.4.1 Definition. Laplace transform 4.4.2 Examples taken from other fields 4.4.3 Asymptotic behaviour. Broad versus narrow distributions The proportion of atoms trapped in quasi-dark states Ensemble averages versus time averages 	52 53 55 55 57 58 60 60
4.4 5 5.1	 4.3.3 Large fluctuations 4.3.4 Illustration with numerical simulations Sprinkling distribution 4.4.1 Definition. Laplace transform 4.4.2 Examples taken from other fields 4.4.3 Asymptotic behaviour. Broad versus narrow distributions The proportion of atoms trapped in quasi-dark states Ensemble averages versus time averages 5.1.1 Time average: fraction of time spent in the trap 	 52 53 55 55 57 58 60 60 60

	Contents	vii
5.2	Calculation of the proportion of trapped atoms	62
	5.2.1 Laplace transforms of the sprinkling distributions associated	
	with the return and exit times	62
	5.2.2 Laplace transform of the proportion of trapped atoms	63
	5.2.3 Results for a finite average trapping time and a finite average	61
	5.2.4 Results for an infinite average trapping time and a finite average	04
	recycling time	64
	5.2.5 Results for an infinite average trapping time and an infinite	0.
	average recycling time	66
5.3	Discussion: non-ergodic behaviour of the trapped population	67
6	The momentum distribution	69
6.1	Brief survey of previous heuristic arguments	69
6.2	Expressions of the momentum distribution and of related quantities	71
	6.2.1 Distribution of the momentum modulus	71
	6.2.2 Momentum distribution along a given axis	72
62	6.2.3 Characterization of the cooled atoms' momentum distribution	13
0.5	time	75
	6.3.1 Explicit form of the momentum distribution	75
	6.3.2 Important features of the momentum distribution	77
6.4	Case of a finite average trapping time and a finite average recycling	
	time	79
	6.4.1 Explicit form of the momentum distribution	80
	6.4.2 Important features of the momentum distribution	82
6.5	Cases with an infinite average recycling time	83
6.6	Overview of main results	86
7	Physical discussion	88
7.1	Equivalence with a rate equation description	88
	7.1.2 Be intermetation of the annihiling distribution	88
	2.1.2 Re-interpretation of the sprinking distribution of return times	80
	7.1.3 Which atoms contribute to the sprinkling distribution of return	09
	times?	89
	7.1.4 Interpretation of the time dependence of the sprinkling	
	distribution of return times	90
7.2	Tails of the momentum distribution	91
	7.2.1 Steady-state versus quasi-steady-state	91
	7.2.2 Dependence on the various parameters	92

Cambridge University Press
0521808219 - Levy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest - Francois Bardou,
Jean-Philippe Bouchaud, Alain Aspect and Claude Cohen-Tannoudji
Frontmatter
More information

viii	Contents	
7.3	Height of the peak of the momentum distribution	92
7.4	Effect of a non-vanishing jump rate at zero momentum	93
	7.4.1 Existence of a steady-state for long times	94
	7.4.2 Intermediate times	95
7.5	Non-stationarity and non-ergodicity	96
	7.5.1 Flatness of the momentum distribution around zero momentum	96
	7.5.2 Various degrees of non-ergodicity	97
	7.5.3 Connection with broad distributions	97
8	Tests of the statistical approach	101
8.1	Motivation	101
8.2	Overview of other approaches	102
	8.2.1 Experiments	102
	8.2.2 Quantum optics calculations for VSCPT	103
0.0	8.2.3 Monte Carlo simulations of Raman cooling	105
8.3	Proportion of trapped atoms in one-dimensional σ_+/σ VSCPT	105
	8.3.1 Doppler model	100
	8.3.2 Unconlined model	109
8 /	Width and shape of the peak of cooled atoms	111
0.4	8 4 1 Statistical predictions	113
	8.4.2 Comparison to quantum calculations	113
	8.4.3 Experimental tests	116
8.5	Role of friction and of dimensionality	120
	8.5.1 One-dimensional case	120
	8.5.2 Higher dimensional case	120
8.6	Conclusion	122
9	Example of application: optimization of the peak of cooled atoms	124
9.1	Introduction	124
9.2	Parametrization	126
9.3	Why is there an optimum parameter?	128
9.4	Optimization using the expression of the height	130
9.5	Optimization using Lévy sums	131
9.6	Features of the optimized cooling	133
9.7	Random walk interpretation of the optimized solution	135
10	Conclusion	137
10.1	What has been done in this book	137
10.2	Significance and importance of the results	138
	10.2.1 From the point of view of Lévy statistics	138

	Contents	i
	10.2.2 From the point of view of laser cooling	13
10.3	Possible extensions	14
	10.3.1 Improving the optimization	14
	10.3.2 More precise model of friction-assisted VSCPT	14
	10.3.3 Extension to other cooling schemes	14
	10.3.4 Extension to trapped atoms	14
	10.3.5 Inclusion of many-atom effects	14
Арре	endix A Correspondence between parameters of the statistical	
	models and atomic and laser parameters	14
A.1	Velocity Selective Coherent Population Trapping	14
	A.1.1 Quantum calculation of the jump rate	14
	A.1.1.1 Effective Hamiltonian	14
	A.1.1.2 Exact diagonalization	14
	A.1.1.3 Expansion around $p = 0$	15
	A.1.1.4 Behaviour out of the trapping dip	15
	A.1.1.5 Case of a negligible Doppler effect	15
	A.1.2 Parameters of the random walk models	1.
	A.1.2.1 Trapping region and plateau: p_0 and τ_0	1.
	A.1.2.2 Dependence on laser intensity	1.
	A.1.2.3 Doppler tail: p_D	15
	A.1.2.4 Discussion: comparison between quantum calculations and	
	statistical models	1.
	A.1.2.5 Confining walls: p_{max}	1.
	A.1.2.6 Elementary step of the random walk: Δp	10
	A.1.3 Trapping time distribution: $\tau_{\rm b}$	10
	A.1.4 Recycling time distribution	10
	A.1.4.1 Doppler model: $\hat{\tau}_{b}$	10
	A.1.4.2 Unconfined model: $\hat{\tau}_{b}$	10
	A.1.4.3 Confined model: $\langle \hat{\tau} \rangle$	10
A.2	Raman cooling	10
	A.2.1 Jump rate	10
	A.2.2 Parameters of the random walk models	16
	A.2.2.1 Trapping region and plateau: p_0 and τ_0	16
	A.2.2.2 Confining walls: p_{max}	16
	A.2.2.3 Elementary step of the random walk: Δp	16
	A.2.3 Trapping time distribution: $\tau_{\rm b}$	17
	A.2.4 Recycling time distribution: $\langle \hat{\tau} \rangle$	17
Арре	endix B The Doppler case	17
		17

х	Contents	
B.2	Setting the stage	172
B.3	Feynman path integral and mapping to the harmonic oscillator	174
B.4	Back to the return time probability	175
App	endix C The special case $\mu = 1$	177
Refe	rences	181
Index of main notation		189
Index		195

Foreword

Long ago, Paul Lévy invented a strange family of random walks – where each segment has a very broad probability distribution. These flights, when they are observed on a macroscopic scale, do not follow the standard Gaussian statistics. When I was a student, Lévy's idea appeared to me as (a) amusing, (b) simple – all the statistics can be handled via Fourier transforms – and (c) somewhat baroque: where would it apply?

As often happens with new mathematical ideas, the fruits came later. For example, É. Bouchaud proved that adsorbed polymer chains often behave like Lévy flights. In a very different sector, J.P. Bouchaud showed the role of Lévy distributions in risk evaluation. Now we meet a third major example, which is described in this book: cold atoms.

The starting point is a jewel of quantum physics: we think of an atom in a state of 0 translational momentum p = 0 (zero Doppler effect), inside a suitably prescribed laser field. For instance, with an angular momentum J = 1 we can have two ground states $|+\rangle$ and $|-\rangle$, and one excited state $|0\rangle$. The particular state $|+\rangle + |-\rangle$ has an admirable property: it is entirely decoupled from the radiation and can live for an indefinitely long time. It is thus possible to create a trap (around p = 0 in momentum space) in which the atoms will live for very long times: this so-called 'subrecoil laser cooling' has been a major advance of recent years. There are many statistical questions, concerning the resulting random flights in momentum space with alternate sequences of trapping and recycling. All the resulting effects in p space and in the time sequence can be measured and compared with statistical predictions inspired by the Lévy flights. (Here, the broad distributions are in the lifetimes, not in the size of the jumps.)

The present book summarizes these advances, incorporating a rare admixture of quantum physics and classical statistics. It is a meeting point for two cultures, each of them being represented by outstanding experts.

xii

Foreword

I am very impressed by this combination and by the clarity of the result. Both atomic physics and statistical physics integrate (roughly) a hundred years of culture. To extract what is needed from the two cultures and to make it accessible to a simple physicist was a real challenge. This joint group has done it. I am sure that many scientists will feel a special pleasure when reading the book – and that it will last a long time.

P.G. de Gennes February 2001

Acknowledgements

We thank our colleagues from the statistical physics community as well as from the laser cooling community, in particular the members of the cold atoms group of the ENS, for very fruitful discussions and comments during the completion of this work. We have been greatly stimulated by the experimental results on subrecoil cooling obtained during the last 13 years. We are particularly indebted to Bruno Saubaméa and Jacob Reichel, whose PhD works on Lévy statistics applied to subrecoil cooling have made a significant contribution to the results presented in this book.