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Introduction

In 1985 Andreas Floer discovered new topological invariants of certain
3-manifolds, the ‘Floer homology groups’. This book originated from a
series of seminars on this subject held in Oxford in 1988, the manuscript
for the book being written sporadically over the intervening 12 years.
The original plan of the project has been modified over time, but the
basic aims have remained largely the same: these are, first, to give a
thorough exposition of Floer’s original work, and, second, to develop
some further aspects of the theory which have not appeared in detail in
the literature before. The author can only apologise for the long delay
in completing this project.

Floer’s original motivation for introducing his groups – beyond the
intrinsic interest and beauty of the construction – seems to have been
largely as a source of new invariants in 3-manifold theory, refining the
Casson invariant which had been discovered shortly before. It was
soon realised however that Floer’s conception fitted in perfectly with
the ‘instanton invariants’ of 4-dimensional manifolds, which date from
much the same period. Roughly speaking, the Floer groups are the
data required to extend this theory from closed 4-manifolds to man-
ifolds with boundary. From another point of view the Floer groups
appear, formally, as the homology groups in the ‘middle dimension’ of
an infinite-dimensional space (the space of connections modulo equiva-
lence) associated to a 3-manifold. This picture is obtained by carrying
certain aspects of the Morse theory description of the homology of a
finite-dimensional manifold over to infinite dimensions. All of this is
closely related to ideas from quantum field theory – indeed, one of
Floer’s starting points was the renowned paper of Witten, [49], which
inter alia forged a link between quantum mechanics and Morse theory
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2 Introduction

– and the connection with mathematical physics permeates the whole
subject.
The formal properties of the Floer groups, and their relation with

invariants in four dimensions, fit into a general conceptual framework of
‘topological quantum field theories’ which was propounded in the late
1980s by Segal, Atiyah, Witten and others. We recall from [2] that a
topological field theory, in d + 1 dimensions, consists of two functors
on manifolds. The first assigns to each closed, oriented, d-manifold Y

a vector space H(Y ) (over, say, the complex numbers). The second
assigns to each compact, oriented (d+ 1)-dimensional manifold X with
boundary Y a vector

Z(X) ∈ H(Y ).

These are required to satisfy three axioms:

(1) The vector space assigned to a disjoint union Y1 ∪ Y2 is the tensor
product

H(Y1 ∪ Y2) = H(Y1)⊗H(Y2).

(2) H(Y ) = H(Y )∗, where Y is Y with the reversed orientation.
(3) Suppose X is a (d + 1)-manifold with boundary (which may be

disconnected), and that X contains Y and Y as two of its boundary
components. Let X� be the oriented manifold obtained from X by
identifying these two boundary components. Then we require that

Z(X�) = c(Z(X)),

where the contraction c : H(∂X) → H(∂X�) is induced from the
dual pairing H(Y )⊗H(Y ) → C and the decomposition

H(∂X) = H(Y )⊗H(Y )⊗H(∂X�).

These axioms have some simple consequences. First, Axiom 1 implies
that if Y = ∅ is the empty d-manifold then H(∅) is canonically isomor-
phic to C. Thus if X is a closed (d + 1)-manifold the vector Z(X) is
a numerical invariant of X. Second, suppose that a (d + 1)-manifold
U is a cobordism from Y1 to Y2, so the oriented boundary of U is a
disjoint union Y 1 ∪ Y2. Then, by Axioms 1 and 2, Z(U) is an element
of H(Y1)∗ ⊗H(Y2) and hence gives a linear map

ζU : H(Y1) → H(Y2).

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521808030 - Floer Homology Groups in Yang-Mills Theory
S. K. Donaldson
Excerpt
More information

http://www.cambridge.org/0521808030
http://www.cambridge.org
http://www.cambridge.org


Introduction 3

If V is a cobordism from Y2 to a third manifold Y3 then Axiom 3
states that

ζV ◦U = ζV ◦ ζU : H(Y1) → H(Y3),

where V ◦ U is the obvious composite cobordism. So we obtain a
functor from the category of d-manifolds, with morphisms defined by
cobordisms, to the category of vector spaces and linear maps.

The original motivation which led Segal and others to develop this
kind of axiomatic picture was to abstract in a tidy mathematical form the
basic structure of quantum field theories (more precisely, of conformal
field theory on Riemann surfaces). The theories which are usually
considered in physics differ from the set-up considered above in that
they operate on manifolds with some additional differential-geometric
structure, for example a Riemannian metric or a conformal structure.
It is precisely the absence of these geometric structures in our set-up
which leads to the designation topological quantum field theories, and
which means that we obtain topological (or, more precisely, differential-
topological) invariants of manifolds. In a typical physical set-up the
corresponding space H(Y ) would be an infinite-dimensional Hilbert
space defined, at least schematically, by associating to Y a space of
‘fields’ C(Y ) (an element of C(Y ) might be a tensor field over Y ), and
then letting H(Y ) be a space of L2 functions on C(Y ). The vector Z(X)
is obtained by functional integration over a space of fields on X, with
given boundary value on Y .

The Yang–Mills invariants, and Floer groups, fit into this general
scheme, with d = 3. In outline, for a 3-manifold Y , we take the Floer
groups (with complex co-efficients say)

H(Y ) = HF∗(Y ).

For a closed 4-manifold X the Yang–Mills instantons define a nu-
merical invariant Z(X), and for a 4-manifold with boundary we obtain
invariants with values in the Floer homology of the boundary. Actually,
as we shall see, the simple axioms above need to be modified slightly to
apply to the Yang–Mills set-up and the theory has a number of special
features. For example, the invariants of a closed 4-manifold are not in
general just numbers but functions on the homology of the manifold
– so we might regard the functor as being defined on a category of
4-manifolds containing preferred homology classes. Nevertheless these
axioms capture the essence of the matter. Contrasting with the phys-
ical set-up outlined above, we can say very roughly that in place of
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4 Introduction

the infinite-dimensional space C(Y ) of all fields (i.e. connections) we
restrict in this topological theory to the finite set of flat connections
(modulo equivalence) over Y , and we restrict to ‘instanton’ connections
over 4-manifolds, so that in place of the functional integration over
connections we now have merely to count the instantons with given flat
boundary values. To make rigorous sense of this, a key step is to add
half-infinite tubes to our 4-manifolds, so that we have a picture in which
the boundary is ‘at infinity’.
An important goal then of this book is to develop this picture, of

the Floer groups as part of a topological field theory, in detail. It is
important to emphasise at the outset that, even after all this time, we
are not able to complete this task. On the one hand there are, as we shall
see, rather fundamental technical reasons why one cannot expect to have
this simple picture without imposing some restrictions on the manifolds
which are considered. On the other hand, even within the confines of the
theory that one might reasonably hope for, there are crucial technical
difficulties, arising from the non-compactness of instanton moduli spaces
which – despite much labour by many mathematicians – have not yet
been fully overcome. Failing, therefore, a definitive treatment we round
off the book, in Chapter 8, by seeking to explain the problems that
remain, and further developments one may expect in the future. We
shall see that – far from being dull, technical matters – these difficulties
lead to striking and unexpected formulae involving classical special
functions.
Throughout the early 1990s an important motivation for the develop-

ment of Floer theory was the hope that this might lead to new calcu-
lations of 4-manifold invariants, via cutting and pasting techniques. It
has to be said that, at least on a narrow interpretation, this programme
did not yield as much fruit as one might have hoped, and its goals have
been to a large extent overtaken by events. The main lines of progress
in this area (aside from algebro-geometrical techniques) came roughly
thus. Firstly, through work of Mrowka and others involving cutting and
pasting along 3-tori which, while it probably could be incorporated in
a suitable generalisation of Floer theory, was not formulated explicitly
in these terms. Secondly, through work of Kronheimer and Mrowka
using singular connections (although again a version of Floer theory
appeared in their arguments). Thirdly, and most decisively, through the
introduction in 1994 of the Seiberg–Witten invariants. Leaving aside the
well-known issue of the equivalence of the two theories, this last gives
a more economical and powerful basis for the entire subject and makes
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Introduction 5

the older instanton theory largely redundant as far as applications to
4-manifold topology go.
While it cannot be denied that the material in this book is less topical

now than a decade ago (and at some points the text may have a slightly
dated air, reflecting the long period over which it has been written)
the author hopes that it is still worthwhile to present this material.
We mention three grounds for this hope. First, the main thrust of the
first part of the book is to develop certain differential-geometric and
analytical techniques which apply to a wide range of problems, going
beyond Yang–Mills theory (for example to the analogous symplectic
Floer theory, to the Seiberg–Witten version of the Floer theory, to
gluing problems for other structures such as self-dual metrics and metrics
of special holonomy). Second, Floer’s fundamental idea of defining
‘middle-dimensional homology’ for suitable infinite-dimensional mani-
folds is such an appealing one, and again one which in principle could
appear in many different contexts, that it seems to deserve a thorough
treatment. Third, while, as we have said above, some of the original
motivation for the theory vis-à-vis 4-manifold topology is now reduced,
there are intriguing questions which remain to be settled in setting
up the Floer theory and understanding the whole relation between
the instanton invariants and the Seiberg–Witten invariants. Some of
these, in particular the appearance of modular forms, are touched on in
Chapter 8. The Seiberg–Witten version of the Floer theory is a topic
which is being very actively developed at the time of writing and, in
conjunction with Floer’s original groups, is expected to have important
consequences in 3-manifold theory.
There are many topics omitted from this book. (In some cases

these are things which we had hoped to include, in earlier and more
ambitious plans, but found the energy wanting when it came to the
point.) There are absolutely no examples: this is an entirely ‘theoretical’
treatment. We do not discuss the Casson invariant of homology spheres
[46], or Floer’s exact surgery sequence [8]. We do not mention Fukaya’s
extension of Floer’s homology groups [9]. We do not have anything to
say explicitly about the related theories developed by Taubes [47] and
Morgan, Mrowka and Rubermann [36]. We do not say anything about
the various interesting links between Floer’s theory and the moduli
spaces of flat connections over surfaces, and with algebraic geometry.
Finally we say nothing about many of the deeper and more recent
developments, connected with the Seiberg–Witten theory, such as the
work of Muñoz [37] and Froyshov [25] on the ‘finite type’ condition. We
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6 Introduction

do not discuss the Seiberg–Witten equations [51], [13], and the variant
of the Floer theory they define. Except for the discussion of Fintushel
and Stern’s work of 1993 in Chapter 8 we have confined ourselves to an
exposition of ideas that were current circa 1990.

On the other hand, we do digress from the narrow goal of setting
up the Floer theory at a number of points. Thus, for example, we
develop some of the main analytical results (in Chapter 4) in more
generality than we need, because the ideas seem interesting and useful
in other applications. We attempt to say a little about the background
in mathematical physics, and the analogy with the symplectic theory.
The general scheme of the book is as follows. The first part (Chapters

2–5) aims to give a complete definition of the Floer groups of a homology
3-sphere: essentially following Floer’s original paper. Chapter 6 develops
the basic connection with 4-manifold invariants. The thrust of the
first part is towards the geometrical and analytical techniques: at the
beginning of Chapter 6 we step back to discuss the overall conceptual
picture. Some readers may wish to look at the beginning of Chapter 6
at an earlier stage. Chapter 7 is devoted to refinements of the theory,
mainly involving ideas from algebraic topology. This sets the stage for
Chapter 8 in which, as we have mentioned, we discuss open problems
and likely further developments.
The author expresses thanks to all the colleagues who have provided

both help with this work and encouragement to complete the task. Two
people should be mentioned in particular. Dieter Kotschick made notes
of the original course of seminars which was the starting point for this
project, and provided a great deal of help with the early development
of the manuscript. Mikio Furuta was a participant in the seminar and
contributed some invaluable ideas and drafts covering the less standard
material in Chapter 7. In particular the formulation of the ‘category of
chain complexes’ in that Chapter is due to Furuta.
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2

Basic material

2.1 Yang–Mills theory over compact manifolds

In this Section we recall the rudiments of Yang–Mills theory in the
standard situation – treated in numerous references – of a compact base
manifold. (In general in this Chapter we follow the notation of [17].) So
let V be a compact, connected, smooth manifold of dimension n, G be
a compact Lie group and P → V be a principal G bundle over V . The
gauge group G of automorphisms of P , covering the identity on V , acts
on the space A of all connections on P by

g(A) = A− (dAg)g−1.

In Yang–Mills theory one needs to work with connections modulo
gauge equivalence, i.e. modulo the action of G, and to do this one
can form the quotient spaces B = A/G. This quotient is made more
complicated by the possible existence of reducible connections, by which
we mean connections A whose stabilisers ΓA in G are larger than the
centre C(G) of G. (The stabiliser ΓA is always a compact Lie group –
the centraliser of the holonomy group of the connection A.) To avoid
these complications one can restrict to the subset

B∗ = {[A] ∈ B : ΓA
∼= C(G)}.

This is an open, dense subset of B (so long as the dimension n is
greater than 1). We can make B∗ into a smooth infinite-dimensional
Banach manifold if we complete our spaces in suitable Sobolev norms.
For example, we can take connections of class Lp

k−1, acted on by gauge
transformations of class Lp

k (i.e. k derivatives in Lp). If the indices k
and p satisfy the inequality k− (n/p) > 0 the Lp

k gauge transformations
are continuous and the completion is naturally a Banach Lie group.

7
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8 Basic material

For the rest of this Chapter we shall denote by G and A these Sobolev
completions. Thus G is a Banach Lie group acting smoothly on the
Banach manifold A.

To see the manifold structure of B∗ explicitly we have to find slices
for the action of G. Fixing a background connection A0 we have

A = A0 +Ω1(gP )

where gP is the bundle of Lie algebras associated to P by the adjoint
action of G. The tangent space to the orbit G(A0) at A0 is the image of
the covariant derivative

dA0 : Ω0(gP ) → Ω1(gP ).

If V is equipped with a Riemannian metric then the space of connec-
tions becomes an infinite-dimensional, affine, Euclidean space, with the
G-invariant metric inherited from the standard L2 metric on Ω1(gP ).
(This is not, of course, the same as an Lp

k−1 metric used in completing
A.) There is then a standard choice of complementary subspace, namely
the L2 orthogonal complement. By Hodge theory, this is just the kernel
of the formal adjoint operator

d∗A0
: Ω1(gP ) → Ω0(gP ).

The set of connections A0 + a, for small a and with d∗A0
a = 0, forms

a local slice for the action of G, and these slices give charts for B∗. At
the linear level we can identify the tangent space

T[A0]B∗ = Ω1(gP )/ Im dA0 = ker d∗A0
. (2.1)

The curvature FA or F (A) of an Lp
k−1 connection lies in Lp

k−2, so long
as the inequality k > n/p holds. The curvature can be regarded as a
G-equivariant map

F : A → Ω2(gP ),

whose derivative at a connection A0 is the coupled exterior derivative

dA0 : Ω1(gP ) → Ω2(gP ).

This is obtained by linearising the formula

FA+a = FA + dAa+ a ∧ a. (2.2)

Down on B∗ we can think of the curvature as a section of a bundle
of Banach spaces, the bundle over B∗ associated to the action of G on
Ω2(gP ).
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2.2 The case of a compact 4-manifold 9

2.2 The case of a compact 4-manifold

Now we specialise to the case when V = X4 is an oriented Riemannian
4-manifold. On X we have the Hodge ∗-operator, which acts on (bundle-
valued) 2-forms, with square 1. Decomposing the curvature FA of a
connection A according to the decomposition Ω2 = Ω+ ⊕ Ω− of the
2-forms into self-dual and anti-self-dual parts (the ±1 eigenspaces of ∗)
we write FA = F+

A + F−
A ∈ Ω+(gP ) ⊕ Ω−(gP ). The instanton or anti-

self-dual (ASD) Yang–Mills equation for a connection over any oriented
Riemannian 4-manifold is the equation

F+(A) = 0.

We refer to the solutions as ‘instantons’ or ‘ASD connections’. Note
that the instanton equation is conformally invariant.
The linearisation of the ASD equation about a given solution A is

obtained by taking the self-dual part of Equation 2.2. We have

F+
A+a = d+

Aa+ (a ∧ a)+,

where d+
A is the projection of the exterior derivative to Ω+(gP ). We get

a complex

Ω0(gP )
dA→ Ω1(gP )

d+
A→ Ω+(gP ). (2.3)

Notice that these operators are defined for any connection A over X,
not just the instantons, and in general the composite d+

A ◦ dA is given
by the algebraic action of F+

A .
Plainly the linearisation of the instanton equation is the equation, for

a ∈ Ω1(gP ),

d+
Aa = 0.

The instanton equation is gauge-invariant, so to study the solutions
near A we may as well restrict to the slice defined by Equation 2.1. Thus
the linearised equation modulo gauge equivalence can be written as the
single equation

DA(a) = 0, (2.4)

where DA = −d∗A ⊕ d+
A : Ω1(gP ) → Ω0(gP ) ⊕ Ω+(gP ). The operator

d+
A is not elliptic by itself but the gauge-fixing condition built into DA

makes this latter operator elliptic. (Thus the instanton equation, viewed
modulo gauge transformations, is a non-linear elliptic PDE.) Like any
elliptic operator over a compact manifold, DA has a Fredholm index:

indDA = dimkerDA − dimkerD∗
A.
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10 Basic material

The Atiyah–Singer index theorem gives a topological formula for this
index which takes the form

indDA = c(G)κ(P )− dimG(1− b1 + b+).

Here c(G) is a normalising constant, κ(P ) is a characteristic number
of P obtained by evaluating a 4-dimensional characteristic class on the
fundamental cycle [X], b1 is the first Betti number of X and b+ is the
rank of a maximal positive subspace for the intersection form on H2(X).
We now focus on the case when G = SU(2) and we can take κ to be the
second Chern class c2(P ). Then the index formula becomes

8c2(P )− 3(1− b1 + b+). (2.5)

(In Chapter 5 we will discuss the case of U(2) and SO(3) connections.)
Chern–Weil theory expresses the topological characteristic number

κ(P ) as a curvature integral. Specialising again to the case of the group
SU(2) where κ = c2 we have

κ(P ) =
1

8π2

∫
X

Tr
(
F 2

A

)
. (2.6)

This applies, of course, to any connection A on P . The wedge product
form is equal to the square of the norm on self-dual 2-forms and opposite
on the anti-self-dual forms, so we have the fundamental equation

κ(P ) =
1

8π2

∫
X

(∣∣F−
A

∣∣2 − ∣∣F+
A

∣∣2) dµ. (2.7)

So a connection is an instanton if and only if

κ(P ) =
1

8π2

∫
X

|F |2 dµ. (2.8)

This shows, in particular, that κ(P ) ≥ 0 if P supports an ASD connec-
tion. (And if κ(P ) = 0 the connection must be flat – associated to a
representation of π1(X).)

2.3 Technical results

We will now recall briefly the main theorems about Yang–Mills instan-
tons, from the point of view of applications to 4-manifold differential
topology. These will be used in Chapters 4 and 5 when we extend
the theory to certain non-compact base manifolds. We refer to [17] for
proofs.
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