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1

Preliminaries

In this chapter we set the scene by introducing the case studies of the
following chapters. We also introduce the main physical concepts for
diffusion and heat conduction, and show how to formulate the main
partial differential equations that describe these physical processes. Fi-
nally, dimensionless variables are introduced and it is shown how to scale
differential equations and boundary conditions to make them dimension-
less.

1.1 Heat and diffusion — A bird’s eye view

Here we give a basic physical description of mass transport and heat
transport by diffusion. This provides the physical ideas needed to for-
mulate an appropriate differential equation, which is done in the next
chapter.

Diffusion

Diffusion is a physical phenomenon involving the mixing of two dif-
ferent substances. Some examples include salt in water, carbon in steel
and pollution in the atmosphere.

A fundamental quantity is the concentration of one substance in
another. This may be defined in several different ways. For example,
the concentration can be measured as the ratio of the mass of one con-
stituent to the total volume of the mixture (kilograms per litre). Another

1
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2 Preliminaries

measure of concentration is the volume of one constituent to the total
volume of the mixture.

Due to the random motion of constituent particles, concentrations
tend to even out. Some molecules in a region of higher concentration
move into a region of lower concentration. (See Figure 1.1.1).

particles diffusing

initial time later time

Fig. 1.1.1. The mechanism of diffusion — due to random motion of particles
a high concentration redistributes towards a region of lower concentration.

Heat and temperature

An important thing to remember about modelling heat transport is that
heat and temperature are not the same thing. Heat is a form of energy
and may be measured in joules (the SI unit of energy). The heat energy
of a rigid body is the kinetic energy due to the internal random motion
of many vibrating constituent molecules. As heat is added to the body,
energetic molecular collisions occur more frequently.

In the kinetic theory, temperature is interpreted as a measure of the
average internal kinetic energy of constituent particles. The total heat
energy is proportional to the temperature of an object and its mass;
the latter being a measure of the number of particles. Temperature
is a property that determines the rate at which heat is transferred to
or from the object. Heat energy flows from hot (high temperature)
to cold (low temperature). The temperature is defined according to a
scale which depends on the expansion properties of certain materials.
Temperature is usually measured in degrees Celsius ( ◦C) or kelvin (K).
Thus 10 ◦C means that mercury in a thermometer will rise to a given
height, representing this temperature. Note that 0 K = −273 ◦C. The
Kelvin scale is designed to mean that 0 K corresponds to zero internal
vibration (absolute zero).
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This bird’s eye view has deliberately been sketchy and incomplete. For
more information on the kinetic theory of gases, the interested reader
may consult almost any general introductory physics texts, such as Hal-
liday and Resnick (1974). For the more general theory of thermodynam-
ics, see for example (Feynman et al., 1977, Chapters 42–44).

1.2 Mathematics in industry

In this section we will briefly discuss general opportunities for applied
mathematics in industry before focusing specifically on mathematical
problems in heat and mass transport in the next section.

Opportunities for mathematicians

Mathematics is a subject that has been studied for several hundreds of
years. Much new mathematics has been motivated by practical prob-
lems. On the other hand, mathematical models have also been used by
industry to improve production, increase profits and generally improve
understanding of complicated processes. There is a clear benefit to both
mathematics and industry arising from the application of mathematics
to industry.

In some countries (for example, Australia and New Zealand) industry
puts less effort into research and development than do most other in-
dustrialised nations. However, this deficiency is now widely recognised
in those countries and some remedial steps have been taken. Recent
governments have provided various taxation incentives and assistance
schemes for private companies to invest in their own research and devel-
opment (although, more recently, this has unfortunately been cut back).
This has opened up more employment opportunities for scientists, in-
cluding applied mathematicians. Universities have made efforts to im-
prove their level of collaboration with industry by setting up Industry
Liaison Committees and forming consulting companies. Another source
of contact between industry and academia throughout the world occurs
through Mathematics and Industry Study Groups, pioneered at Oxford
University in the United Kingdom. These bring together academics and
representatives from industry to apply mathematics to industrially im-
portant problems in problem-solving workshops.
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There are great benefits to be gained from employing applied mathe-
maticians in industry. Optimisation skills are particularly important on
the financial side. For engineering engineering many technical problems
can be formulated as mathematical problems and thereby analysed and
solved more efficiently. Mathematical models can be used to help under-
stand the underlying physics, chemistry and biology of some processes.
This understanding can then help to make the process more efficient.
The financial savings can be considerable.

The applied mathematician working in an engineering or scientific en-
vironment must be a ‘Jack’ (or ‘Jill’) of all trades. That is, she or he
must have good scientific general knowledge and also be skilled at formu-
lating mathematical descriptions of practical problems. One advantage
that an applied mathematician has is that because mathematics is a uni-
versal language he or she is able to communicate with other scientists
from a wide variety of disciplines. The applied mathematician must be
willing to be guided by other scientists in a team as to which physical
variables are important and which directions the research should take
once the initial mathematical model has been set up and validated.

Traditionally, applied mathematics students are taught mathematical
methods and these are practised on standard problems which are already
posed in mathematical form. It is more difficult to train someone to carry
out the important first step of mathematical modelling, which is to take a
practical problem and simplify or express it in a form which is amenable
to mathematical analysis. Proficiency in formulating problems is usually
obtained only after years of practice. However, there are some general
principles which can be applied to some broad classes of problems, and
these may be learnt. For example, heat and mass transport is based
on the principle of conservation of energy and matter. As may be seen
from reports of industrial study groups, there is considerable demand in
industry for skills in this area.
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1.3 Overview of the case studies

In this book we will restrict ourselves to modelling those processes which
involve transport of heat energy or mass. Industry provides many ex-
amples of the use of the standard equations of heat and mass transport
and sometimes suggests interesting modifications to the basic theory.

Our primary aim is to study the industrial case studies that are de-
scribed below. We will along the way, however, consider various other
simpler industrial problems, as we develop sufficient physical and mathe-
matical expertise with the phenomena of heat and mass transport. After
developing skills for formulating appropriate partial differential equa-
tions we consider some analytical techniques for solving them.

Analytical techniques are useful for gaining physical insight. For very
complex problems, numerical approaches are often used. It is often
useful to start with a very simple model of a complex system whose
equations yield an analytic solution. Then a more realistic model can
be solved numerically. Together with the analytical results for the sim-
pler models, the numerical results can yield maximum insight into the
problem.

Continuous casting

One of the cases that we will study (Chapter 2) concerns a proposed
technique of casting steel by pouring molten steel onto a cooled rotating
drum. This is done to produce sheets of steel that are longer (and
thinner) than those produced by pouring molten steel into moulds. The
question we will try to answer is — under what circumstances will the
process work? We will do this by predicting how fast the molten steel
solidifies.

Water filtration

One method of extracting salt from water is to use a process called re-
verse osmosis. This involves water passing through a semi-permeable
membrane and leaving the salt behind. In this process a major problem
is that the salt accumulates at the semi-permeable membrane and re-
stricts the passage of water through it. We will develop a simple diffusion
model (Chapter 3) in an attempt to predict the salt buildup along the
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semi-permeable membrane. To do this we will introduce the method of
stretching transformations as a method for solving the resulting diffusion
equation.

Laser drilling

Another major case study we consider (Chapter 4) is where a high in-
tensity laser or electron beam is focused on a sheet of metal. The laser
drills a hole through the metal and we wish to predict how fast this
occurs. This problem is of great interest in many industries where lasers
are now being used for cutting and welding.

Factory fires

In another case study we will look at the previously unexplained sudden
onset of fires in a New Zealand chipboard factory (Chapter 5) . The aim
here is to determine if ignition can occur due to the heating of dust piling
up on hot presses. Oxidation of the dust creates heat which may cause
the dust to ignite. This is a situation that the factory must prevent from
happening. Thus our aim is to use a mathematical model to determine
for which thicknesses of dust layers ignition occurs.

Irrigation

An important part of primary industry is the production of food on
farms. In arid regions (e.g. in many parts of Australia), irrigation is
often used to provide water for crops. In the case study of Chapter 6
we investigate the optimal size for irrigation furrows. The mathematical
content involves the solution of a partial differential equation for the
unsaturated flow of water in soils by assuming an expansion in trigono-
metric functions to take advantage of the periodicity of the problem.

Mathematical modelling to help understand complex processes

These case study problems involve many processes happening at once.
Mathematical modelling will be used to consider only the most impor-

tant physical processes. This, in turn, will allow us to obtain sufficiently
simple equations on which we can make good mathematical progress.
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This leads to a much better understanding of the more complicated sys-
tem.

The ability to recast real-world problems in mathematical form is a
remarkable fact of history. For a clear account of the steps involved in
the process of mathematical modelling, we refer to Fulford et al. (1997),
Edwards and Hamson (1989) and Fowkes and Mahony (1994). For a
philosophical consideration of the apparently unreasonable effectiveness
of mathematics in the physical sciences, the interested reader is referred
to the classic article Wigner (1960).

1.4 Units and dimensions

In the physical world measured quantities are determined relative to
some standard measurements. It is important that equations developed
as part of our modelling process are consistent no matter which units are
the basis of our measurements. This is called dimensional consistency.

Units

Units of a physical quantity are the reference measurements to which we
make comparisons. Some examples are metres, minutes, joules, miles,
kilograms, etc. The same quantity can be measured in different units
(e.g. 1 km = 1,000 m = 0.6214 miles). In this example, each unit
(kilometre, metre or mile) refers to a quantity described by length.

We call length a primary quantity. Some other primary quanti-
ties are mass, time and temperature. Secondary quantities are those
which are combinations of more than one primary quantity. For exam-
ple, in the SI system velocity is measured in metres per second, which
is a secondary quantity.

A variable which measures length is said to have dimension length,
denoted by the symbol L. Thus a dimension L may take values of kilo-
metre, metre or mile, depending on which system of units is adopted.
Other dimensions, corresponding to some primary quantities, are mass,
time and temperature, denoted by M, T and Θ respectively. The four
primary units relevant to this book are listed below in Table 1.4.1. For
a primary or secondary quantity q, [q] denotes the dimensions of the
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quantity represented by the symbol q. The value of [q] is expressed in
terms of M, L, T and Θ.

Table 1.4.1. Fundamental units of primary quantities.

Primary Quantity Symbol SI Unit cgs Unit

mass M kilogram, kg gram, g
length L metre, m centimetre, cm
time T second, s second, s

temperature Θ kelvin, K degree, ◦C

Other fundamental SI units include the ampere (A), the unit for elec-
tric current; the mole (mol), the unit for amount of a substance (i.e. the
number of atoms or molecules); and the candela (cd), the unit for lumi-
nosity. All other units are derived from these base units and the ones in
Table 1.4.1.

Rules for dimensions

Certain rules must be obeyed by a consistent set of units of measurement.
They are mostly common sense. The rules are as follows:

(a) Two quantities may be added only if they have the same di-

mensions. Quantities of different dimensions may be multiplied
or divided.

(b) Index Laws. If [f ] = Mα1Lα2Tα3Θα4 and [g] = Mβ1Lβ2Tβ3Θβ4 then
[fg] = Mα1+β1Lα2+β2Tα3+β3Θα4+β4 .

(c) Pure numbers are dimensionless, i.e. [1] = 1, [2] = 1, [π] = 1,
[0] = 1. Thus multiplying by a pure number does not change the
dimensions of a physical quantity, i.e. [2m] = 1 × M = M.

(d) The dimensions of a derivative
∂p

∂q
are [p][q]−1. This is because

a derivative is a limiting ratio of two quantities. Thus if u is
temperature and x measures distance then

[
∂u
∂x

]
= ΘL−1. Also[

∂2u
∂x2

]
= ΘL−2, and more generally,[

∂m+nu

∂xm∂tn

]
= ΘL−mT−n.
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(e) The dimensions of an integral
∫ b

a

p dq are given by [p][q].

(f) The arguments of functions having Taylor expansions (of more
than one term) must be dimensionless. This is because this is the
only way we can add different powers of a quantity. For example,
for

ekt = 1 + kt +
1
2!

k2t2 + . . .

where t is time, then [k] = T−1 since kt must be dimensionless.

A useful way of checking equations is to check they are dimension-

ally homogeneous . This means that both sides of an equation must
have the same dimensions. The following example illustrates this.

Example 1: Newton’s second law gives

F = ma (1)

where F is the force on a particle, m is its mass and a is the acceleration of
the particle. Check that equation (1) is dimensionally homogeneous.

Solution: Force is measured in newtons which are kg ms−2. Thus [LHS] =
MLT−2. Now [m] = M and [a] = LT−2. Thus [RHS] = MLT−2 = [LHS]. So (1)
is dimensionally homogeneous.

Checking equations

Dimensions of secondary quantities can easily be obtained from the
above rules. The following example shows how to do this.

Example 2: Fourier’s law is an equation relating heat flux to temperature
gradient (see Section 1.6),

J = −k
∂u

∂x
,

where J is the heat flux, u the temperature, x denotes distance and k is the
conductivity. Hence determine [k].

Solution: The heat flux, J , is heat energy per unit area per unit time. So

[J ] =
[energy]

[area][time]
.
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Now energy has the dimensions of work, which is force times distance, so
[energy] = MLT−2 × L, and [area] = L2. Hence

[J ] =
ML2T−2

L2T

= MT
−3.

Now [u] = Θ, and [x] = L, so [
∂u

∂x

]
= ΘL

−1.

Since [k] = [J ] × [∂u/∂x]−1 then

[k] = MLT
−3Θ−1.

In SI units k is measured in kg m s−3 K−1. This is consistent with the
above. For checking equations, Table 1.4.2 will be a useful reference.

Table 1.4.2. Table of secondary quantities in mechanics and heat transport.

Quantity Dimensions SI Units

density ρ ML−3 kg m−3

velocity v LT−1 m s−1

acceleration a LT−2 m s−2

force F MLT−2 newtons, N
pressure p ML−1T−2 N m−2, pascal, Pa
energy E ML2T−2 joule J

power Ė ML2T−3 watt W
heat flux J MT−3 W m−2

heat conductivity k MLT−3Θ−1 W m−1 K−1

specific heat c L2T−2Θ−1 J kg−1 K−1

heat diffusivity α L2T−1 m2 s−1

Newton cooling coefficient h MT−3Θ−1 W m−2 K−1

1.5 Diffusion equations

The derivation of the one-dimensional diffusion equation is based on the
idea of mass conservation. In this section we give a detailed formulation
of the 1-D diffusion equation.
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Diffusion in a tube

Consider a circular tube. Let A be the cross-sectional area of the hollow
part of the tube. The hollow part is filled with a mixture containing a
solute. We assume the bulk mixture is not moving (but we consider
this later in this section). However, if the solute concentration is higher
at one end than at the other then the solute will diffuse towards the
other end, as shown in Figure 1.5.1. We also assume the walls of the
tube are impermeable to the solute.

x + δxx

xhigh low

Fig. 1.5.1. Diffusion of a solute in a tube from high solute concentration to
low solute concentration.

Let us define the concentration of the solute C(x, t) as the ratio of the
mass of the solute to the volume of the mixture. We can think of the
concentration defined at a single point x by taking a small volume and
then letting that volume tend to zero. Since the walls of the pipe are
impermeable to the solute, the concentration of the solute will depend
only on longitudinal position x and the time t.

We shall consider a small section x to x+δx of the tube. As the solute
diffuses through the tube the net change in the mass of the solute in the
section is determined by the net difference in the mass of solute diffusing
into and out of the tube. We can write this statement of conservation
of mass as {

rate of
change of

solute mass

}
=

{
net rate of

mass diffusing
in and out of section

}
. (1)

The term on the RHS refers to the net difference in rates of solute mass
diffusing into the section and solute mass diffusing out of the section.

In terms of the concentration C(x, t), the LHS of (1) can be written as
the volume multiplied by the rate of change of concentration, evaluated
at some internal point x1, inside the section x to x + δx. Thus we write{

rate of
change of

solute mass

}
= Aδx

∂C

∂t
(x1, t) (2)
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where Aδx is the volume of the section.

Let us define J(x, t) to be the mass flux of the solute, defined as the
net rate of mass of solute diffusing through a cross-section at x, per
unit cross-section area, per unit time. We can now write the diffusion
in terms of the mass flux J .{

net rate of
mass diffusing

in and out of section

}
= J(x, t)A − J(x + δx, t)A.

Hence, the mass balance equation (1) now becomes

Aδx
∂C

∂t
(x1, t) = Aδx[J(x, t) − J(x + δx, t)].

Dividing by Aδx, we obtain

∂C

∂t
(x1, t) = −

[
J(x + δx, t) − J(x, t)

δx

]
.

We now let δx → 0 and we thus obtain
∂C

∂t
= −∂J

∂x
, (3)

using the definition of the partial derivative. Note that, as δx → 0 we
also have x1 → x, where x < x1 < x + δx. Now all quantities are
evaluated at the point x.

To relate the flux to the concentration we need a constitutive equa-

tion (an equation relating material variables, determined from experi-
ments). The simplest one is Fick’s law which states the mass flux is
proportional to the concentration gradient. For 1-D diffusion, Fick’s law
can be written

J(x, t) = −D
∂C

∂x
(x, t) (4)

where D is a positive constant known as the diffusivity. Note the minus
sign is included so that the solute diffuses in the direction of decreasing
concentrations. Fick’s law for diffusion is analogous to Fourier’s law for
heat conduction.

Substituting Fick’s law (4) into the mass conservation equation (3) we
obtain�

�

�

�
∂C

∂t
= D

∂2C

∂x2
(5)
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which is known as the 1-D diffusion equation.

Advection

Advection is where the solute is carried along with the bulk movement
of the fluid. We can think of the mass flux J to be due to both diffusion
and advection, so J = Jd +Ja. The mass flux at position x is the rate of
movement of mass per unit time per unit area through the cross-section
at x.

Let v(x, t) denote the fluid velocity (of the mixture). In the absence of
diffusion the solute particles move at the same speed as the mixture. The
total mass of solute that is transported through the cross-section is the
volume of mixture moving past the cross-section in a time δt multiplied
by the concentration. This volume is vAδt. Thus the mass flux due
solely to advection is given by

Ja(x, t) = v(x, t)C(x, t).

Using Fick’s law for the mass flux due only to diffusion of solute particles
relative to the mean flow of the mixture, the total mass flux is given by

J(x, t) = v(x, t)C(x, t) − D
∂C

∂x
.

Substituting this into the mass conservation equation (3) we obtain the
partial differential equation for the concentration

∂C

∂t
= − ∂

∂x

(
v(x, t)C(x, t) − D

∂C

∂x

)

which may be written as

∂C

∂t
+

∂

∂x
(vC) = D

∂2C

∂x2
. (6)

If the moving mixture is an incompressible fluid then v(x, t) is a con-
stant. This follows from conservation of mass applied to the mixture —
the mass flowing in ρAv, where ρ is the density of the mixture, must be
constant. The previous equation (6) then simplifies to

∂C

∂t
+ v

∂C

∂x
= D

∂2C

∂x2
. (7)
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Turbulent diffusion

So far we have thought about diffusion as due to random motion of
molecules of a solute. However, the diffusion equation can occur in a
wider context. In many air flows, especially on environmental scales, the
velocity is turbulent. This means the velocity has a random component.
Thus air pollution, for example, can be advected with the mean flow
while simultaneously mixing with the air due to the random component
of the air flow. This type of diffusion is called turbulent diffusion.
In general this is a very complicated process that is not fully under-
stood. In the simplest turbulent transport models, an eddy diffusivity is
incorporated to relate turbulent flux to the gradient of mean concentra-
tion. (See Launder and Spalding (1972) for a more detailed discussion
of the theory of eddy diffusivity. Wilcox (1994) and Weil (1988) give
some extensions of this theory.) The value of the eddy diffusivity is
usually several orders of magnitude larger than the diffusivity for molec-
ular diffusion. In many problems it is typical for the diffusivity not to
be constant. For example, the air becomes more turbulent with height
from the ground.

For non-constant diffusivity, say D(x) the governing equation for the
concentration is not

∂C

∂t
= D(x)

∂2C

∂x2
.

A careful consideration of the derivation of the diffusion equation shows
the appropriate form is

∂C

∂t
=

∂

∂x

(
D(x)

∂C

∂x

)
.

The generalised 1-D diffusion equation

We can consider the effects of advection, nonlinear diffusivity, and in-
ternal mass production. Nonlinear diffusivity occurs when the dif-
fusivity depends on the concentration. Internal mass production is
where the solute is created everywhere within the region of consideration
(e.g. by some chemical reaction). Formulations of the modified diffusion
equations for each of these phenomena are explored in the problems at
the end of this chapter (see Question 6).
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The results are summarised in the generalised 1-D diffusion equation�

�

�

�
∂C

∂t
+

∂

∂x
(vC) =

∂

∂x

(
D(C)

∂C

∂x

)
+ M. (8)

Here v is the bulk velocity of fluid flowing through the tube and the
term M is the rate of production of solute, per unit time per unit vol-
ume. When the fluid motion is incompressible (so that the velocity v is
independent of x) then the generalised 1-D diffusion equation simplifies
to

∂C

∂t
+ v

∂C

∂x
=

∂

∂x

(
D(C)

∂C

∂x

)
+ M.

The 3-D diffusion equation

A similar type of argument for mass transport yields the 3-D diffusion
equation for concentration C(x, t),�

�

�

�
∂C

∂t
= D∇2C where ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(9)

in cartesian coordinates (x, y, z).

For 3-D problems, the generalised diffusion equation is�

�

�

�
∂C

∂t
+ ∇ · (vC) = ∇ · (D(C)∇C) + M (10)

where D(C) is the concentration dependent diffusivity and M is the rate
of production of mass of solute, per unit time per unit volume. For fluid
flow which is incompressible (∇ · v = 0) the 3-D generalised diffusion
equation simplifies to�

�

�

�
∂C

∂t
+ ∇ · (vC) = v · ∇C + M. (11)

The reader who is familiar with fluid dynamics will recognise the ad-
vection term as coming from the material derivative (differentiation
following the motion), see e.g. Acheson (1990).
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1.6 Heat conduction equations

The fundamental equation describing heat conduction is a partial dif-
ferential equation known as the heat conduction equation (or heat
equation, for short). In this section we will see how to derive this equa-
tion for heat conduction along a long thin rod. The basic idea is that
energy is conserved. We consider an infinitesimal section through the
rod and account for the amount of heat energy entering and leaving the
section. This rather simple approach can then be used on more compli-
cated problems involving advection (heat carried along with a moving
fluid), heat generation (e.g. by electrical resistance or chemical reaction),
heterogeneity (different positions have different thermal properties) and
nonlinearity (conductivity is temperature dependent).

Heat balance

Consider the heat flow in a solid rod with circular cross-section A.
Assume that the surface of the rod is perfectly insulated so that no
heat escapes radially. Thus the direction of heat flow is only in the
longitudinal direction (along the axis of symmetry of the rod). Suppose
that the rod is initially at a uniform low temperature. Then one end is
suddenly raised to a higher temperature. Heat flows in the x-direction,
from hot to cold, as shown in Figure 1.6.1.

x + δxx

xhot cold

Fig. 1.6.1. Heat conduction in a rod.

Let δx be the thickness of a section through the rod located at the
point x, where δx is taken to be very small compared to x. As the heat
flows along the rod some of the heat will be absorbed by the rod as it
raises the temperature of the rod. As a result of this, as heat flows into
the cross-section at x a different amount of heat flows out at x+ δx. We
can write {

rate of
change of

heat content

}
=

{
net rate of

heat conducted
in and out of section

}
(1)
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by conservation of energy. This assumes that there is no heat production
inside the rod or heat loss from the surface of the rod.

Formulating the equation

Let us now introduce some notation. Let u(x, t) denote the temperature
of the rod at position x at time t. Because there is no radial flow then
the temperature will be constant over the cross-section provided it was
constant initially.

Let us also define the heat flux J(x, t) as the rate of heat passing
through a cross-section, per unit area, per unit time. In terms of the
heat flux, the term on the RHS of equation (1) becomes{

net rate of
heat conducted

in and out of section

}
= J(x, t)A − J(x + δx, t)A. (2)

We now relate the LHS of equation (1) to the temperature. Some of
the heat energy is absorbed by the rod and causes a change in the tem-
perature of the rod. In a small time δt the temperature at x is changed
by an amount u(x, t+δt)−u(x, t) The amount of heat required to change
the temperature of the entire mass of the section by this amount is pro-
portional to both the mass of the section and the temperature difference.
Thus {

rate of
change of

heat content

}
= cρAδx

∂u

∂t
(x1, t) (3)

where x1 is some internal point x < x1 < x+δx. Here Aδx is the volume
of the section, ρ is the density and c is a proportionality factor called
the specific heat. The specific heat is often taken to be constant, for a
particular material, provided the temperature variation is not too great.

Substituting equations (3) and (2) into equation (1), and dividing by
the product δx, we obtain

ρcA
∂u

∂t
= − [J(x, t) − J(x + δx, t)]

δx
A. (4)

Letting δx tend to zero we obtain, in the limit, (alternatively, take
Taylor series of each of the terms)

ρc
∂u

∂t
= −∂J

∂x
. (5)
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Note the minus sign on the RHS of equation (5). Equation (5) is the basic
transport equation in one dimension. It needs to be supplemented by a
constitutive equation which relates the heat flux J to the temperature
u. For heat conduction we use Fourier’s law.

Fourier’s law

We now relate the RHS of equation (5) to the temperature. To a good
approximation, for many solids, the heat flux is proportional to the
temperature gradient. This is known as Fourier’s law after the French
mathematician and scientist, Fourier, who in 1822 published the first
book on the mathematical theory of heat (and who is also famous for
Fourier series and Fourier transforms).

Fourier’s law may be written

J(x, t) = −k
∂u

∂x
(x, t) (6)

where the proportionality factor k is known as the thermal conduc-

tivity. In some heat flow problems k can be a function of u, x or t.
However, it is usual in mathematical modelling to make the simplest as-
sumption initially; k = constant. Later, we might relax this assumption
if necessary.

Substituting Fourier’s law (6) into the energy conservation equation
(5) we obtain

ρc
∂u

∂t
= k

∂2u

∂x2
,

taking the conductivity k to be constant.

This equation is often written in the form�

�

�

�
∂u

∂t
= α

∂2u

∂x2
, α =

k

ρc
, (7)

known as the heat equation. Note the similarity in form to the diffu-
sion equation from Section 1.5. Here the constant α = k/ρc is called the
heat diffusivity. It characterises the ability of heat energy to diffuse
through a given material. The heat equation (7) is a partial differential
equation in two independent variables, time t, and position x.
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Extensions of the heat equation

Modifications of the basic heat equation include heat sources, advection,
and temperature dependent conductivity. A generalised heat equation,
incorporating all of these is�

�

�

�
ρc

(
∂u

∂t
+

∂

∂x
(vu)

)
=

∂

∂x

(
k(u)

∂u

∂x

)
+ Q (8)

where v(x, t) is the speed of a fluid, Q is the rate of heat produced
internally in the fluid, per unit volume, per unit time and k(u) is the
temperature dependent conductivity. If the fluid flow is incompress-
ible, then v is independent of x, and the generalised 1-D heat equation
simplifies to

ρc

(
∂u

∂t
+ v

∂u

∂x

)
=

∂

∂x

(
k(u)

∂u

∂x

)
+ Q.

A heat source can arise through an exothermic reaction within the
material which generates heat at every point. It can also arise from
an electric current which creates heat within the material as it experi-
ences electrical resistance. Another way heat can be generated within a
material is by nuclear fission in a nuclear fuel rod.

Advection is where heat is transported due to bulk movement of a
fluid. This is sometimes referred to as convection in the context of heat.
(See Section 1.5 for an explanation of advection for mass transport.)
Suppose we have a fluid which is moving with velocity v(x, t). In this case
heat is transported both by conduction and by advection, due to bulk
movement of material and also due to random movement of molecules.
The term ρc∂(vu)/∂x in the above equation arises due to advection.
When the movement of fluid is due to buoyancy (with hot fluid being
less dense than cold fluid and therefore rising), the heat transport is
known as convection.

The conductivity of a material will often vary with temperature, if
the range of temperatures is large. The functional dependence of k on u

will be determined experimentally. Note that, in equation (8), the term
k(u) must stay inside the ∂/∂x term, unless k is constant with respect
to u.
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The 3-D heat conduction equation

If the temperature depends on more than one spatial variable then we
need to account for heat fluxes in different directions. This is accom-
plished by defining a vector valued heat flux.

We can define the vector heat flux J(x, t). The direction of the vector
is the direction of heat flow at the point x, and its magnitude is the rate
of heat flow per unit area, per unit time.

We must generalise Fourier’s law to three dimensions. Recall that the
1-D version of Fourier’s law stated that the heat flux was proportional
to the temperature gradient. Thus in three dimensions

J(x, t) = −k∇u (9)

where k is the thermal conductivity. This gives the direction of heat
flow as the direction of maximum rate of decrease of temperature (since
from vector calculus the gradient gives the direction of maximum rate
of increase). Also, we have assumed that the material is isotropic

which means that there is no preferred direction of heat flow within the
material itself. If a material were non-isotropic then (9) would need to
be generalised to a linear combination of the partial derivatives of the
temperature.

By assuming conservation of heat energy for an arbitrary region, and
using the divergence theorem, it is possible to derive the 3-D heat equa-
tion (details are left to the exercises, see Question 8 for the mass diffusion
case)

ρc
∂u

∂t
+ ∇ · J = 0. (10)

Substituting Fourier’s law (9) into the transport equation (10) we obtain

ρc
∂u

∂t
= k∇2u where ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Dividing by ρc gives�

�

�

�
∂u

∂t
= α∇2u, where α =

k

ρc
. (11)

This is the three-dimensional generalisation of the linear heat equation.




