An Introduction to Neuroendocrinology

Second Edition

How does the brain regulate sexual behavior, or control our body weight? How do we cope with stress? Addressing these questions and many more besides, this thoroughly revised new edition reflects the significant advances that have been made in the study of neuroendocrinology over the last 20 years.

The text examines the importance of the hypothalamus in regulating hormone secretion from the endocrine glands, describing novel sites of hormone release, including bone, heart, skeletal muscle, and liver. The role of steroid hormone, neurotransmitter and peptide receptors, and the molecular responses of target tissues, is integrated into the discussion of the neuroendocrine brain, especially through changes in gene expression. Particular attention is attached to neuropeptides, including their profound influence on behavior.

Complete with new full-color figures throughout, along with review and essay questions for each chapter, this is an ideal resource for undergraduate and graduate students of neuroscience, psychology, biology, and physiology.

Michael Wilkinson has 40 years of experience in teaching neuroscience and neuroendocrinology to undergraduate and graduate students as a Professor in the Department of Obstetrics and Gynaecology and IWK Health Centre, Dalhousie University, Halifax, Canada. His research laboratory has focused on neurodevelopmental aspects of female reproduction with a specific interest in the neuroendocrine regulation of hypothalamic function, including the impact of sex hormones on sleep.

Richard E. Brown is a University Research Professor in the Department of Psychology and Neuroscience at Dalhousie University. He has taught courses on hormones and behavior, measuring behavior, and the neurobiology of learning and memory for more than 35 years. His research is on mouse models of Alzheimer's Disease, Fragile X Syndrome, ADHD, and other neurological disorders. He is currently examining the age-related hormonal changes in transgenic Alzheimer's mice.

An Introduction to

Neuroendocrinology

Second Edition

Michael Wilkinson

Professor of Obstetrics & Gynaecology Professor of Physiology & Biophysics Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada

Richard E. Brown

Professor of Psychology Dalhousie University, Halifax, Nova Scotia, Canada

© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521806473

First edition © Cambridge University Press & Assessment 1994 Second edition © M. Wilkinson and R. E. Brown 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 1994 Second edition 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Wilkinson, Michael, 1943-, author.
An introduction to neuroendocrinology / Michael Wilkinson, Richard E. Brown. - Second edition.
p. ; cm.
Richard E. Brown's name appears first in the previous edition.
Includes bibliographical references and index.
ISBN 978-0-521-80647-3 (hardback) - ISBN 978-0-521-01476-2 (paperback)
I. Brown, Richard E., author. II. Title.
[DNLM: 1. Neuroendocrinology - methods. 2. Endocrine
Glands. 3. Neuropeptides. 4. Neurosecretory Systems. 5. Peptide Hormones.
6. Receptors, Neurotransmitter. WL 105]
QP356.4
612.8-dc23

ISBN 978-0-521-80647-3 Hardback ISBN 978-0-521-01476-2 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> This book is dedicated, first, to the more than 2,000 Dalhousie University students who were enrolled in the "Hormones and Behavior" undergraduate course and who were the original inspiration for writing the book. Many of them provided critical comments on early drafts of the first edition.

Second, one of us (M. W.) acknowledges the mentorship of the late Professor Kurt B. Ruf, a neuroendocrinologist and friend.

CONTENTS

Preface to the second edition | xiii Acknowledgements | xv List of abbreviations | xvi

1 Classification of chemical messengers | 1

- 1.1 Hormones, the brain and behavior | 1
- 1.2 The body's three communication systems | 2
- 1.3 Methods of communication between cells 5
- 1.4 Types of chemical messenger | 7
- 1.5 Neuropeptides and neuromodulators | 14
- 1.6 Summary | 16

2 The endocrine glands and their hormones | 19

- 2.1 The endocrine glands | 19
- 2.2 The hormones of the endocrine glands | 19
- 2.3 Summary | 40

3 The pituitary gland and its hormones | 45

- 3.1 The pituitary gland | 45
- 3.2 The hormones of the pituitary gland | 49
- 3.3 Pituitary hormones in the brain | 54
- 3.4 Summary | 54

4 The hypothalamic hormones | 57

- 4.1 Functions of the hypothalamus | 57
- 4.2 Hypothalamic neurosecretory cells | 58
- 4.3 Hypothalamic hypophysiotropic hormones | 62
- 4.4 Complexities of hypothalamic-pituitary interactions | 71
- 4.5 Summary | 73

5 Neurotransmitters | 78

- 5.1 The neuron and the synapse | 78
- 5.2 Categories of neurotransmitters | 80
- 5.3 Neurotransmitter biosynthesis and storage | 88
- 5.4 Release of neurotransmitters | 92
- 5.5 Receptors for neurotransmitters | 94

viii

CONTENTS

- 5.6 Inactivation of neurotransmitters | 97
- 5.7 Neurotransmitter pathways | 97
- 5.8 Drugs influencing neurotransmitters, and their receptors, in the nervous system | 102
- 5.9 Can nutrients modify neurotransmitter levels and behavior? | 107
- 5.10 Divisions of the nervous system | 109
- 5.11 Summary | 114
- 6 Neurotransmitter and neuropeptide control of hypothalamic, pituitary and other hormones | 120
 - 6.1 The cascade of chemical messengers | 120
 - 6.2 Neural control of hypothalamic neurosecretory cells | 120
 - 6.3 Neurotransmitter regulation of anterior pituitary hormone secretion | 124
 - 6.4 Neurotransmitter regulation of neurohypophyseal hormone secretion | 133
 - 6.5 Electrophysiology of neurosecretory cells | 135
 - 6.6 Neurotransmitter regulation of other endocrine glands | 135
 - 6.7 Complications in the study of neurotransmitter control of hypothalamic hormone release | 138
 - 6.8 Neuroendocrine correlates of psychiatric disorders and psychotropic drug treatment of these disorders | 141
 - 6.9 Glial cells and the regulation of hormone release | 142
 - 6.10 Summary | 150

7 Regulation of hormone synthesis, storage, release, transport and deactivation | 157

- 7.1 The chemical structure of hormones | 157
- 7.2 Hormone synthesis | 159
- 7.3 Storage and intracellular transport of hormones | 162
- 7.4 Hormone release | 163
- 7.5 Hormone transport | 164
- 7.6 Deactivation of hormones | 166
- 7.7 Methodology for neuroendocrine research | 166
- 7.8 Summary | 168

8 Regulation of hormone levels in the bloodstream | 170

- 8.1 Analysis of hormone levels | 170
- 8.2 Mechanisms regulating hormone levels | 174
- 8.3 Hormonal modulation of neurotransmitter release | 183
- 8.4 The cascade of chemical messengers revisited | 184

Cambridge University Press & Assessment 978-0-521-80647-3 — An Introduction to Neuroendocrinology Michael Wilkinson, Richard E. Brown Frontmatter More Information

> **CONTENTS** ix 8.5 When hormone regulatory mechanisms fail 186 8.6 Summary | 187 Steroid and thyroid hormone receptors | 192 Q 9.1 The intracellular receptor superfamily | 193 How are steroid hormone target cells identified? | 196 9.2 9.3 How are steroid hormone target cells differentiated from non-target cells? | 198 Genomic and non-genomic actions of steroid hormones | 198 9.4 Measurement and regulation of hormone receptor numbers | 205 9.5 Gonadal steroid hormone target cells in the brain | 206 9.6 9.7 Adrenal steroid target cells in the brain | 210 9.8 Steroid hormone-induced changes in neurotransmitter release | 214 9.9 Functions of steroid hormone modulation of nerve cells | 215 9.10 Thyroid hormone receptors in the brain | 223 9.11 Summary | 225 10 Receptors for peptide hormones, neuropeptides and neurotransmitters | 236 10.1 Membrane receptors | 236 10.2 Signal transduction by G proteins | 240 10.3 Second messenger systems | 242 10.4 Interactions in second messenger systems 248 10.5 Signal amplification | 249 10.6 Second messengers in the brain and neuroendocrine system | 249 10.7 Comparison of neurotransmitter/neuropeptide and steroid hormone actions at their target cells | 252 10.8 Summary | 253 Neuropeptides I: classification, synthesis and co-localization 11 with classical neurotransmitters | 257 11.1 Classification of neuropeptides | 257 11.2 Synthesis, storage, release and deactivation of neuropeptides 259 11.3 Exploring the relationships among neuropeptides, neurotransmitters and hormones | 261 11.4 Coexistence (co-localization) of neurotransmitters and neuropeptides | 266 11.5 Localization of neuropeptide cell bodies and pathways in the brain | 269 11.6 Neuropeptide receptors and second messenger systems | 272 11.7 Neuropeptides and the blood-brain barrier | 275 11.8 Summary | 278

×

CONTENTS

12 Neuropeptides II: function | 286

- 12.1 Neurotransmitter and neuromodulator actions of neuropeptides: a dichotomy or a continuum? | 286
- 12.2 Neurotransmitter actions of neuropeptides | 287
- 12.3 Neuromodulator actions of neuropeptides | 293
- 12.4 Regulatory effects of neuropeptides on the neuroendocrine system | 299
- 12.5 Kisspeptin and GnRH as hypothalamic regulators of fertility | 300
- 12.6 Neuropeptides and the regulation of food intake and body weight | 302
- 12.7 Visceral, cognitive and behavioral effects of neuropeptides | 313
- 12.8 Summary | 332

13 Cytokines and the interaction between the neuroendocrine and immune systems | 351

- 13.1 The cells of the immune system | 351
- 13.2 The thymus gland and its hormones | 354
- 13.3 Cytokines: the messengers of the immune system | 356
- 13.4 The functions of cytokines in the immune and hematopoietic systems | 360
- 13.5 Effects of cytokines and other immunomodulators on the brain and neuroendocrine system | 364
- 13.6 Neural and endocrine regulation of the immune system | 374
- 13.7 Hypothalamic integration of the neuroendocrine and immune systems | 384
- 13.8 Summary | 387

14 Methods for the study of behavioral neuroendocrinology | 400

- 14.1 Behavioral bioassays | 400
- 14.2 Correlational studies of hormonal and behavioral changes | 403
- 14.3 Experimental studies I: behavioral responses to neuroendocrine manipulation | 407
- 14.4 Experimental studies II: neuroendocrine responses to environmental, behavioral and cognitive stimuli | 416
- 14.5 Neural and genomic mechanisms mediating neuroendocrinebehavior interactions | 424
- 14.6 Confounding variables in behavioral neuroendocrinology research | 434
- 14.7 Summary | 444

CONTENTS

xi

15 An overview of behavioral neuroendocrinology: present, past and future | 458

- 15.1 The aim of this book | 458
- 15.2 The history of endocrinology and behavioral neuroendocrinology | 460
- 15.3 The future of behavioral neuroendocrinology | 460

Index | 469

PREFACE TO THE SECOND EDITION

In this second edition of An Introduction to Neuroendocrinology, we have rewritten and greatly extended the original content. The revised text includes entirely new reference lists and a complete new set of illustrations. The book reflects the many advances that have occurred in the study of neuroendocrinology during the past 20 years. Nevertheless, and although the text is based largely on modern references, our primary aim is to provide an introductory description of mammalian neuroendocrine control systems. Several books are available that cover this topical and clinically relevant field, but, although valuable, these tend to be advanced texts of the edited, multi-author type. Our book is designed to provide the basic principles necessary to understand how the brain controls, and responds to, the endocrine hormones. It will be suitable for a variety of different students and especially those who might not have been previously exposed to a focused course in neuroendocrinology. Thus, students in psychology, biology and science should be able to master much of the basic material. However, the book is also highly appropriate for honors students and first-year graduate students in physiology, anatomy, neuroscience and medicine. This book is therefore designed for students in two levels of classes: introductory classes, in which all of the material will be new to the student, and more advanced classes, in which the students will be familiar with many of the terms and concepts through courses in biology, physiology, psychology or neuroscience, but who have not studied neuroendocrinology as an integrated discipline.

This book offers an overall outline of the neuroendocrine system and will provide the vocabulary necessary to understand the interaction between hormones and the brain. In addition, we provide a concise description of those topics that must underpin any attempt to learn, and to teach, neuroendocrinology. For example, there are chapters on basic neuroscience (neurotransmitters and neuropeptides), the physiology of the endocrine glands (hormones), receptors and receptor signaling mechanisms (e.g. G proteins; nuclear receptors), hormone assay and gene expression techniques (e.g. ELISA; in situ hybridization) and a description of the immune system, with particular emphasis on the integration of immune and neuroendocrine pathways. This basic information is also essential to understand the profound effects of hormones on behavior, described in Chapter 14. Once this material is mastered, the study of how hormones influence developmental neural processes and behavior will be easier. Moreover, we have included throughout the book references to the clinical relevance of many topics; for example, the influence of neuropeptides in the control of body weight and obesity. However, this book focuses primarily on the neural actions of hormones, and many of the peripheral physiological actions of hormones, such as regulation of metabolism, water balance, growth, and the regulation of calcium, sodium and potassium levels, which are the focus of traditional endocrinology texts, are referred to only in reference to their importance in the neuroendocrine system.

The introductory (second- or third-year undergraduate) student can be expected to follow the material in this book at the level presented. To help in this, review/study

Cambridge University Press & Assessment 978-0-521-80647-3 — An Introduction to Neuroendocrinology Michael Wilkinson, Richard E. Brown Frontmatter More Information

More Information

xiv

PREFACE TO THE SECOND EDITION

questions are given at the end of each chapter. These should be treated as practice examination questions and answered after each chapter is completed. For further detailed information on the topics covered in each chapter, all students can consult selected references provided in the text. Additional references under "Further reading" are also included at the end of each chapter and these will be particularly useful to the more advanced student. The book will be especially relevant for more advanced (honors and graduate) students who can use this book as an introductory account of the subject matter covered in each chapter. These students may then take advantage of the many references cited in each chapter to provide current and relevant information on each topic. The essay questions at the end of each chapter also serve to provide topics for discussion, analysis and directed research papers for the advanced student.

ACKNOWLEDGEMENTS

The authors are indebted to friends and colleagues who offered generous and invaluable assistance in the writing of this book. Paul Wilkinson, Ms. Alex Pincock and Ms. Diane Wilkinson created several figures; Alex Pincock and Dr. Jim Pincock carefully read, and made useful suggestions for improvement of, several early chapters. Special thanks are due to Diane Wilkinson, who typed all the tables and assisted in compiling the extensive reference lists. The following scientists unselfishly provided illustrations from their published material: Dr. O. Almeida, Dr. A. Armario, Dr. R. Bridges, Dr. R. Goyal, Dr. L. De Groot, Dr. L. Hale, Dr. J. Herman, Drs. T. Horvath and M. Dietrich, Ms. A. Rain, Dr. T. Smith, Dr. J. Ström, Dr. J. Wakerley, Dr. A. Winokur and Dr. S. Winters. As far as we are aware, all sources of the illustrations used have been acknowledged. Permission to use previously published figures was obtained either from the original authors or via *RightsLink* (Copyright Clearance Centre).

Finally, thanks are due to Megan Waddington of Cambridge University Press for her patience in awaiting the delivery of this manuscript.

Cambridge University Press & Assessment 978-0-521-80647-3 — An Introduction to Neuroendocrinology Michael Wilkinson, Richard E. Brown Frontmatter <u>More Information</u>

ABBREVIATIONS

IIIv	third ventricle	CART	cocaine- and amphetamine-regulated
2-AG	2-arachidinoyl glycerol		transcript
5-HIAA	5-hydroxyindoleacetic acid	cGMP	cyclic guanosine monophosphate
5-HT	5-hydroxytryptamine (serotonin)	CB1	cannabinoid receptor 1
5-HTP	5-hydroxytryptophan	CBG	corticosteroid binding globulin
6-0HDA	6-hydroxy-dopamine		(transcortin)
AC	adenyl cyclase	CCK	cholecystokinin
ACh	acetylcholine	CCK-KO	CCK knockouts
ACTH	adrenocorticotropic hormone	CGRP	calcitonin gene related peptide
ADH	antidiuretic hormone (vasopressin)	ChAT	choline acetyltransferase
ADHD	attention deficit hyperactivity disorder	CL	centrolateral thalamus
AEA	anandamide	Cl-	chloride ion
AgRP	agouti-related protein	CLIP	corticotropin-like intermediate lobe
AH	anterior hypothalamus		peptide
AHA	anterior hypothalamic area	CM	centromedial thalamus
AMPA	α-amino-3-hydroxy-5-methyl-4-	CNS	central nervous system
	isoxazole propionic acid	COMT	catechol o-methyl transferase
AMYG	amygdala	СР	caudate/putamen
ANP	atrial natriuretic peptide	CREB	cAMP responsive element binding
ANS	autonomic nervous system		protein
AP	area postrema	CRF	corticotropin-releasing factor (also
APC	antigen presenting cell		called CRH)
APUD	amine precursor uptake and	CRH	corticotropin-releasing hormone (also
	decarboxylation		called CRF)
AR	androgen receptor	CSF	cerebrospinal fluid
ARC	arcuate nucleus	CV0	circumventricular organs
AT	angiotensin	D	diestrus
ATP	adenosine triphosphate	D2R	dopamine 2 receptor
AVP	arginine vasopressin	D3	diestrus 3
AVPV	anteroventral periventricular nucleus	DA	dopamine
β2-AR	β2-adrenergic receptor	DAG	diacylglycerol
β-END	β-endorphin	DBD	DNA binding domain
β-Gal-ir	β-Galactosidase immunoreactivity	DBH	dopamine beta-hydroxylase
BBB	blood-brain barrier	DG	dentate gyrus
BDNF	brain-derived neurotrophic factor	DHEA	dehydroepiandrosterone
BLA	basolateral amygdala	DHT	dihydrotestosterone
BNP	B-type natriuretic peptide	dISON	dorsolateral supraoptic nucleus
Ca ²⁺	calcium ion	DMN	dorsomedial hypothalamic nucleus
CAH	congenital adrenal hyperplasia	DMT	dimethyltryptamine
cAMP	cyclic adenosine monophosphate	DNA	deoxyribonucleic acid

Cambridge University Press & Assessment 978-0-521-80647-3 — An Introduction to Neuroendocrinology Michael Wilkinson, Richard E. Brown Frontmatter <u>More Information</u>

LIST OF ABBREVIATIONS

xvii

DNES	Diffuse Neuroendocrine System
DYN	dynorphin
E	estradiol
EDC	endocrine disrupting chemicals
EGF	epidermal growth factor
EGL	external granule cell layer
EL	ejaculation latency
ELISA	enzyme-linked immunosorbent
	assay
ENK	enkephalin
ENS	enteric nervous system
EOP	endogenous opioid peptide
EPO	erythropoietin
ER	endoplasmic reticulum
ER	estrogen receptor
ERE	estrogen response element
FGF	fibroblast growth factor
fMRI	functional magnetic resonance
	imaging
FS	folliculostellate
FSH	follicle-stimulating hormone
FSH-RH	follicle-stimulating hormone-
	releasing hormone
FX	fornix
G	granule cells
G-CSF	granulocyte colony stimulating
	factor
GABA	gamma-aminobutyric acid
GABA-T	GABA transaminase
GAD	glutamic acid decarboxylase
GDNF	glial-derived neurotrophic factor
GDP	guanosine diphosphate
GFP	green fluorescent protein
GH	growth hormone
GHRH	growth hormone releasing hormone
GH-RIH	growth hormone release inhibiting
	hormone (see SOM)
GI	gastrointestinal
Gi	inhibitory G protein
GIP	gastrin inhibitory peptide
GLP-1	glucagon-like peptide-1
GLP-2	glucagon-like peptide-2
Glu	glutamate
GM-CSF	granulocyte-macrophage colony
	stimulating factor

GnIH	gonadotropin inhibitory hormone
GnRH	gonadotropin-releasing hormone
GPR54	G-protein-coupled receptor 54
GR	glucocorticoid receptor
GRE	glucocorticoid response element
G _S	stimulatory G protein
GTF	general transcription factor
GTP	guanosine triphosphate
HBD	hormone binding domain
HCG	human chorionic gonadotropin
HCS	human chorionic
	somatomammotropin
HDC	histidine decarboxylase
HFD	high fat diet
HGP	hepatic glucose production
H-P-A	hypothalamic-pituitary-adrenal
HPL	human placental lactogen
HPLC	high performance liquid
	chromatography
HRE	hormone response element
HRT	hormone replacement therapy
HSP	heat shock protein
HVA	homovanillic acid
ICo	nucleus intercollicularis
IF	intromission frequency
IFNγ	interferon γ
Ig	immunoglobulin
IGF	insulin-like growth factor;
	somatomedin
IGFBP	insulin-like growth factor binding
	protein
IGL	internal granule cell layer
III	inter-intromission interval
IL	interleukin
IL	intromission latency
IMAN	lateral magnocellular nucleus of the
	anterior nidopallium
IP3	inositol triphosphate
iR	ion channel
IRS-1	insulin receptor substrate 1
JAK	janus kinase
K ⁺	potassium ion
K _P	kisspeptin
LH	luteinizing hormone (also lateral
	hypothalamus)

Cambridge University Press & Assessment 978-0-521-80647-3 — An Introduction to Neuroendocrinology Michael Wilkinson, Richard E. Brown Frontmatter

More Information

xviii

LIST OF ABBREVIATIONS

LHRH	luteinizing hormone releasing hormone	NMDA	N-methyl-D-aspartate
LPH	lipotropic hormone (also β-lipotropin)	NO	nitric oxide
LSD	lysergic acid diethylamide	NOS	nitric oxide synthase
М	muscarinic	NP	neurophysin
MA0	monoamine oxidase	NPY	neuropeptide Y
MBH	mediobasal hypothalamus	NSF	N-ethylmaleimide sensitive factor
MC	melanocortin	NT	neurotransmitter
M-CSF	macrophage colony stimulating factor	NTD	amino terminal domain
MD	dorsomedial thalamus	NTS	nucleus tractus solitarius
ME	median eminence	nXIIts	tracheosyringeal portion of the nucleus
MET	metestrus		hypoglossus
mf	mossy fibers	OB	olfactory bulb
MF	mount frequency	OT	oxytocin
mGluR	metabotropic glutamate receptor	ORL1	opioid receptor-like receptor
MHC	major histocompatibility complex	OTR	oxytocin receptor
MHPG	3-methoxy-4-hydroxyphenylglycol	OVLT	organum vasculosum of the lamina(e)
mIU	milli international units		terminalis
ML	mount latency	OXM	oxyntomodulin
ML	molecular layer	OXY	oxytocin
MMGB	medial geniculate body	Р	progesterone (also Purkinje cells)
MOE	main olfactory epithelium	PACAP	pituitary adenylate cyclase-activating
MPOA	medial preoptic area		polypeptide
mR	metabotropic membrane receptor	PC	proprotein convertase
MR	mineralocorticoid receptor	PCP	phencyclidine
MRF	midbrain reticular formation	PCR	polymerase chain reaction
MRI	magnetic resonance imaging	pCREB	phosphorylated CREB
mRNA	messenger ribonucleic acid	PEI	post-ejaculatory interval
α-MSH	α -melanocyte-stimulating hormone	PeN	anterior periventricular nucleus
MSH-RF	melanocyte-stimulating hormone –	PENK	preproenkephalin
	releasing factor	PET	positron emission tomography
MSH-RH	melanocyte-stimulating hormone –	pf	parallel fibers
	releasing hormone	PFA	perifornical area
MSH-RIF	melanocyte-stimulating hormone –	PGE2	prostaglandin E2
	release-inhibiting factor	PH	posterior hypothalamus
MSH-RIH	melanocyte-stimulating hormone –	PI3K	phosphoinositide 3 kinase
	release-inhibiting hormone	PIF	prolactin releasing inhibiting factor
MT	melatonin	PIP2	phosphatidylinositol diphosphate
MUA	multiple unit activity	PIR	piriform cortex
NA	noradrenaline (also norepinephrine, NE)	PKA	protein kinase A
Na ⁺	sodium ion	PL	placental lactogen
NE	norepinephrine (also noradrenaline,	PLC	phospholipase C
	NA)	PNS	parasympathetic nervous system
NGF	nerve growth factor	POA	preoptic area
NK	natural killer cell	POL	RNA polymerase
NKT	natural killer T cell	POMC	pro-opiomelanocortin

Cambridge University Press & Assessment 978-0-521-80647-3 — An Introduction to Neuroendocrinology Michael Wilkinson, Richard E. Brown Frontmatter <u>More Information</u>

LIST OF ABBREVIATIONS

xix

PP	pancreatic polypeptide
PR	progesterone receptor
PRF	prolactin releasing factor
PRH	prolactin-releasing hormone
PRL	prolactin
PRO	proestrus
PrRP	prolactin-releasing peptide
PTH	parathyroid hormone
PTSD	post-traumatic stress disorder
PV	periventricular nucleus
PVN	paraventricular nucleus
РҮҮ	peptide YY
RA	robust nucleus of the arcopallium
RER	rough endoplasmic reticulum
RSP	retrosplenial cortex
SC	subcutaneous
SCN	suprachiasmatic nucleus
SDN	sexually dimorphic nucleus
SEM	standard error of the mean
SHBG	sex hormone binding globulin
SNAP	soluble SNF attachment proteins
SNARE	SNAP receptor protein
SNB	spinal nucleus of the
	bulbocavernosus
SNS	sympathetic nervous system
SOCS	suppressor of cytokine signaling
SOM	somatostatin
SON	supraoptic nucleus
SP	Substance P
SS	somatosensory cortex
SST	somatostatin receptor
STAT	signal transducer and activator of
	transcription / signal transduction
	and transcription
Т	testosterone
Т3	triiodothyronine
T4	thyroxine
TBG	thyroid hormone binding globulin
T _C	cytotoxic T cell
TF5	thymosin fraction 5
TGFα	transforming growth factor α
TGFβ1	transforming growth factor β 1
TH	tyrosine hydroxylase
T _H	helper T cell
THC	tetrahydrocannabinol

TIDA	tuberoinfundibular DA
TNEa	tumor necrosis factor a
TNFU	
IK	thyroid hormone receptors
TRF	thyrotropin (TSH) releasing factor
	(also TRH)
TRH	thyroid hormone releasing hormone
trk	tyrosine receptor kinase
Ts	suppressor T cell
TSH	thyroid-stimulating hormone
TSHR	TSH receptor
TSH-RH	thyroid-stimulating hormone-
	releasing hormone (TRH)
VEGF	vascular endothelial growth factor
VIP	vasoactive intestinal polypeptide
vmSON	ventromedial supraoptic nucleus
VMH	ventromedial hypothalamic nucleus
VMN	ventromedial nucleus of
	hypothalamus
VN0	vomeronasal organ
VP	vasopressin
WAT	white adipose tissue (fat)