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1 
Introduction 

1.1 Central Questions 

The subject of this work is how to prove correctness of concurrent programs. 
To argue the relevance of this theme a number of questions should be 
answered: 

• How important is verification for the development of correct software? 

• Why does one need to give correctness proofs for concurrent programs? 
Must these be formal? Or even machine checked? 

• Which style of proof method is more appropriate, a compositional or non­
compositional one? 

These questions will be answered in the present chapter. 
Note that here, as elsewhere in this volume, concurrency is used as a generic 

term covering the execution mechanisms for programs which communicate 
through distributed message passing as well as through shared variables. Such 
programs will also be called parallel programs. If we want to focus on pro­
grams communicating through distributed message passing we use the term 
distributed programs. Such programs are implemented on distributed loca­
tions and communicate by some form of message exchange. When no such 
physical separation is intended, communication is usually by means of shared 
variables, and we speak of shared-variable concurrency. 

1.2 Structure of this Chapter 

In Section 1.3 we define some basic concepts in the theory of concurrency 
which we shall need later. We argue in Section 1.4 that concurrent programs 
should be proved correct because of their unimaginable and bewildering com­
plexity, thereby answering the first two questions posed above. We do so by 
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1.3 Basic Concepts of Concurrency 3 

starting out with a small refinement problem in the context of a simple mutual 
exclusion algorithm due to Peterson [Pet83], then discuss several attempted 
solutions in the area of concurrent garbage collection, consider a distributed 
mutual exclusion algorithm due to Szymanski [Szy88], and finish Section 1.4 
by concluding that operational reasoning gives no guarantee that a program 
satisfies its specifications. Instead one should always use state-based rea­
soning for concurrent programs - that is, proofs based on invariance prop­
erties. Especially when these proofs are large and complicated, one should use 
(semi-)automated proof checkers to eliminate errors in hand-checked verifica­
tion proofs. This answers the first two questions raised above. 

Section 1.5 discusses the approach followed in this book, which is a seman­
tically-based dual-language state-based property-oriented approach, gives a 
brief introduction to Floyd's inductive assertion method and Hoare logic, then 
discusses their extensions to concurrency - first noncompositional proof meth­
ods, and then compositional ones based on the assume-guarantee paradigm 
and finishes by briefly describing a noncompositional proof method called the 
communication-closed-layers paradigm suitable for verifying network algo­
rithms and protocols. 

Section 1.6 discusses compositionality, one of the leading themes in this 
work. This central concept is approached from the viewpoint of the verify­
while-develop paradigm, thus enabling a detailed analysis of its definition. 
Then its relationship to machine-supported verification and modularity is ex­
plained, followed by a discussion of the complexity of compositional reason­
ing. We finish the section by answering the third question posed above. 

This chapter ends with Section 1.7, which puts the development of noncom­
positional to compositional state-based proof methods for concurrency into a 
historical perspective. 

1.3 Basic Concepts of Concurrency 

Why should one prove concurrent programs correct? As a preparation for 
answering this question in the next section, we first introduce some basic con­
cepts for reasoning about such programs. Next we sketch a way to understand 
them by defining their meaning. Then we discuss communication and syn­
chronisation, which are the two main forms of interaction between processes 
executing in parallel. 

1.3.1 Differences between Sequential Programming and Concurrency 
But first: What are the differences between sequential programs on the one 
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4 I Introduction 

hand and concurrent programs on the other? 
First and foremost, a sequential program is intended to run on a single pro­

cessor, whereas a concurrent program can be executed in principle on as many 
processors as there are parallel components in the program. The second differ­
ence concerns our way of characterising such programs. 

For the characterisation of sequential programs it is sufficient to observe 

their pairs of initial and corresponding final states. For a given program, the set 
of such pairs is called its observable behaviour. (Note that even for sequential 

programs, there are different notions of such behaviour, varying according to 

whether or not, e.g., nonterrnination and/or runtime errors are also observed.) 

Given such a pair of initial and corresponding final states, it is not necessary 
to record how that final state has been computed from the given initial state. 
This is so, because two different sequential programs having the same observa­
tional behaviour are regarded as equivalent, since, whenever they are plugged 
as modules inside a third program, this causes no difference in observational 
behaviour of the latter. That is, from this point of view, sequential programs 

can be regarded as atomic units. 

In case of concurrent programs, the same characterisation would not suffice, 
because the possibility of synchronisation and communication between such 

programs makes intermediate states as important as final ones. Hence the ob­

servational behaviour of these programs should also include some observable 
form of intermediate states, e.g., the values of those variables which are shared 
between processes or the messages communicated between them. 

In general, a concurrent program consists of a collection of processes and 
shared objects, such as shared channels and/or shared variables. Each process 
can be considered as a sequential program which can run concurrently with 
other processes within the same program. The shared objects allow these pro­
cesses to cooperate in accomplishing some task. They can be implemented in 

shared memory or might simply be a computer-communication network. 

Let us illustrate these concepts . 

• Shared memory (cf. Figure 1.1): External processes PI and P2 both have ac­
cess to a pool of shared memory cells. What should be prevented is that PI 
is able to access information in this shared memory while the information is 
being changed by P2, and vice versa, because this would cause that informa­
tion to become temporarily undefined. We want to do this independently of 
the specific nature of PI and P2, i.e., we need a solution which is canonical 
w.r.t. programs accessing shared memory. To obtain such a solution, pro­

cesses PI and P2 have to be synchronised w.r.t. reading and writing memory 

cells; this is further illustrated in Section 104. 
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1.3 Basic Concepts of Concurrency 

Fig. 1.1. Shared memory concept. 
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Fig. 1.2. Computer-communication network concept. 

local 
memory 

5 

• Computer-communication network (cf. Figure 1.2): Every process has its 
own local memory. However, processes share channels. Hence, in order 
to implement message passing one needs to guarantee that when, e.g., PI 
sends a message along a channel C to P2, and this message reaches P2, P2 
eventually reacts to that message. And this again requires some form of 
synchronisation between, at the very least, P2 and its environment. 

When formulating proof rules and discussing compositionality we need to 
characterise the observable behaviour of a program component or process more 
precisely by its so-called observables. In a purely sequential context, one 
sometimes needs to know the precise set of variables occurring, or involved 
(this term is explained below), in that component, i.e., those variables whose 
values are read and/or changed during execution of that component. These 
variables are called the observables of that component. In case of shared­

variable concurrency, the observables of a component consist of two sets, the 

set of variables occurring, or involved, in that component, and the set of vari­
ables through which that component communicates with its environment. In a 
case of message passing, the observables of a component also consist of two 
sets, the set of variables occurring, or involved, in that component, and the set 

of channels through which it communicates with its environment. In this book 
no mixtures of these two communication mechanisms are considered. 
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6 1 lntroduction 

In a purely semantic setting we shall use the term "involved in" to express 
the dependency of a process upon (the values of) variables and/or (the values 
communicated along) channels, e.g., a variable or channel involved in a pro­
cess, whereas in a syntactic setting (i.e., in Chapters 5, 10, 11 and 12) we use 
"occurring in" for this purpose, because then one can point to the particular 
syntactic occurrences of the variable or channel concerned. These terms will 
also be defined in a semantic setting for boolean-valued functions, and in a 
syntactic setting for assertions from first-order predicate logic. 

1.3.2 Semantics of Concurrency 

Next we give a model for understanding such programs [SA86]. A program 
state 0" associates a value with each variable. Execution of a sequential pro­
gram results in a sequence of atomic transitions, each of which transforms the 
state indivisibly. Execution of a concurrent program results in an interleaving 
of these sequences of atomic transitions for each component process and can 
be essentially viewed as a history or computation sequence 

0"0 ~ 0"1 ~ .•. ~ O"j (l~1 ••• 

where the O"j'S denote the states, the elj'S denote atomic transitions, and the 

sequence ell el2 ... is an interleaving of these sequences of atomic transitions 
resulting from execution of the processes. 

The behaviour of a concurrent program is defined by its set of histories, 
each history corresponding to one possible interleaving of those sequences of 
atomic actions that result from execution of its processes. For all but trivial 
programs, this set is apt to be quite large - so large that it might be impossible 
to enumerate, much less inspect, each of its elements in order to ascertain as­
pects of the behaviour of the program. This will be illustrated by the examples 
in Section 1.4. Therefore, we take in Section 1.5 an approach for develop­
ing and analysing such programs which is based on the use of abstraction; it 
is called assertional reasoning. Instead of enumerating sets of sequences of 
states, we characterise the computation sequences in these sets by describing 
their properties of interest. Instead of enumerating program states, we use 
predicates (boolean functions) which are expressible by assertions - formulae 
of predicate logic - to characterise sets of states. As a result, use of assertional 
reasoning allows a program to be understood as a relation between assertions, 
rather than as an object that is executed. As will be clear from Section 1.4 on­
wards, this change of viewpoint is crucial to our understanding of concurrent 
programs, for it allows us to master their complexity by assertional, or even 
compositional, reasoning. 
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1.3 Basic Concepts of Concurrency 7 

1.3.3 Communication and Synchronisation 

Thirdly we discuss the important subjects of communication and synchronisa­
tion between processes, which have already been introduced above. 

In order to interact, processes must communicate and synchronise. Commu­
nication allows one process to influence execution of another one and can be 
accomplished using shared variables or message passing. When shared vari­
ables are used, a process writes to a variable that is read by another process; 
when message passing is used, a process sends a message to another process. 

To communicate, one process sets the state of a shared object and the other 
reads it. This works only if the shared object is read after it has been writ­
ten - reading the object before it is written can return a meaningful, but er­
roneous, value. Thus, meaningful communication between processes cannot 
occur without preventing the latter; this is called synchronisation. 

Three notions of synchronisation appear in this book. The first, mutual ex­
clusion, groups actions into critical sections that are never interleaved during 
execution. Within these critical sections no program variables are changed 
which influence the control flow of the synchronisation mechanism imple­
mented (i.e., mutual exclusion). The second form, conditional synchronisa­
tion, delays a process until the state satisfies some specified condition. This 
synchronisation mechanism is, e.g., used in order to prevent the value of a 
shared variable being read in one process before that variable has been written 
in another process, as discussed above. The third form arises when communi­
cation between processes itself is synchronised. Then the acts of sending and 
receiving messages along given channels are synchronised, and, hence, one 
speaks of synchronous communication. The remaining forms of communica­
tion between processes are then called asynchronous. For example, communi­
cation by shared variables is asynchronous. All these forms of synchronisation 
restrict interleavings of processes. Mutual exclusion restricts interleavings by 
preventing interleaving from occurring at certain internal control points in a 
process; conditional synchronisation and synchronous communication restrict 
interleavings by causing a process to be delayed at given control points. 

A simple example illustrates these types of synchronisation. Communica­
tion between a sender process and a receiver process is often implemented 
using a shared buffer. The sender writes into the buffer; the reader reads from 
the buffer. Mutual exclusion is used to ensure that a partially written message 
is not read - access to the buffer by the sender and receiver is made mutually 
exclusive. Conditional synchronisation is used to ensure that the message is 
not overwritten or read twice - the reader is prevented from reading the buffer 
until a new message has been written. In a case of synchronous communica-
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8 i introduction 

tion, special protocols, which are implemented using such buffers at a lower 
level of abstraction, convey the impression at a higher level of abstraction that 
communication between processes along the same channel is simultaneous. 

Having introduced these concepts, in the next section we answer the first 
two questions raised in Section 1.1.1 

1.4 Why Concurrent Programs Should be Proved Correct 

1.4.1 Introduction 

In this section we answer the first two questions raised in Section 1.1. In par­
ticular, we argue that it is in general impossible to convince oneself of the cor­
rectness of concurrent programs without recourse to formal methods. This we 
do by giving a number of problems which are characteristic for the area, and 
for which we propose a number of increasingly complicated incorrect approx­
imations until we finally arrive at an alleged correct solution. The separate 
steps in the derivations of these solutions are certainly in themselves trivial, 
and yet several errors, sometimes subtle ones, will be shown to creep in. The 
design of the final solutions proceeds through a disquieting series of trials and 
errors. It should be clear that an informal justification of programs constructed 
in such a manner is not sufficient. The difficulties illustrated explain why we 
are interested in proving the correctness of such programs. 2 

The first example concerns Peterson's mutual exclusion algorithm [Pet83] in 
a presentation due to Amir Pnueli. The second example deals with the difficult 
task of concurrent garbage collection; specifically, we discuss a deep logical 
bug in one of the first concurrent garbage collectors ever written, by E.W. 
Dijkstra, L. Lamport and others, and how to correct it [DLM+78]. Manna 
& Pnueli's paper [MP91c] drew our attention to the third example concern­
ing a sophisticated distributed mutual exclusion algorithm due to Szymanski 
[Szy88]. 

As pointed out by Leslie Lamport, the history of concurrent algorithms 
seems to abound with published incorrect algorithms. He writes to de Roever 
[Lam99]: 

To my knowledge, the first published concurrent algorithm was Dijkstra's '65 mutual 
exclusion paper [Dij65b). The second one was by H. Hyman in a letter to the CACM 
proposing a simple mutex algorithm for two processors [Hym66]. The third algorithm 
was by Knuth, also in a letter to the CACM, in which he improved Dijkstra's algorithm 
and pointed out that Hyman's was completely wrong [Knu66). 

1 Parts of Section 1.3 originate from [SA86]. 
2 This paragraph has been inspired by a similar paragraph in [A091]. 
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1.4 Why Concurrent Programs Should be Proved Correct 9 

And also, are you aware of the error in Ben-Ari's garbage collection paper [BA82, 
BA84]? He visited me at SRI soon after that paper was published, and I was discussing 
proofs with him .... Going over the proof of one of the algorithms in that paper, and try­
ing to tum it into a real invariance proof, we discovered that the algorithm was wrong.3 

But sequential algorithms and their correctness proofs also share this fate, 
as pointed out by Donald Knuth, in an interview with Lad'a Lhotka about 
structured programming [Knu99, pp. 613-614]: 

I was talking with Tony Hoare, who was editor of a series of books ... He told me I 
ought to publish my program for TpfC 

As I was writing Tpf( I was using for the second time in my life a set of ideas called 
"structured programming", which were revolutionizing the way computer programming 
was done in the middle 70s (sic) .... Well, this was frightening - a very scary thing, for 
a professor of computer science to show someone a large program. At best, a professor 
might publish very small routines as examples of how to write programs. And we could 
polish those until ... well, every example in the literature about such programs had bugs 
in it. Tony Hoare was a great pioneer for proving the correctness of programs. But if 
you looked at the details . .. I discovered from reading some of the articles, you know, I 
could find three bugs in a program that was proved correct. [laughter] These were small 
programs. Now, he says, take my large program and reveal it to the world, with all its 
compromises. . .. But then I also realized how much need there was for examples of 
fairly large programs that could be considered as reasonable models of good practice, 
not just small programs. 

1.4.2 First Example: Peterson's Mutual Exclusion Algorithm 

Consider the following solution to the mutual exclusion problem: 

Example 1.1 Let 

PI ::::: £0: loop forever do 

od 

and 

£ I : noncritical section; 
£2: (YI,s):=(l,l); 
£3: wait (Y2 = 0) V (s -:J: 1); 
£4: critical section; 
£5: Yt := 0 

3 The history of concurrent garbage collection and errors in its algorithms is extensively doc­
umented in Section 8.10 of [JL96]; e.g., the errors in Ben-Ari's algorithm were published 
independently by J. van de Snepscheut, C. Pixley, and D. Doligez & X. Leroy. 
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10 

P2 == mo: loop forever do 

od 

and let 

ml : noncritical section; 

m2: (Y2, s) := (1,2); 
m3: wait(YI = 0) V (s # 2); 
m4: critical section; 

ms: Y2:= 0 

} Introduction 

o 

The statements noncritical section and critical section in mutual exclusion 
algorithms do not change the values of the variables which are used to im­
plement the mutual exclusion mechanism, i.e., in this particular case, do not 

change the values of YI, Y2 and s. Here wait b is a statement expressing condi­

tional synchronisation. It acts like a traffic light that can only be passed when 

b evaluates to true. Now consider an occurrence of wait (Yj = 0) V (s # i), for 
j # i, within a process Pi; then making (Yj = 0) V (s # i) true is typically done 
inside another process Pj which operates in parallel with Pi, hence j # i. This 
explains the name conditional synchronisation. 

Integer variables YI and Y2 are used by each process to signal the other pro­
cess of active interest in entering the critical section. Thus, on leaving the 
noncritical section, process Pi sets its own variable Yi, i = 1,2, to 1 indicating 
interest in entering the critical section. In a similar way, on exiting the critical 
section, Pi resets Yi to O. Variable s is used to resolve a tie situation between the 
two processes, which may arise when both processes are actively interested in 
entering their critical sections at the same time. 

Variable s serves as a logbook in which each process that sets its Y variable 
to 1 signs as it does so. The test at £3 says that PI may enter its critical section 
if either Y2 = 0, implying that P2 is not interested in entering a critical section, 
or if s # 1, implying that P2 performed its assignment to Y2 after PI assigned 
1 to YI, and, consequently, can only pass m3 after PI has executed its critical 
section. Since PI and P2 are symmetric, the same kind of reasoning applies 
when the rOles of PI and P2 are interchanged. Consequently, Pet} implements 
mutual exclusion of the critical sections of PI and P2 (using conditional syn­
chronisation). 

Formal methods can help to prove this intuition formally, i.e., proving that 
no computation of program Pet} contains a state in which PI is executing at 
£4 while P2 is executing at m4 (cf. Exercise 3.4). (This can even be verified 
automatically.) 
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