The Skeptical Environmentalist

The Skeptical Environmentalist challenges widely held beliefs that the environmental situation is getting worse and worse. The author, himself a former member of Greenpeace, is critical of the way in which many environmental organizations make selective and misleading use of the scientific evidence. Using the best available statistical information from internationally recognized research institutes, Bjørn Lomborg systematically examines a range of major environmental problems that feature prominently in headline news across the world. His arguments are presented in non-technical, accessible language and are carefully backed up by over 2,900 notes allowing readers to check sources for themselves. Concluding that there are more reasons for optimism than pessimism, Bjørn Lomborg stresses the need for clear-headed prioritization of resources to tackle real, not imagined problems.

The Skeptical Environmentalist offers readers a non-partisan stocktaking exercise that serves as a useful corrective to the more alarmist accounts favoured by campaign groups and the media. It is essential reading for anybody with a serious interest in current environmental debates.

BJØRN LOMBORG is an Associate Professor of Statistics in the Department of Political Science, University of Aarhus, Denmark. He has published in international journals in the fields of game theory and computer simulations.

Advance praise for The Skeptical Environmentalist

"Bjørn Lomborg raises the important question whether the costs of remedying the damage caused by environmental pollution are higher than the costs of the pollution itself. The answer is by no means straightforward. He has written a pioneering book."

Professor Richard Rosecrance, Department of Political Science, University of California, Los Angeles

"The well-publicized, but failed doomsday predictions made by some well-known environmentalist writers have inspired a number of rejoinders. This is the best one, by a wide margin. Its author teaches statistics in the Department of Political Science at Aarhus University in Denmark. He has marshaled an extremely impressive array of data to buttress his optimism about long-term and current trends in environment and development. On the environmental side, the book covers traditional problems like food, energy, water, and pollution, but also future problems like biodiversity and the greenhouse effect. In each of these areas, he argues that environmental problems can be managed (and in many cases have been managed already), and that trying to turn the clock back will be costlier in economic as well as human terms. On the development side, Lomborg points to encouraging trends in life expectancy, welfare, the decline of population growth, and the reduction of hunger. While he may occasionally make things difficult for himself by insisting that the world is making progress in virtually every area, this is also what makes the book such an impressive tour de force. This volume is a revised version of a much-debated Danish book from 1998, but the documentation is truly international - much more so than in the extensive US literature that promotes a similar message. Since theories of environmental conflict are generally predicated on a premise of scarcity, Lomborg's argument is of great potential importance to peace research."

Nils Petter Gleditsch, Editor, *Journal of Peace Research*, Research Professor, International Peace Research Institute, Oslo (PRIO), Professor of International Relations, Norwegian University of Science and Technology (NTNU), Trondheim

"For many scientists working with developing country issues it has long been difficult to reconcile findings from our field studies in Africa, Asia and Latin America with the pronouncements from environmental pressure groups in the industrialized world. With much better access to media and politicians a number of influential institutes and individuals have created images of a rapidly deteriorating world which is not always apparent to a significant section of the world population. What is even more disturbing is that much of the negative statements on environmental issues and on the global food situation seem to stem from relatively short-term time series, with apparent bias in selection of begin-points and end-points to make development look gloomy. There seems a sharp reluctance in some media and political circles to accept that much progress has been made in providing food for a population which is twice the size of what it was when the Club of Rome issued its doomsday scenarios. Indeed there is reluctance in the North to accept that poor people in the South have mostly done it themselves. It seems almost universally accepted in the North that the forests of the South are disappearing, depriving the globe of its green lungs, whilst serious study of forestry data indicate a much more mixed picture, with India arguably having more forests than 50 years ago.

Lomborg's book is a warning to scientists who have abandoned statistical prudence in their work. Anecdotal science can become biassed science or lead to wrong conclusions. The magnifying glass of crisis-focussed media, the scramble for competitive grants funding among scientists, and the need for pressure groups to sustain themselves, obscure less obvious and often less dramatic trends. And in particular they obscure a great deal of good news for the poor.

The concern for the environment and for the global food situation is honourable. We are all *for* a better environment and high biodiversity, and *against* food insecurity. There is a general consensus against pollution of the environment, wasteful food production methods, inequalities in access to food. There is a growing awareness of the dangers of global climate change. Lomborg does not argue against these legitimate concerns. He argues against lax and biassed use of data, particularly of time series. He warns that it is degrading science by allowing bits to be picked out of context. He is afraid that pompous statements based on flimsy evidence that also attract the media and the politicians constitute a threat to the integrity of science itself. If, in the long run, opportunistic behaviour of scientists leads to disregard of some of the basic tools of science – and statistical analysis is certainly one of them – then science itself will ultimately be the loser.

Lomborg's book questions the scientific basis why good news is suppressed and bad news amplified. But given that the environment is under pressure, it also questions whether we apply the correct remedies. In a world where around 1.5 billion people live on less that one US dollar a day and 2.5 probably on less than two dollars a day, we should be seriously concerned about the human dimension of our interactions with the environment. In our efforts to rescue the environment Lomborg suggests that exorbitant sums may be invested in environmental efforts that mean little to the poor, whilst only a handful of countries set aside as much as 0.7% of their GDP for development aid. If we are developing a setting, based on flawed data analysis, where rich people let butterflies count more heavily in their budgets than hungry and sick people, then we are morally on very thin ice. In a long string of examples Lomborg suggests that there is growing evidence that we may not have got our priority setting right, and that poor people may suffer from our careless handling of scarce data sets.

Lomborg questions most of our common views on the environment, the global food situation, and strategies for development assistance to the poor. He may not be right on all issues, but his plea for scientific stringency in analysis, and his exposure of false environmental prophets, are all very credible."

Stein W. Bie. Director General, International Service for National Agricultural Research (ISNAR)

"Those who feel strongly about poverty always emphasize how deep and widespread it is. But they seldom mention the great amount of people who have been lifted out of poverty over the last few hundred years or, especially, over the last few decades. A similar observation applies to those who care deeply about the environment. They tell us about the inroads of degradation and pollution all over the world, but seldom direct our attention to the results achieved in turning this process around, at least in significant parts of the world.

These attitudes have always amazed me. Although it is important to know the depth and width of a problem, it is no less important to know how it is being met and what results are thus being achieved. It is only in light of that knowledge that we can move forward with force and confidence. Such a view from both sides is the essential asset of Bjørn Lomborg's book. It presents the nature and extension of the problems we are faced with, as well as the ways along which they are being challenged and the results that are being obtained. The outcome is a hopeful view which should hearten all those who feel anxious about poverty and environment."

Jonas H. Haralz, Former Executive Director of the World Bank for the Nordic Countries.

"Based on facts and figures that are common ground to all sides of the ecological debate, this book will change forever the way you think about the state of the world. It is a remarkable, no, an extraordinary achievement."

Tøger Seidenfaden, Executive Editor-in-Chief, Politiken

The Skeptical Environmentalist

Measuring the Real State of the World

Bjørn Lomborg

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title:www.cambridge.org/9780521010689

Originally published in Danish as Verdens Sande Tilstand 1998 and 0 Bjørn Lomborg 1998

This revised and updated version, partially translated by Hugh Matthews First published in English by Cambridge University Press 2001 as The Skeptical Environmentalist

© Bjørn Lomborg 2001 First published 2001 24th printing 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Lomborg, Bjørn, 1965–
The skeptical environmentalist: measuring the real state of the world / Bjørn Lomborg.
p. cm.
Originally published in Danish as Verdens sande tilstand, 1998.
This revised and updated version first published in English by Cambridge University
Press, 2001–T.p. verso.
Includes bibliographical references and index.
ISBN 0 521 80447 7 – ISBN 0 521 01068 3 (pb.)
1. Global environmental change. 2. Pollution. 3. Human ecology. I. Title.
GE149 .L65 2001
363.7–dc21 00-068915

ISBN-13 978-0-521-01068-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This is my long-run forecast in brief:

The material conditions of life will continue to get better for most people, in most countries, most of the time, indefinitely. Within a century or two, all nations and most of humanity will be at or above today's Western living standards.

I also speculate, however, that many people will continue to *think and say* that the conditions of life are getting *worse*.

Julian Simon (1932–98), Professor of Economics, University of Maryland (Regis 1997:198)

The book is dedicated to my mother, Birgit Lomborg.

Contents

List of figures	page xii
List of tables	xviii
Preface	xvii
Language and measures	xix
Acknowledgements	xxii
Permissions	xxiv

Part I: The Litany

1	Things are getting better	3
	The Litany	3
	Things are better – but not necessarily good	4
	Exaggeration and good management	5
	Fundamentals: trends	5
	Fundamentals: global trends	6
	Fundamentals: long-term trends	8
	Fundamentals: how is it important?	9
	Fundamentals: people	11
	Reality versus myths	12
	Reality: Worldwatch Institute	13
	Reality: World Wide Fund for Nature	16
	Reality: Greenpeace	17
	Reality: wrong bad statistics and economics	18
	Reality: water problems	19
	Reality: Pimentel and global health I	21
	Reality: Pimentel and global health II	24
	Reality versus rhetoric and poor predictions	27
	Reality	30
	Reality and morality	32
2	Why do we hear so much bad news?	34
	Research	35
	The file drawer and data massage	36
	Organizations	37
	The media	39
	Lopsided reality: sporadic but predictable	39
	Lopsided reality: bad news	40
	Lopsided reality: conflict and guilt	41
	The consequences	41

Part II: Human welfare

3	Measuring human welfare	45
	How many people on earth?	45
	The changing demographics	47
	Overpopulation	48
4	Life expectancy and health	50
	Life expectancy	50
	Life expectancy in the developing world	51
	Infant mortality	53
	Illness	55
	Conclusion	58
5	Food and hunger	60
	Malthus and everlasting hunger	60
	More food than ever	61
	Lower prices than ever	62
	The Green Revolution	62
	Relative or absolute improvement?	64
	Regional distribution: Africa	65
	Regional distribution: China	66
	Conclusion	67
	Is inflation-adjusted GDP a reasonable	
	measure of wealth?	68
6	Prosperity	70
	Poverty and distribution	71
	Ever greater inequality?	73
	Poorer still?	75
	More consumer goods	78
	More education	81
	More leisure time	82
	More safety and security	84
	Fewer catastrophes and accidents	85
7	Conclusion to Part II: unprecedented	
	human prosperity	87

x Contents

Part III: Can human prosperity continue?

8	Are we living on borrowed time?	91
	Resources – the foundation for welfare	91
9	Will we have enough food?	93
2	At least grain per capita is declining	93
	Declining productivity	95
	Limits to yields?	96
	Biomass	99
	What about ordinary peasants?	100
	Do we still need the high growth?	100
	Grain stocks are dropping!	101
	What about China?	102
	Should we worry about erosion?	104
	What about fish?	106
	Conclusion	108
10	Forests – are we losing them?	110
10	Forests and history	112
	Deforestation: a general view	112
	Deforestation: how much?	114
	How much forest?	115
	Conclusion	117
11	Energy	118
	We are a civilization built on energy	118
	Do we have enough energy to go on?	119
	The oil crisis	120
	How much oil left?	121
	Optimists and pessimists arguing	124
	Ever more oil available	125
	Other fossil energy sources	126
	Nuclear energy	128
	Renewable energy	129
	Solar energy	133
	Wind energy	134
	Storage and mobile consumption	135
	Conclusion	135
12	Non-energy resources	137
	The pessimists bet on resources running out –	
	and lost	137
	Falling prices	137
	Cement	138
	Aluminum	138
	Iron	140
	Copper	143
	Gold and silver	144
	Nitrogen, phosphorus and potassium	145
	Zinc	145

Other resources	146
Why do we have ever more resources?	147
Conclusion	148
Water	149
How much water in the world?	149
The three central problems	151
Not enough water?	152
Will it get worse in the future?	154
Will we see increased conflict?	156
Conclusion	157
Conclusion to Part III: continued	
prosperity	159
	Why do we have ever more resources? Conclusion Water How much water in the world? The three central problems Not enough water? Will it get worse in the future? Will we see increased conflict? Conclusion Conclusion to Part III: continued

Part IV: Pollution: does it undercut human prosperity?

15	Air pollution	163
	Air pollution in times past	163
	What is dangerous?	165
	Particles	167
	Lead	170
	SO ₂	172
	Ozone	173
	NO _x	174
	СО	175
	And the developing world? Both growth and	
	environment	175
	Conclusion	177
16	Acid rain and forest death	178
17	Indoor air pollution	182
	Indoor air pollution in the developing world	182
	Indoor air pollution in the developed world	183
18	Allergies and asthma	185
19	Water pollution	189
	Oil pollution in the oceans	189
	Oil in the Gulf	191
	Exxon Valdez: still a catastrophe?	192
	Pollution in coastal waters	194
	Suffocation in coastal waters	195
	Health effects from fertilizer	201
	Pollution in rivers	202
20	Waste: running out of space?	206
21	Conclusion to Part IV: the pollution	
	burden has diminished	210

Part V: Tomorrow's problems

22	Our chemical fears	215
	Cancer: death	217
	Cancer: incidence	222
	1-in-8 and other lifetime risks	223
	The fear of pesticides	226
	Establishing thresholds through risk	
	analysis	226
	Pesticides and cancer	228
	Cancer in animal experiments	231
	Natural and synthetic pesticides	232
	Synthetic estrogens	236
	Synthetic estrogens: a fall in sperm quality	238
	Organic farmers	240
	Synthetic estrogens: the "cocktail" effect	241
	Synthetic estrogens: breast cancer	242
	Synthetic estrogens: should we worry?	244
	Conclusion: should we use pesticides?	245
23	Biodiversity	249
	How many species are there?	249
	Is biodiversity important?	250
	How many go extinct?	251
	The claim of 40,000 species	252
	A model backup	252
	What do we lose?	253
	Models and reality	253
	The biologists' reaction	254
	Check the data	254
	The biologists' response	256
	Conclusion: what are the consequences of	
	seriously overstating the extinctions?	257
24	Global warming	258
	The basic greenhouse effect	259
	The long-term development of the climate	260
	The climate, 1856-2100	263
	How much does CO_2 affect the temperature?	265
	How much does CO_2 affect the temperature?	
	Particles	266
	How much does CO_2 affect the temperature?	
	Water vapor	269

How much does CO_2 affect the temperature?	
Clouds	270
The ozone hole	273
Are there other causes?	276
Are the scenarios realistic?	278
Are the scenarios realistic? The 40 new scenarios	280
Consequences: agriculture	287
Consequences: sea level rise	289
Consequences: human health	291
Consequences: extreme weather	292
Consequences: present and future weather	297
The cost of warming	300
The cost of cutting CO_2	302
Then what should we do?	305
The double dividend: improve the	
environment and make money?	308
Objections: cut CO ₂ and make money	312
Objections: the price of the future	313
Objections: the fear of catastrophe	315
Summing up	317
More than meets the eye	318
Conclusion: scares and sound policy	322

Part VI: The Real State of the World

25	Predicament or progress?	327
	The Great Fable of the Litany	327
	The Real State of the World	328
	Yet we worry ever more	330
	Setting priorities and risks	333
	Weighing risks	336
	The costs of the Litany	338
	Genetically modified foods – the	
	encapsulation of the Litany	342
	Caution when invoking the principle	348
	Continued progress	350
	Notes	353
	Bibliography	435
		100
	Index	506

List of figures

1.	World exports of goods and	
	services, 1950–2000. p	age 8
2.	Grain yields for the world, the	
	developing world and the USSR	
	area, 1961–2000.	9
3.	Fertilizer use, kg per person for the	
	world (1950–99) and for the	
	developing world (1962–99).	11
4.	Two attempts at showing the	
	development of access to clean	
	water and sanitation.	20
5.	Percentage of people in the Third	
	World with access to drinking water	r
	and sanitation, 1970–2000.	22
6.	Number and rate of tuberculosis	
	cases in the US, 1945–99.	23
7.	People undernourished in numbers	
	and percentage, 1949–2030.	24
8.	Infectious disease death rates,	
	1970-2020.	26
9.	The connection for 117 nations	
	between GDP per capita and the	
	2001 Environmental Sustainability	
	Index.	33
10.	Percentage of respondents who	
	evaluate the environmental quality	
	of their local community, their	
	nation and the world as very or	
	fairly bad.	35
11.	World population 1750–2200, the	
	the UN's medium variant forecast	
	2000.	46
12.	The demographic transition showing	ıg
	birth and death rates in Sweden	
	and Sri Lanka.	46
13.	Increase in the Earth's population	
	in absolute figures and as a	
	percentage, 1950–2050.	47

14.	Percentage of urban population in	
	developing and deveoped countries	
	and the world, 1950–2030.	49
15.	Life expectancy at birth in Britain,	
	1200–1998.	51
16.	Life expectancy for industrialized	
	countries, developing countries, sub-	
	Saharan Africa, and the entire world	
	1950-2050.	52
17.	Percentage of humanity with their	
	maximum life expectancy in 2000.	53
18.	1 0	
	1750-1998.	54
19.	Infant mortality: world, industrial,	
	developing and sub-Saharan African	
	nations.	55
20.	The prevalence of infectious and	
	noninfectious diseases in the US	
	1900-98.	56
21.	The relationship between life	
	expectancy and percentage of years	
	spent with disability.	58
22.	Average height of adult men from	
	1775 to 1975.	59
23.	Daily intake of calories per capita in	
	industrial and developing countries	
	and world, 1961–98.	61
24.	Proportion of starving in the	
	developing world by region, for	
	1970, 1980, 1991, 1997 and estimates	
	2010.	61
25.	Wheat price index, England	
	1316-2000.	62
26.	World Bank price index for	
	foodstuffs, 1957–2000.	62
27.	Yield in tons per hectare of rice, corn	
	and wheat in developing countries,	
	1960-2000.	65

xii

List of figures xiii

28.	Calories per capita per day for various	
29.	regions, 1961–98. Estimated global GDP per capita	65
29.	0-2000 CE.	70
30	UK (1756–2000) and US (1789–2000)	/0
50.	GDP per capita.	70
31.		/0
01.	of the world, 1820–1989.	71
32.		<i>,</i> ,
	developing word in 1985 PPP\$,	
	1950–95.	71
33.	Proportion of people in poverty,	
	1950–98.	72
34.	Relationship between the richest and	
	poorest 20 percent and 30 percent in	
	the world in terms of per capita GDP	
	in PPP\$, 1960–97.	74
35.	Ratio of per capita income in	
	developed to developing world,	
	1820-2100.	75
36.	Per capita real local currency	
	GDP in Brazil and Mexico, 1960–2001,	
	per capita GDP in PPP\$ for sub-	
	Saharan Africa, 1950–92.	76
37.	8	
	various consumer goods in the US	
	throughout the twentieth century.	78
38.		
	UK, US, Denmark, France and Italy.	79
39.	Welfare indicators for India,	
	twentieth century. GPD per capita,	
	number of radios, TVs and	~ ~
	telephones per 1,000 inhabitants.	80
40.	Welfare indicators for India,	
	twentieth century: percent enrolled	
	in primary, secondary and tertiary	00
11	education and percent literate. Illiteracy in the developing world	80
41.	according to year of birth, 1915–82,	
	for men, women and total.	81
47	Index for average education per	01
74.	capita in developing countries;	
	primary, secondary and higher	
	education 1960–90.	81
43.	Annual working hours per person	51
	employed, selected countries	
	1870–1992.	82

4.4	Dronantion of wooful time amount has	
44.	Proportion of useful time spent by British men on various activities,	
	1856–1981.	83
45	Average trend in free time for 19	05
45.	countries (Europe, US and Canada)	
	for men and women 1965–95.	84
16	Annual death rate from catastrophes	
40.	1900–99, per decade, for natural	,
	disasters.	85
47	Accident death rate trends of the	05
ч/.	twentieth century.	86
48.	-	00
40.	market price for wheat in 2000	
	US\$ per bushel, 1950–96.	93
49	World market price for wheat in	20
12.	2000 US\$ per bushel, 1950–2000.	94
50	The grain production per capita for	51
00.	the world and the developing world,	
	1961–2000.	94
51.	Grain production, prediction from	
	FAO 1989–2010, and actual	
	1961-2000.	95
52.		
	from the US and rice from Japan.	96
53.	Wheat yield for 1960–2000, for the	
	US, the EU and the world.	97
54.	Rice yield for 1960–2000, for	
	Japan, South Korea and the	
	world.	98
55.	Grain carryover stocks, 1961–2000;	
	number of days of consumption just	
	before the next harvest.	101
56.	China's future grain import as	
	estimated by different agencies and	
	actual demand in 1999/2000.	103
57.	Marine catch and fish farm	
	production per capita and the total	
	marine catch, 1950–99.	107
58.	5 1 1	
	the industrial and developing	
	countries and world, 1961–2030.	109
59.	The WWF's forests web homepage	
	until April 1998.	110
60.	8 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	
	estimates, 1948–2000.	111
61.	8	
	1978-99.	115

xiv List of figures

62.	The US energy consumption	
	1750-2000.	119
63.	World energy production 1890-1999)
	distributed by fuel source.	122
64.	Price per energy unit for oil, gas and	
	coal, and price of regular unleaded	
	gasoline per gallon at the pump	
	(excluding tax), 1950–2000.	123
65.	Oil price 1871-2020 and world	
	production 1882–2020.	123
66.	World oil reserves compared to the	
	annual production, 1920–2000.	124
67.	The world's known oil reserves and	
	world oil production, 1920–2000.	124
68.	Energy efficiency for the US,	
	1800–1999 and the UK, 1880–1997.	126
69.	World gas production, price and	
	years of consumption, 1925–2000.	127
70.	World coal production, price and	
	years of consumption, 1880–1999.	128
71.	Share of global energy production by	7
	different sources, 1998.	130
72.	Price per kWh for different renewab	le
	energy sources, 1975–2030.	131
73.	Energy contents in the annual solar	
	radiation, compared to the total	
	resources of non-renewables and	
	the global, annual energy	
	consumption.	133
74.	The Economist's industrial price	
	index, 1845–2000	138
75.	Price index for metals, 1957–2000.	138
76.	Price and production of aluminum,	
	1891-2000.	140
77.	Years of consumption of the four	
	most used metals, 1950–2000.	141
78.	Price and production of iron,	
	1916–2000.	142
79.	Price and production of copper,	
	1800-2000.	143
80.	Remaining years of consumption of	
	gold, 1950–2000.	144
81.	Price index of fertilizer, 1957–2000.	145
	Price and production of zinc,	
	1800–2000.	146
83.	Global, annual water withdrawal	
	and use, and percentage of accessible	e

2025. 150 84. Global withdrawal of water for agriculture, industry and municipal use, and total use per capita per day, 1900-95. 151 85. Share of humanity with maximum water availability in the years 2000, 2025, and 2050. 155 86. Average concentrations of SO₂ and smoke in London, 1585-1994/5. 165 87. Average cost of $\mathrm{PM}_{\mathrm{10}},$ lead, SO_{2} and ozone pollutants at the measured

runoff, 1900-95, and predictions for

- American pollution level, 1977–99. 166 88. Particle concentration levels for the US (1957-99) and the UK (1962-97) and predictions for the urban UK (1995-2010). 168 89. Emission of vehicle PM_{10} in the US (1940-2010) and urban vehicle PM₁₀ in the UK (1970–2010). 169 90. Lead concentration in the US (1977-99) and the UK (1980-96). 171 91. Emission of SO₂ in Europe (1880-1995), the US (1900-2010) and the EU (1980-2010). 172 92. Annual average concentration of SO₂ in the US (1962-99) and the UK (1962-97). 173 93. Ozone levels in the US (1975-99) and London, UK (1976-98). 174 94. Annual average NO₂ concentrations in the US (1975-99) and in central London, UK (1976-98). 174 95. Annual average CO concentrations in the US (1970-99) and in central London, UK (1976-98). 175
- 96. The connection between GDP per capita and particle pollution, 1972 and 1986.177
- 97. The connection between GDP per
capita and SO_2 pollution, 1972 and
1986.177
- 98. NAPAP experiment showing growth in diameter of 2- to 5-year-old seedlings exposed to various levels of simulated acid rain. 179

List of figures xv

99.	Annual change in acidity of lakes in	
	the 1980s and 1990s.	179
100.	Estimated global annual deaths	
	1	182
101.	Changes in prevalence of asthma	
	and wheeze, according to surveys	
	conducted 1956–93.	185
102.	Worldwide number of large oil spills	
	and total quantity of oil spilt,	
	1970–99.	190
103.	Quantity of oil spilt in US waters,	
	1970-98.	191
104.	Percentage of beaches not complying	5
	with local or EU regulations for	
	the UK (1980–2000), Denmark	
	(1980–99) and an average of the EU	
	(1992–9).	194
105.	Concentrations of coastal pollutants	
	in fish and shellfish, index for	
	Denmark (1973–92) and the US	
	(1986–95).	195
106.	Global fertilizer use 1920–99, and	
	growth in fertilizer use for the US,	
	Western Europe and developing	
	countries 1961–99.	197
107.	The in-stream contribution of	
	nitrogen from various sources in the	
100	coterminous US.	198
108.	The cost and benefit and net benefit	
	(negative) of the mixed policy	
	option to reduce the nitrogen load ir the Gulf of Mexico.	
100	Fecal coliform bacteria in rivers for	200
109.	different levels of per capita income,	
	in 1979 and 1986.	202
110	Oxygen levels in the Thames	202
110.	(1890–1974), the Rhine (1945–97),	
	and New York Harbor (1910–97).	203
111	Proportion of low-quality UK and US	205
111.	rivers, 1970–97.	204
112	Levels of persistent pollutants in US	204
112.	freshwater fish (1969–86) and in the	
	US/Canada Great Lakes herring gull	
	eggs (1974–96), as indexed from first	
	year.	205
113	Connection between income and	200
110.	waste production per capita.	206
	maste production per capital	

114.	Waste production in the US, national	
	and per person, for landfill and for	
	recovery and combustion, 1960–2005.	207
115		207
115.	The extent of the necessary landfill area to handle all waste from the US	
	throughout the entire twenty-first	200
110	century. Concentration of total DDT in	208
110.	human milk and fat for various	
	countries, 1963–97.	011
117		211
117.	US cancer mortality 1950–98,	
	expressed as total number of deaths, crude cancer death rate, age-adjusted	
	death rate and death rate adjusted	1
	for age and smoking.	217
110	US leukemia mortality and incidence	
118.	(onset of cancer), 1950–97, expressed	
	as total number of deaths, crude	
	cancer death rate, age-adjusted	
	death rate and incidence.	219
110	US age-adjusted cancer death rates	219
119.	for men and women, 1930–98.	220
120	US cigarette consumption for all	220
120.	adult men and women, 1900–9,	
	and lung and bronchus cancer,	
	1930–98, for men and women.	220
121.	Risk factors for breast cancer,	220
121.	1960–98.	221
177	Age-adjusted incidence risks of top	221
122.	sites, 1973–97. Female breast cancer,	
	female genital cancer, male prostate	
	cancer, lung and bronchus cancer,	
	and colon and rectum cancer.	223
123	Age-adjusted incidence and death	220
120.	rates for childhood cancers, 0–14	
	years old, 1973–97.	225
124	The amount of pesticides from food	220
121.	and water, even if one drinks two	
	liters of water a day containing	
	pesticides at EU limit values.	227
125.	Proportions of cancer attributed to	/
	different causes in the US.	228
126.	Rat study of carcinogenity of	
	ethylene thiourea.	232
127.	Comparison of relative cancer risk	
	of the average American daily intake	•

xvi List of figures

	of various foods and synthetic	
	pesticides.	234
128	Number of deaths from cancer	201
120.	related to foodstuffs in the US,	
	according to cause.	236
120	Average sperm count in 61 studies	200
129.	from 1938 to 1990.	238
130.	Number of families of marine	230
150.	animals, insects and four-legged	
	vertebrates, and species of land	
	plants, from 600 million years ago	
		240
4.04	to the present.	249
131.	Estimate of extinction rates from	
	1600 to 1974, plus Myers' estimate	
	for 1980.	253
132.	Relative influence of the manmade	
	greenhouse gases on temperature	
	change.	259
133.	Annual, global emissions of carbon	
	from fossil fuels and cement	
	production, 1850–1999, and	
	concentration of CO_2 in the	
	atmosphere, 1850–2000.	260
134.	Temperature over the past	
	millennium for the Northern	
	Hemisphere.	261
135.	Global temperature, 1856–2000.	263
136.	The six new CO_2 emission scenarios,	
	1990-2100.	264
137.	The predicted temperature and	
	total sea level increase, 1990–2100.	265
138.	Global average temperature	
	simulations from the Hadley Centre	
	GCM, for just greenhouse gases and	
	for greenhouse gases plus sulfate	
	aerosols with standard IPCC	
	assumptions.	267
139.	Global mean radiative forcing and	
	uncertainties due to a number of	
	agents.	268
140.	Temperature deviations of the	
	NASA/Goddard AOCGM for the surfa	ce
	and the troposphere, 1950–2099.	270
141.	Temperature deviation in the	_, 0
	troposphere, measured by weather	
	balloons (1978–99) and satellites	
	(1979–2001).	271
	(1979 2001).	2/1

142.	Temperature, 1990–2100, from 9	
	AOGCMs running the scenarios A2	
	and B2.	272
143.	The annual global production of	
	CFC gases, 1950–96.	274
144.	Concentration of ozone-depleting	
	stratospheric chlorine/bromine,	
	1950–2100, without a protocol,	
	with the Montreal (1987), London	
	(1990), Copenhagen (1992), Vienna	
	(1995) and Montreal (1997)	
	protocols, assuming full	
	compliance.	274
145.	Average annual UV-B radiation	
	with clouds and aerosols, depending	
	on latitude.	275
146.	The correlation between sunspot	
	period and Northern Hemisphere	
	average temperature change,	
	1865-1995.	277
147.	The relationship between the	
	change in global low-level cloud	
	cover and the change of incoming	
	cosmic radiation.	277
148.	Growth per year in greenhouse	
	gases, 1851–1998, measured in CO_2	
	equivalent growth rate.	279
149.	IPCC scenarios 1990–2100.	
	Population, sulfur emissions, and	
	income per capita for developing	
	and developed countries.	281
150.	IPCC scenarios, 1990–2100. Forest	
	area, energy efficiency, energy	
	production and percent renewable	
	energy.	283
151.	Global carbon emission and	
	temperature change, 1995–2395,	
	with four scenarios.	285
152.	The mean annual maximum	
	sustained wind speed for Atlantic	~~-
4 = 0	basin cyclones, 1945–96.	295
153.	Economic losses from weather-	
	related natural disasters,	205
4 - 4	1960–2000.	295
	US hurricane damage, 1900–95.	296
155.	Seasonal trends from 1950 to 1993	
	of maximum and minimum	

List of figures xvii

	temperatures for the Northern	
	and Southern Hemispheres.	298
156.	Simulated increase in biomass and	
	Net Primary Production for	
	increasing temperature and CO ₂ ,	
	1850-2100.	300
157.	The expected increase in temperatur	e
	with business-as-usual and with	
	the Kyoto restrictions extended	
	forever.	302
158.	The cost of the Kyoto Protocol in	
	2010 for the US, EU, Japan and	
	Canada/Australia/New Zealand	
	under four different trading	
	assumptions.	303
159.	-	2
	Annex I countries stabilize their	
	emissions slightly below the 1990	
	level.	304
160.	The cost of the last ton of carbon	
	emitted for various levels of carbon	
	reduction in 1995.	306
161.	Reduction of CO ₂ emissions, and	
	temperature change for different	
	scenarios 1995–2105.	307
162.	Environmental damage and	
	environmental tax.	309
163.	The total, present-value cost of	
	business-as-usual (just global	
	warming); the optimal reduction;	
	global stabilization of emissions at	
	1990-level; limiting the temperature	
	increase to 2.5 and 1.5°C.	310
164.	The present value from a	
	business-as-usual baseline of a	

	number of scenarios: the optimal	
	reduction; achieving the same	
	temperature decrease as Kyoto;	
	implementing Kyoto with global	
	trade; Annex I trade; trade only	
	within OECD and no trade.	311
165.	Total future consumption, for	
	business-as-usual, five scenarios	
	and the value if global warming was	
	not happening.	323
166.	The total value of income in the	
	twenty-first century for the four	
	main IPCC scenarios.	324
167.	The percentage of respondents who	
	say that environmental problems	
	affect their health "a great deal" or	
	"a fair amount".	332
168.	Trends in public opinion about the	
	importance of the environment,	
	1968-2001.	333
169.	Expenditure on the US environment	,
	1962–99.	334
170.	The WHO estimate of the	
	distribution of Years of Life Lost	
	caused by ten important risk factors	,
	for the world, the developing	
	countries, the former socialist	
	countries and the OECD.	335
171.	Median cost per life-year saved for	
	different sectors of society.	341
172.	Median cost per life-year saved for	
	different government sectors.	341
173.	Distribution of cost per life-year	
	saved for medicine and toxin	
	control.	342

List of tables

1.	Trends in work, personal and free	
	time, US 1965-95.	page 83
2.	The 24 raw materials, making up	
	more than 95 percent of the global	
	raw material turnover.	139
3.	The development of 11 elements wi	th
	potentially insufficient measured	
	reserves.	147
4.	Countries with chronic water scare	ity
	in 2000, 2025 and 2050, compared t	0
	a number of other countries.	152
5.	Lifetime risks of selected incidences	s
	and deaths in percent.	224
6.	Number of species and documented	1
	extinctions from the year 1600 to the	ne
	present day.	250
7.	Change in percentage of cereal	
	production in the event of an	
	equilibrium doubling of CO_2 in 206	0
	compared to a world without	
	warming.	288
8.	Actions which increase the risk of	
	dying by 0.000001, and their cause.	337
9.	Cost efficiency in saving life for	
	selected interventions.	340

xviii

Preface

The idea for this book was born in a bookstore in Los Angeles in February 1997. I was standing leafing through *Wired Magazine* and read an interview with the American economist Julian Simon, from the University of Maryland. He maintained that much of our traditional knowledge about the environment is quite simply based on preconceptions and poor statistics. Our doomsday conceptions of the environment are not correct. Simon stressed that he only used official statistics, which everyone has access to and can use to check his claims.

I was provoked. I'm an old left-wing Greenpeace member and had for a long time been concerned about environmental questions. At the same time I teach statistics, and it should therefore be easy for me to check Simon's sources. Moreover, I always tell my students how statistics is one of science's best ways to check whether our venerable social beliefs stand up to scrutiny or turn out to be myths. Yet, I had never really questioned my own belief in an ever deteriorating environment – and here was Simon, telling me to put my beliefs under the statistical microscope.

In the fall of 1997 I held a study group with ten of my sharpest students, where we tried to examine Simon thoroughly. Honestly, we expected to show that most of Simon's talk was simple, American right-wing propaganda. And yes, not everything he said was correct, but – contrary to our expectations – it turned out that a surprisingly large amount of his points stood up to scrutiny and conflicted with what we believed ourselves to know. The air in the developed world is becoming less, not more, polluted; people in the developing countries are not starving more, but less, and so on.

I asked myself why I was so definitely convinced that the environmental situation is bad and ever deteriorating. And if I was wrong in my beliefs about the environment, I was probably not the only one. Thus, I contacted one of the leading Danish newspapers, the centreleft, Guardian-like Politiken, and suggested to them that I write some articles about our understanding of various environmental problems. The outcome was four articles, that gave rise to one of the biggest Danish debates, spreading to all newspapers, and covering well over 400 articles, commentaries and critiques. Later, I tried to follow up on the debate with a book, covering a much wider area and attempting to address all our main worries.

However, the entire debate seemed peculiarly incomplete. To begin with, I was surprised that the only reaction from many environmental groups was the gut reaction of complete denial. Sure, this had also been my initial response, but I would have thought as the debate progressed that refusal would give place to reflection on the massive amounts of supportive data I had presented, and lead to a genuine reevaluation of our approach to the environment. Surprisingly, I met many, even amongst my close friends, who had only read the critical commentaries and drawn the simple conclusion that I was wrong, and that we could comfortably go on believing in the impending doomsday. This suggested that doomsday-visions are very thoroughly anchored in our thinking.

I teach statistics at the University of Aarhus and basically my skills consist in knowing how

xx Preface

to handle international statistics. Normally you associate statistics with a boring runthrough of endless rows of numbers – a problem I must every term convince new students is not necessarily true. Actually, statistics can be thoroughly exciting exactly because it confronts our myths with data and allows us to see the world more clearly. This excitement, I hope, is also apparent throughout the book. Though it contains much quantitative information, knowing the state of our world should be stimulating and invigorating, the challenge to our world view healthy and rewarding.

If I mention my profession at a party, it is seldom that I avoid a comment which rightly or wrongly builds on something which the English Prime Minister Benjamin Disraeli (1804–81) is supposed to have said: "There are three kinds of lies: lies, damned lies and statistics."¹ And it's actually true that statistics can be used to manipulate the truth. But used judiciously statistics is the best source of information about our world.

Why? Because the small part of the world that we see amongst our friends and acquaintances and in the media seldom shows a balanced picture of the whole world. For many different reasons our friends and acquaintances are much more similar to ourselves than the average population. Thus, basing our impressions of the world from friends alone will bias our views. Likewise, on TV we often get to hear stories which are twisted and sensationalized in many different and predictable ways (see chapter 2 on the problems of truth and the media).

In this way, statistics offers us a way to see the world more clearly. Indeed, statistics is in many areas the only way we can make a scientifically sound description of the world.

I have let experts review the chapters of this book, but I am not myself an expert as regards environmental problems. My aim has rather been to give a description of the approaches to the problems, as the experts themselves have presented them in relevant books and journals, and to examine the different subjectareas from such a perspective as allows us to evaluate their importance in the overall social prioritization.

The key idea is that we ought not to let the environmental organizations, business lobbyists or the media be alone in presenting truths and priorities. Rather, we should strive for a careful democratic check on the environmental debate, by knowing the real state of the world – having knowledge of the most important facts and connections in the essential areas of our world. It is my hope that this book will contribute to such an understanding.

Language and measures

This book presents a lot of data. In making complete sentences out of specific data, I have often selected fluency over cumbersome accuracy, which nevertheless should be available through the endnotes or the figure captions. When I write 'today' it typically implies the most recently available data, which could be anywhere from 1997 to 2001, depending on the speed of data collection and the time span involved.

Any data book in the English market has to consider the question of measures. This book mainly uses metrics, but whenever 'humansize' data are involved, I try also to indicate the imperial measures.² Thus, when discussing the American waste production (Figure 114, p. 207), the national waste is denoted in million metric tons. (I doubt if anyone truly has a feel for the magnitude of 150 million tons of landfill waste, and it would probably not help much to say 330 billion pounds instead.) Here, the important comparison is with the – equally incomprehensible – figures from 1960 or from 2005. However, when talking about the average daily waste per American, a change from 3 pounds in 1985 to 2.5 pounds in 2000 is readily comprehensible.

Timing throughout the book is in Common Era (CE) and Before Common Era (BCE). Energy is denoted by Joule (J) or kilo-watt-hours (kWh). Exponentials are used to denote large numbers, i.e. 5e6 means $5x10^6$, or a five followed by six zeros (5 million). The conventional prefixes are used throughout, with k (kilo, thousand), M (mega, million), G (giga, billion), and for really large numbers E (eta, 1e18) and Z (zeta, 1e21).³ Celsius is used for temperature, with one degree Celsius being 1.8 degrees Fahrenheit, and 0°C being 32°F.

Acknowledgements

In writing this book, I have been fortunate to have had help and inspiration from a lot of different people. I would like to thank my student helpers, who have always been ready to key in another statistic, touch up a graph, locate an obscure research report, call for a reference, rummage the internet or do the zillion other, less glamorous and (yes, I know!) often quite boring tasks. Thanks to David Nicolas Hopmann for his unflinching commitment to get the data (and for all the extra info on Star Trek), thanks to Helle Dam Sørensen for her amazing ability to keep track of all my odd requests (and her seemingly infinite patience with the Xerox machine), and thanks to Jesper Strandsbjerg Pedersen for his persistence in getting data in and good-looking graphs out (and even biking for an hour and a half to get an obscure CD-ROM). I am also grateful for all the skilled help and effort from Ida Pagter Kristensen, Siggi Brandt Kristoffersen, Ulrik Larsen and Kenneth Thue Nielsen.

Acknowledgement also goes to the large number of researchers who have read through different parts of the book. For different reasons, not all have wished to be mentioned, but they have all contributed with constructive suggestions and useful information, although definitely not all agree with my overall conclusions. Naturally, the customary caveat holds – only I am responsible for the contents of this book.

A big thanks to leader of research at the Center for Development Research, Jannik Boesen, administrative consultant Dr. Arne Høst at the University Hospital in Odense, professor of geology Henning Sørensen, Martin Einfeldt and Søren Fodgaard from the Danish Forestry Association, senior consultant Helle Buchardt Boyd from the Danish Center for Toxicology, Stefan Brendstrup from the Center for Social and Environmental Research, physicist Peter Thejll from the Danish Meteorological Institute, and Jes Fenger, National Environmental Research Institute of Denmark, who commented on large parts of the book.

The most gratitude goes to all the scientists in the field, from universities and research institutes, who actually measure the world in so many different ways, and all the statisticians within government agencies and international organizations who painstakingly assemble and publish the bits and pieces of the information that is presented in this book. A special thanks to the many scientists who have helped with some of the more particular requests: Mark Aldrich from the World Conservation Monitoring Centre, Chuck Allen, Michael Grillot and Harriet McLaine from the Energy Information Agency under US Department of Energy, the Ed Dlugokencky and P. Tans from the Climate Monitoring and Diagnostics Laboratory of the US National Oceanic and Atmospheric Administration, John H. Dyck from the US Department of Agriculture, Dr. Johann Goldammer at the Max Planck Chemistry Institute, Dr. Jim Hammitt at the Department of Health Policy and Management, Harvard Center for Risk Analysis, Dr. Annette Pernille Høyer at the Copenhagen Centre for Prospective Population Studies, senior researcher Alan McHughen at the University of Saskatchewan, Kåre Kemp at the National Environmental Research Institute of Denmark, chief librarian Patricia Merrikin at

xxii

Acknowledgements xxiii

FAO headquarters in Rome, crop physiologist Shaobing Peng at the International Rice Research Institute, Dr. Niels Skakkebæk of the Danish National Research Hospital, Dr. Henrik Svensmark from the Danish Space Research Institute, and Shanna H. Swan at the California Department of Health Services.

A lot of good friends have spent an inordinate amount of their time reading different chapters and excerpts of the book. Carol Anne Oxborrow has read through heaps of material, and she has given me a better feel for the subtleties of British English while sharpening my expositions in many places. Bill Jeffrey has despite the recurrent interruptions of his two 3-years olds - managed to get all through the first draft of the book, and his comments have forced me to clarify and strengthen the arguments, while he has also showed me the difficulty of mastering the American side of English. I also want to thank Lars Nørgaard, Martin Ågerup, Simon Henriksen, Henrik Kjærsig, Henrik Kjærgaard, Tom Yoo Kjær Nielsen, Jacob Heide Pedersen and Ulrik Wittendorff. Their good suggestions, constructive criticisms and honest reactions have contributed to making a much better book. In particular, I want to express my gratitude to my long-term friend, colleague and mentor, professor Jørgen Poulsen for his inspiring and always challenging thoughts. Likewise, I want to thank Nikolaj Vibe Michelsen, who has helped shape a lot of the arguments and who willingly let me test out a lot of new (if not always smart) ideas. Finally, I would like to thank my patient students, my good colleagues and here especially professor Søren Risbjerg Thomsen at the Department of Political Science, University of Aarhus. They have supported my research and provided me with an impetus to carry on, while they have also been wonderfully forgiving when sometimes I have turned up late or forgotten a deadline.

I have been fortunate to have a publisher who has supported me all along. My editor, Chris Harrison, has throughout believed in the book and carried it through the many Byzantine quirks of book publishing, while contributing with many good questions and useful advice. Likewise, production controller Caroline Murray, senior design controller Peter Ducker and David Barrett and his colleagues at Servis Filmsetting have all given the book a great layout and handled all the intricacies of getting graphs designed on the screen to look good on paper. Also, marketing director Sloane Lederer and Diane Goddard have worked enthusiastically on promoting the book.

While every effort naturally has been made to ensure that all the information in this book is correct, errors will undoubtedly still have crept in. In the days of old one would have to wait till the book – maybe – was reprinted and the statements could be corrected, but with the internet, this can be done immediately. Thus, I will endeavor to post any mistakes on the book's web-site: www.lomborg.org.

When I first read the interview with Julian Simon in Los Angeles, February 1997, I had no idea that checking up on his statements would end up taking more than four years of my life. But it has been an exhilarating and challenging experience and it has taught me a lot about our world and about my own myths.

The world is not without problems, but on almost all accounts, things are going better and they are likely to continue to do so into the future. The facts and information presented here should give us an opportunity to set free our unproductive worries and allow us to focus on the important issues, so that we may indeed help make an even better world for tomorrow.

Aarhus, 22 May 2001

Permissions

I have tried wherever possible to give full details of sources for all data and am grateful to the following for permission to reproduce copyright material: Figure 44 is reproduced from figure 8 in Jesse H. Ausubel and Arnulf Grübler, "Working less and living longer: long-term trends in working time and time budgets." Technological Forecasting and Social Change 50:113-31. Reprinted with permission from Elsevier Science. Figure 59 reproduces the WWF Forests for Life web page (http://www.panda.org/forests4life.htm). Printed by permission of the WWF's Forest for Life Campaign and Tori Lyall. Figures 96, 97, 109, and 113 are reproduced from page 764 of Nemat Shafik, "Economic development and environmental quality: an econometric analysis." Oxford Economic Papers 46:757-73. Reprinted with permission from Oxford University Press and Nemat Shafik. Figure 98 is reproduced from page 529 in J. Laurence Kulp, "Acid rain," in Julian Simon, The State of Humanity. Oxford: Blackwell. Reprinted with permission from Blackwell Publishers. Figure 101 is reproduced from page 607 in D. Jarvis and P. Burney, "The epidemiology of allergic disease." British Medical Journal 318:607-10. Reprinted with permission from BMJ Publishing Group. Figure 151 is reproduced from Figures 2 and 3 in Ujjayant Chakravorty, James Roumasset and Kinping Tse, "Endogenous substitution among energy resources and global warming." Journal of Political Economy 105(6):1,201-34. Reprinted by permission from The University of Chicago Press.

While every effort has been made to identify the owners of copyright material, I may have overlooked some cases, and I therefore take this opportunity to offer my apologies to any copyright holders whose rights I have unwittingly infringed.