CONSISTENT QUANTUM THEORY

Quantum mechanics is one of the most fundamental yet difficult subjects in modern physics. In this book, nonrelativistic quantum theory is presented in a clear and systematic fashion that integrates Born's probabilistic interpretation with Schrödinger dynamics.

Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory, clarifying the main sources of confusion experienced by students when they begin a serious study of the subject. The quantum measurement process is analyzed in a consistent way using fundamental quantum principles that do not refer to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed quantum physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used in this book was first introduced by the author, and extended by M. Gell-Mann, J.B. Hartle, and R. Omnès.

Essential for researchers, yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book may be used as a supplement to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics.

ROBERT B. GRIFFITHS is the Otto Stern University Professor of Physics at Carnegie-Mellon University. In 1962 he received his PhD in physics from Stanford University. Currently a Fellow of the American Physical Society and member of the National Academy of Sciences of the USA, he received the Dannie Heineman Prize for Mathematical Physics from the American Physical Society in 1984. He is the author or coauthor of 130 papers on various topics in theoretical physics, mainly statistical and quantum mechanics.

Cambridge University Press 0521803497 - Consistent Quantum Theory - Robert B. Griffiths Frontmatter <u>More information</u>

Consistent Quantum Theory

Robert B. Griffiths Carnegie-Mellon University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014, Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© R.B. Griffiths 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2002 First published in paperback 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14pt. System $LAT_EX 2_{\varepsilon}$ [DBD]

A catalogue record of this book is available from the British Library

Library of Congress Cataloguing in Publication data

Griffiths, R. B. (Robert Budington) Consistent quantum theory / Robert B. Griffiths. p. cm. Includes bibliographical references and index. ISBN 0 521 80349 7 (hc.) 1. Quantum theory. I. Title. QC174.12.G752 2001 530.12-dc21 2001035048

> ISBN 0 521 80349 7 hardback ISBN 0 521 53929 3 paperback

Cambridge University Press 0521803497 - Consistent Quantum Theory - Robert B. Griffiths Frontmatter More information

To the memory of my parents examples of integrity and Christian service

Contents

	Pref	<i>page</i> xiii		
1	Intr	Introduction		
	1.1	Scope of this book	1	
	1.2	Quantum states and variables	2	
	1.3	Quantum dynamics	3	
	1.4	Mathematics I. Linear algebra	4	
	1.5	Mathematics II. Calculus, probability theory	5	
	1.6	Quantum reasoning	6	
	1.7	Quantum measurements	8	
	1.8	Quantum paradoxes	9	
2	Wave functions		11	
	2.1	Classical and quantum particles	11	
	2.2	Physical interpretation of the wave function	13	
	2.3	Wave functions and position	17	
	2.4	Wave functions and momentum	20	
	2.5	Toy model	23	
3	Line	27		
	3.1	Hilbert space and inner product	27	
	3.2	Linear functionals and the dual space	29	
	3.3	Operators, dyads	30	
	3.4	Projectors and subspaces	34	
	3.5	Orthogonal projectors and orthonormal bases	36	
	3.6	Column vectors, row vectors, and matrices	38	
	3.7	Diagonalization of Hermitian operators	40	
	3.8	Trace	42	
	3.9	Positive operators and density matrices	43	

viii	Contents		
	3.10	Functions of operators	45
4	Phys	ical properties	47
	4.1	Classical and quantum properties	47
	4.2	Toy model and spin half	48
	4.3	Continuous quantum systems	51
	4.4	Negation of properties (NOT)	54
	4.5	Conjunction and disjunction (AND, OR)	57
	4.6	Incompatible properties	60
5	Prob	abilities and physical variables	65
	5.1	Classical sample space and event algebra	65
	5.2	Quantum sample space and event algebra	68
	5.3	Refinement, coarsening, and compatibility	71
	5.4	Probabilities and ensembles	73
	5.5	Random variables and physical variables	76
	5.6	Averages	79
6	Com	posite systems and tensor products	81
	6.1	Introduction	81
	6.2	Definition of tensor products	82
	6.3	Examples of composite quantum systems	85
	6.4	Product operators	87
	6.5	General operators, matrix elements, partial traces	89
	6.6	Product properties and product of sample spaces	92
7	Unit	ary dynamics	94
	7.1	The Schrödinger equation	94
	7.2	Unitary operators	99
	7.3	Time development operators	100
	7.4	Toy models	102
8	Stoc	hastic histories	108
	8.1	Introduction	108
	8.2	Classical histories	109
	8.3	Quantum histories	111
	8.4	Extensions and logical operations on histories	112
	8.5	Sample spaces and families of histories	116
	8.6	Refinements of histories	118
	8.7	Unitary histories	119
9	The	Born rule	121
	9.1	Classical random walk	121

CAMBRIDGE

Cambridge University Press	
0521803497 - Consistent Quantum Theory - Robert B. Griff	fiths
Frontmatter	
More information	

		Contents	ix
	9.2	Single-time probabilities	124
	9.3	The Born rule	126
	9.4	Wave function as a pre-probability	129
	9.5	Application: Alpha decay	131
	9.6	Schrödinger's cat	134
10	Cons	sistent histories	137
	10.1	Chain operators and weights	137
	10.2	Consistency conditions and consistent families	140
	10.3	Examples of consistent and inconsistent families	143
	10.4	Refinement and compatibility	146
11	Chec	cking consistency	148
	11.1	Introduction	148
	11.2	Support of a consistent family	148
	11.3	Initial and final projectors	149
	11.4	Heisenberg representation	151
	11.5	Fixed initial state	152
	11.0	Initial pure state. Chain kets	154
	11./	Unitary extensions	155
	11.0	Intrinsically inconsistent histories	137
12	Exan	nples of consistent families	159
	12.1	Toy beam splitter	159
	12.2	Beam splitter with detector	165
	12.3	Time-elapse detector	169
	12.4	Toy alpha decay	1/1
13	Qua	ntum interference	174
	13.1	Two-slit and Mach–Zehnder interferometers	174
	13.2	Toy Mach–Zehnder interferometer	178
	13.3	Detector in output of interferometer	183
	13.4	Detector in internal arm of interferometer	186
	13.5	Weak detectors in internal arms	188
14	Depe	endent (contextual) events	192
	14.1	An example	192
	14.2	Classical analogy	193
	14.3	Contextual properties and conditional probabilities	195
	14.4	Dependent events in histories	196
15	Dens	sity matrices	202
	15.1	Introduction	202

Х	Contents	
	15.2 Density matrix as a pre-probability	203
	15.3 Reduced density matrix for subsyste	m 204
	15.4 Time dependence of reduced density	v matrix 207
	15.5 Reduced density matrix as initial con	ndition 209
	15.6 Density matrix for isolated system	211
	15.7 Conditional density matrices	213
16	Quantum reasoning	216
	16.1 Some general principles	216
	16.2 Example: Toy beam splitter	219
	16.3 Internal consistency of quantum reas	soning 222
	16.4 Interpretation of multiple framework	xs 224
17	Measurements I	228
	17.1 Introduction	228
	17.2 Microscopic measurement	230
	17.3 Macroscopic measurement, first vers	sion 233
	17.4 Macroscopic measurement, second v	version 236
	17.5 General destructive measurements	240
18	Measurements II	243
	18.1 Beam splitter and successive measur	rements 243
	18.2 Wave function collapse	246
	18.3 Nondestructive Stern–Gerlach measure	urements 249
	18.4 Measurements and incompatible fan	nilies 252
	18.5 General nondestructive measuremen	ts 257
19	Coins and counterfactuals	261
	19.1 Quantum paradoxes	261
	19.2 Quantum coins	262
	19.3 Stochastic counterfactuals	265
	19.4 Quantum counterfactuals	268
20	Delayed choice paradox	273
	20.1 Statement of the paradox	273
	20.2 Unitary dynamics	275
	20.3 Some consistent families	276
	20.4 Quantum coin toss and counterfactur	al paradox 279
	20.5 Conclusion	282
21	Indirect measurement paradox	284
	21.1 Statement of the paradox	284
	21.2 Unitary dynamics	286

		Contents	xi
	21.3	Comparing M_{in} and M_{out}	287
	21.4	Delayed choice version	290
	21.5	Interaction-free measurement?	293
	21.6	Conclusion	295
22	Inco	mpatibility paradoxes	296
	22.1	Simultaneous values	296
	22.2	Value functionals	298
	22.3	Paradox of two spins	299
	22.4	Truth functionals	301
	22.5	Paradox of three boxes	304
	22.6	Truth functionals for histories	308
23	Sing	let state correlations	310
	23.1	Introduction	310
	23.2	Spin correlations	311
	23.3	Histories for three times	313
	23.4	Measurements of one spin	315
	23.5	Measurements of two spins	319
24	EPR	paradox and Bell inequalities	323
	24.1	Bohm version of the EPR paradox	323
	24.2	Counterfactuals and the EPR paradox	326
	24.3	EPR and hidden variables	329
	24.4	Bell inequalities	332
25	Hard	dy's paradox	336
	25.1	Introduction	336
	25.2	The first paradox	338
	25.3	Analysis of the first paradox	341
	25.4	The second paradox	343
	25.5	Analysis of the second paradox	344
26	Deco	bherence and the classical limit	349
	26.1	Introduction	349
	26.2	Particle in an interferometer	350
	26.3	Density matrix	352
	26.4	Random environment	354
	26.5	Consistency of histories	356
	26.6	Decoherence and classical physics	356
27	Quar	ntum theory and reality	360
	27.1	Introduction	360

xii	Contents		
	27.2	Quantum vs. classical reality	361
	27.3	Multiple incompatible descriptions	362
	27.4	The macroscopic world	365
	27.5	Conclusion	368
	Bibliography References		371
			377
	Index	c .	383

Preface

Quantum theory is one of the most difficult subjects in the physics curriculum. In part this is because of unfamiliar mathematics: partial differential equations, Fourier transforms, complex vector spaces with inner products. But there is also the problem of relating mathematical objects, such as wave functions, to the physical reality they are supposed to represent. In some sense this second problem is more serious than the first, for even the founding fathers of quantum theory had a great deal of difficulty understanding the subject in physical terms. The usual approach found in textbooks is to relate mathematics and physics through the concept of a *measurement* and an associated wave function collapse. However, this does not seem very satisfactory as the foundation for a fundamental physical theory. Most professional physicists are somewhat uncomfortable with using the concept of measurement in this way, while those who have looked into the matter in greater detail, as part of their research into the foundations of quantum mechanics, are well aware that employing measurement as one of the building blocks of the subject raises at least as many, and perhaps more, conceptual difficulties than it solves.

It is in fact not necessary to interpret quantum mechanics in terms of measurements. The primary mathematical constructs of the theory, that is to say wave functions (or, to be more precise, subspaces of the Hilbert space), can be given a direct physical interpretation whether or not any process of measurement is involved. Doing this in a consistent way yields not only all the insights provided in the traditional approach through the concept of measurement, but much more besides, for it makes it possible to think in a sensible way about quantum systems which are not being measured, such as unstable particles decaying in the center of the earth, or in intergalactic space. Achieving a consistent interpretation is not easy, because one is constantly tempted to import the concepts of classical physics, which fit very well with the mathematics of classical mechanics, into the quantum domain where they sometimes work, but are often in conflict with the very different mathematical structure of Hilbert space that underlies quantum theory. The result Cambridge University Press 0521803497 - Consistent Quantum Theory - Robert B. Griffiths Frontmatter <u>More information</u>

xiv

Preface

of using classical concepts where they do not belong is to generate contradictions and paradoxes of the sort which, especially in more popular expositions of the subject, make quantum physics seem magical. Magic may be good for entertainment, but the resulting confusion is not very helpful to students trying to understand the subject for the first time, or to more mature scientists who want to apply quantum principles to a new domain where there is not yet a well-established set of principles for carrying out and interpreting calculations, or to philosophers interested in the implications of quantum theory for broader questions about human knowledge and the nature of the world.

The basic problem which must be solved in constructing a rational approach to quantum theory that is not based upon measurement as a fundamental principle is to introduce probabilities and stochastic processes as part of the foundations of the subject, and not just an *ad hoc* and somewhat embarrassing addition to Schrödinger's equation. Tools for doing this in a consistent way compatible with the mathematics of Hilbert space first appeared in the scientific research literature about fifteen years ago. Since then they have undergone further developments and refinements although, as with almost all significant scientific advances, there have been some serious mistakes on the part of those involved in the new developments, as well as some serious misunderstandings on the part of their critics. However, the resulting formulation of quantum principles, generally known as consistent histories (or as decoherent histories), appears to be fundamentally sound. It is conceptually and mathematically "clean": there are a small set of basic principles, not a host of *ad hoc* rules needed to deal with particular cases. And it provides a rational resolution to a number of paradoxes and dilemmas which have troubled some of the foremost quantum physicists of the twentieth century.

The purpose of this book is to present the basic principles of quantum theory with the probabilistic structure properly integrated with Schrödinger dynamics in a coherent way which will be accessible to serious students of the subject (and their teachers). The emphasis is on physical interpretation, and for this reason I have tried to keep the mathematics as simple as possible, emphasizing finite-dimensional vector spaces and making considerable use of what I call "toy models." They are a sort of quantum counterpart to the massless and frictionless pulleys of introductory classical mechanics; they make it possible to focus on essential issues of physics without being distracted by too many details. This approach may seem simplistic, but when properly used it can yield, at least for a certain class of problems, a lot more physical insight for a given expenditure of time than either numerical calculations or perturbation theory, and it is particularly useful for resolving a variety of confusing conceptual issues.

An overview of the contents of the book will be found in the first chapter. In brief, there are two parts: the essentials of quantum theory, in Chs. 2–16, and

Cambridge University Press 0521803497 - Consistent Quantum Theory - Robert B. Griffiths Frontmatter <u>More information</u>

Preface

a variety of applications, including measurements and paradoxes, in Chs. 17–27. References to the literature have (by and large) been omitted from the main text, and will be found, along with a few suggestions for further reading, in the bibliography. In order to make the book self-contained I have included, without giving proofs, those essential concepts of linear algebra and probability theory which are needed in order to obtain a basic understanding of quantum mechanics. The level of mathematical difficulty is comparable to, or at least not greater than, what one finds in advanced undergraduate or beginning graduate courses in quantum theory.

That the book is self-contained does not mean that reading it in isolation from other material constitutes a good way for someone with no prior knowledge to learn the subject. To begin with, there is no reference to the basic phenomenology of blackbody radiation, the photoelectric effect, atomic spectra, etc., which provided the original motivation for quantum theory and still form a very important part of the physical framework of the subject. Also, there is no discussion of a number of standard topics, such as the hydrogen atom, angular momentum, harmonic oscillator wave functions, and perturbation theory, which are part of the usual introductory course. For both of these I can with a clear conscience refer the reader to the many introductory textbooks which provide quite adequate treatments of these topics. Instead, I have concentrated on material which is not yet found in textbooks (hopefully that situation will change), but is very important if one wants to have a clear understanding of basic quantum principles.

I am grateful to a number of colleagues who read and commented on parts of the manuscript. David Mermin, Roland Omnès, and Abner Shimony looked at particular chapters, while Todd Brun, Oliver Cohen, and David Collins read drafts of the entire manuscript. As well as uncovering many mistakes, they made a large number

хv

It is a pleasure to acknowledge help from a large number of sources. First, I am indebted to my fellow consistent historians, in particular Murray Gell-Mann, James Hartle, and Roland Omnès, from whom I have learned a great deal over the years. My own understanding of the subject, and therefore this book, owes much to their insights. Next, I am indebted to a number of critics, including Angelo Bassi, Bernard d'Espagnat, Fay Dowker, GianCarlo Ghirardi, Basil Hiley, Adrian Kent, and the late Euan Squires, whose challenges, probing questions, and serious efforts to evaluate the claims of the consistent historians have forced me to rethink my own ideas and also the manner in which they have been expressed. Over a number of years I have taught some of the material in the following chapters in both advanced undergraduate and introductory graduate courses, and the questions and reactions by the students and others present at my lectures have done much to clarify my thinking and (I hope) improve the quality of the presentation.

xvi

Preface

of suggestions for improving the text, some though not all of which I adopted. For this reason (and in any case) whatever errors of commission or omission are present in the final version are entirely my responsibility.

I am grateful for the financial support of my research provided by the National Science Foundation through its Physics Division, and for a sabbatical year from my duties at Carnegie-Mellon University that allowed me to complete a large part of the manuscript. Finally, I want to acknowledge the encouragement and help I received from Simon Capelin and the staff of Cambridge University Press.

Pittsburgh, Pennsylvania March 2001 Robert B Griffiths