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A Primer on Ordered Sets and Lattices

This introductory chapter serves as a convenient source of reference for certain
basic aspects of complete lattices needed in what follows. The experienced
readermaywish to skip directly to Chapter I and the beginning of the discussion
of the main topic of this book: continuous lattices and domains.

Section O-1 fixes notation, while Section O-2 defines complete lattices, com-
plete semilattices and directed complete partially ordered sets (dcpos), and
lists a number of examples which we shall often encounter. The formalism of
Galois connections is presented in Section 3. This not only is a very useful
general tool, but also allows convenient access to the concept of a Heyting
algebra. In Section O-4 we briefly discuss meet continuous lattices, of which
both continuous lattices and complete Heyting algebras (frames) are (overlap-
ping) subclasses. Of course, the more interesting topological aspects of these
notions are postponed to later chapters. In Section O-5 we bring together for
ease of reference many of the basic topological ideas that are scattered through-
out the text and indicate how ordered structures arise out of topological ones.
To aid the student, a few exercises have been included. Brief historical notes
and references have been appended, but we have not tried to be exhaustive.

O-1 Generalities and Notation

Partially ordered sets occur everywhere inmathematics, but it is usually assumed
that the partial order is antisymmetric. In the discussion of nets and directed
limits, however, it is not always so convenient to assume this property. We
begin, therefore, with somewhat more general definitions.

DefinitionO-1.1. Consider a set L equipped with a reflexive and transitive re-
lation≤. Such a relationwill be called a preorder and L a preordered set.We say
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2 O A Primer on Ordered Sets and Lattices

that a is a lower bound of a set X ⊆ L , and b is an upper bound, provided that

a ≤ x for all x ∈ X, and
x ≤ b for all x ∈ X, respectively.

A subset D of L is directed provided it is nonempty and every finite subset
of D has an upper bound in D. (Aside from nonemptiness, it is sufficient to
assume that every pair of elements in L has an upper bound in L .) Dually, we
call a nonempty subset F of L filtered if every finite subset of F has a lower
bound in F .

If the set of upper bounds of X has a unique smallest element (that is, the set
of upper bounds contains exactly one of its lower bounds), we call this element
the least upper bound and write it as

∨
X or sup X (for supremum). Similarly

the greatest lower bound is written as
∧

X or inf X (for infimum); we will not
be dogmatic in our choice of notation. The notation x = ∨↑ X is a convenient
device to express that, firstly, the set X is directed and, secondly, x is its least
upper bound. In the case of pairs of elements it is customary to write

x ∧ y = inf {x, y},
x ∨ y = sup {x, y}.

These operations are also often called meet and join, and in the case of meet
the multiplicative notation xy is common and often used in this book. �

Definition O-1.2. A net in a set L is a function j �→ x j : J → L whose
domain J is a directed set. (Nets will also be denoted by (x j ) j∈J , by (x j ), or
even by x j , if the context is clear.)

If the set L also carries a preorder, then the net x j is called monotone (resp.,
antitone), if i ≤ j always implies xi ≤ x j (resp., x j ≤ xi ).

If P(x) is a property of the elements x ∈ L , we say that P(x j ) holds eventually
in the net if there is a j0 ∈ J such that P(xk) is true whenever j0 ≤ k.

The next concept is slightly delicate: if L carries a preorder, then the net x j

is a directed net provided that for each fixed i ∈ J one eventually has xi ≤ x j .
A filtered net is defined dually. �

Every monotone net is directed, but the converse may fail. Exercise O-1.12
illustrates pitfalls to avoid in defining directed nets. The next definition gives
us some convenient notation connected with upper and lower bounds. Some
important special classes of sets are also singled out.

Definition O-1.3. Let L be a set with a preorder ≤. For X ⊆ L and x ∈ L we
write:

(i) ↓X = {y ∈ L : y ≤ x for some x ∈ X};
(ii) ↑X = {y ∈ L : x ≤ y for some x ∈ X};
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O-1 Generalities and Notation 3

(iii) ↓x = ↓{x};
(iv) ↑x = ↑{x}.

We also say:

(v) X is a lower set iff X = ↓X ;
(vi) X is an upper set iff X = ↑X ;
(vii) X is an ideal iff it is a directed lower set;
(viii) X is a filter iff it is a filtered upper set;
(ix) an ideal is principal iff it has a maximum element;
(x) a filter is principal iff it has a minimum element;
(xi) Id L (resp., Filt L) is the set of all ideals (resp. filters) of L;
(xii) Id0 L = Id L ∪ {Ø};
(xiii) Filt0 L = Filt L ∪ {Ø}. �

Note that the principal ideals are just the sets ↓x for x ∈ L . The set of lower
bounds of a subset X ⊆ L is equal to the set

⋂{↓x : x ∈ X}, and this is the
same as the set ↓inf X in case inf X exists. Note, too, that

X ⊆ ↓X = ↓(↓X ),

and similarly for ↑X .

Remark O-1.4. For a subset X of a preordered set L the following are
equivalent:

(1) X is directed;
(2) ↓X is directed;
(3) ↓X is an ideal.

Proof: (2) iff (3): By Definition O-1.3.
(1) implies (2): If A is a finite subset of ↓X , then there is a finite subset B

of X such that for each a ∈ A there is a b ∈ B with a ≤ b by O-1.3(i). By (1)
there is in X an upper bound of B, and this same element must also be an upper
bound of A.

(2) implies (1): If A is a finite subset of X , it is also contained in↓X ; therefore,
by (2), there is an upper bound y ∈ ↓X of A. By definition y ≤ x ∈ X for
some x , and this x is an upper bound of A. �

Remark O-1.5. The following conditions are equivalent for L and X as in
O-1.4:

(1) sup X exists;
(2) sup↓X exists.
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4 O A Primer on Ordered Sets and Lattices

And if these conditions are satisfied, then sup X = sup↓X. Moreover, if every
finite subset of X has a sup and if F denotes the set of all those finite sups, then
F is directed, and (1) and (2) are equivalent to

(3) sup F exists.

Under these circumstances, sup X = sup F. If X is nonempty, we need not
assume the empty sup belongs to F.

Proof: Since, by transitivity and reflexivity, the sets X and ↓X have the same
set of upper bounds, the equivalence of (1) and (2) and the equality of the sups
are clear. Now suppose that sup A exists for every finite A ⊆ X and that F is
the set of all these sups. Since A ⊆ B implies sup A ≤ sup B, we know that F
is directed. But X ⊆ F , and any upper bound of X is an upper bound of A ⊆ X ;
thus, the sets X and F have the same set of upper bounds. The equivalence of
(1) and (3) and the equality of the sups is again clear, also in the nonempty case.

�

The – rather obvious – theme behind the above remark is that statements about
arbitrary sups can often be reduced to statements about finite sups and sups of
directed sets. Of course, both O-1.4 and O-1.5 have straightforward duals.

Definition O-1.6. A partial order is a transitive, reflexive, and antisymmetric
relation ≤. (This last means x ≤ y and y ≤ x always imply x = y.) A partially
ordered set, or poset for short, is a nonempty set L equipped with a partial
order ≤. We say that L is totally ordered, or a chain, if all elements of L are
comparable under ≤ (that is, x ≤ y or y ≤ x for all elements x, y ∈ L).
An antichain is a partially ordered set in which any two different elements are
incomparable, that is, in which x ≤ y iff x = y. �

We have remarked informally on duality several times already, and the next
definition makes duality more precise.

Definition O-1.7. For R ⊆ L × L any binary relation on a set L , we define
the opposite relation Rop (sometimes: the converse relation) by the condition
that, for all x, y ∈ L , we have x Ropy iff yRx .

If in (L , ≤), a set equipped with a transitive, reflexive relation, the relation
is understood, then we write Lop as short for (L , ≤op). �

The reader should note that if L is a poset or a chain, then so is Lop. One should
also be aware how the passage from L to Lop affects upper and lower bounds.
Similar questions of duality are also relevant to the next (standard) definition.
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O-1 Generalities and Notation 5

Definition O-1.8. An inf semilattice is a poset S in which any two elements
a, b have an inf, denoted by a ∧ b or simply by ab. Equivalently, a semilattice
is a poset in which every nonempty finite subset has an inf. A sup semilattice is
a poset S in which any two elements a, b have a sup a ∨ b or, equivalently, in
which every nonempty finite subset has a sup. A poset which is both an inf
semilattice and a sup semilattice is called a lattice.

As we will deal with inf semilattices very frequently, we adopt the shorter
expression “semilattice” instead of “inf semilattice”.

If a poset L has a greatest element, it is called the unit or top element of L
and is written as 1 (or, rarely, as �). The top element is the inf of the empty
set (which, if it exists, is the same as sup L). A semilattice with a unit is called
unital. If L has a smallest element, it is called the zero or bottom element of L
and is written 0 (or ⊥). The bottom element is the sup of the empty set (which,
if it exists, is the same as inf L). �

Note that in a semilattice an upper set is a filter iff it is a subsemilattice. A dual
remark holds for lower sets and ideals in sup semilattices. We turn now to the
discussion of maps between posets.

Definition O-1.9. A function f : L → M between two posets is called order
preserving or monotone iff x ≤ y always implies f (x) ≤ f (y). A one-to-one
function f : L → M where both f and f −1 are monotone is called an isomor-
phism. We denote by POSET the category of all posets with order preserving
maps as morphisms.

We say that f preserves

(i) finite sups, or (ii) (arbitrary) sups, or (iii) nonempty sups, or (iv) directed
sups

if, whenever X ⊆ L is

(i) finite, or (ii) arbitrary, or (iii) nonempty, or (iv) directed,

and sup X exists in L , then sup f (X ) exists inM and equals f (sup X ). A parallel
terminology is applied to the preservation of infs. �

In the case of (iv) above, the choice of expression may not be quite satisfactory
linguistically, but the correct phrase “preserves least upper bounds of directed
sets” is too long. The preservation of directed sups can be expressed in the form

f
(∨↑

X
)

=
∨↑

f (X ).

For semilattices a map preserving nonempty finite infs might be called a homo-
morphism of semilattices. The reader should notice that a function preserving
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6 O A Primer on Ordered Sets and Lattices

all finite infs preserves the inf of the empty set; that is, it maps the unit to the
unit – provided that unit exists. In order to characterize maps f preserving only
the nonempty finite infs (if this is the condition desired), we can employ the
usual equation:

f (x ∧ y) = f (x) ∧ f (y),

for x, y ∈ L . Note that such functions are monotone, and the dual remark also
holds for homomorphisms of sup semilattices.

Remark. It should be stressed that our definition of “preservation of sups” is
quite strong, as we require that, whenever a set X in the domain has a sup, then
its image has a sup in the range. As a consequence, if a function f : L → M
preserves (directed) sups, it also preserves the order. Indeed, if a ≤ b in L ,
then {a, b} is a (directed) set that has a sup; as f preserves (directed) sups, then
f (a)∨ f (b) exists and f (b) = f (a ∨ b) = f (a)∨ f (b), whence f (a) ≤ f (b).
Often in the literature a weaker definition is adopted: f “preserves sups” if

whenever sup X and sup f (X ) both exist, then f (sup X ) = sup f (X ). In this
weak sense, a one-to-one map from the two element chain to two incomparable
elements preserves sups. Thus a function that preserves (directed) sups in this
weak sense need not be order preserving. In order to avoid ambiguities one
should keep in mind that if a map preserves (directed) sups in our sense, then
it is automatically order preserving. This implies in particular that the image of
a directed set is also directed.

Remark O-1.10. Let f : L → M be a function between posets. The following
are equivalent:

(1) f preserves directed sups;
(2) f preserves sups of ideals.

Moreover, if L is a sup semilattice and f preserves finite sups, then (1) and (2)
are also equivalent to

(3) f preserves arbitrary sups.

A dual statement also holds for filtered infs, infs of filters, semilattices and
arbitrary infs.

Proof: Both conditions (1) and (2) imply the monotonicity of f . Then the
equivalence of (1) and (2) is clear from O-1.4 and O-1.5. Now suppose L is a
sup semilattice and f preserves finite sups. Let X ⊆ L have a sup in L . By the
method of O-1.5(3), we can replace X by a directed set F having the same sup.
Hence, if (1) holds, then f (sup X ) = sup f (F). But since f preserves finite
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Exercises 7

sups, it is clear that f (F) is constructed from f (X ) in the same way as F was
obtained from X . Thus, by another application of O-1.5(3), we conclude that
f (sup X ) = sup f (X ). That (3) implies (1) is obvious. �

Exercises

Exercise O-1.11. Let f : L → M be monotone on posets L and M , and let
X ⊆ L . Show that ↓ f (X ) = ↓ f (↓X ). �

Exercise O-1.12. Construct a net (x j ) j∈J with values in a poset such that for
all pairs i, j ∈ J there is a k ∈ J with xi ≤ xk and x j ≤ xk but such that (x j ) j∈J

is not directed.

Hint. Consider the lattice 2 = {0, 1}, let J = {0, 1, 2, . . .}, and let the net be
defined so that xi = 0 iff i is even. �

Exercise O-1.13. Modify O-1.10 so that for (3) we have only to assume that
f preserves nonempty finite sups. �

Exercise O-1.14. Is the category of preordered sets and monotone maps equiv-
alent to the category of posets and monotone maps? In these categories what
sort of functor is op? �

Exercise O-1.15. Let L be a poset, and let the I j for j ∈ J be ideals of L .
Prove the following.

(i)
⋂

j I j is an ideal of L iff
⋂

j I j �= Ø, for L a sup semilattice.
(ii) In general,

⋂
j I j is not necessarily an ideal of L , even if

⋂
j I j �= Ø.

Hint. Consider the semilattice and ideals in the following figure.
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8 O A Primer on Ordered Sets and Lattices

(iii) The intersection I1 ∩ I2 of two ideals I1, I2 is an ideal, for L a semilattice.
(iv) If L is directed,

⋃
j I j is contained in some ideal of L (however, even if

this is the case, there need not be a smallest ideal containing I1 ∪ I2) and
the converse holds if this is true for any two ideals I1, I2.

(v) Id L is a sup semilattice iff L is a sup semilattice.

Hint. If L is a sup semilattice, then I = ↓{a ∨ b: a ∈ I1, b ∈ I2} is the
sup of the ideals I1 and I2 of L . Conversely, if Id L is a sup semilattice,
then we claim there is a unique element c ∈ ↓a ∨ ↓b with a, b ≤ c. In-
deed, there is at least one since ↓a ∨ ↓b is directed; moreover, if c and
c1 were two such elements, then ↓c and ↓c1 would be two ideals of L
both containing a and b and both contained in ↓a ∨ ↓b. Hence ↓c =
↓c1 = ↓a ∨ ↓b.

(vi) Dual statements hold for Filt L , where one assumes L is a semilattice in
part (v). �

Exercise O-1.16. Let L be a preordered set, and let L denote the family of all
nonempty lower sets of L . Prove the following.

(i) Id L ⊆ L and L is a sup semilattice.
(ii) If L is a poset, then the map x �→ ↓x : L → L is an isomorphism of L

onto the family of principal lower sets of L .
(iii) If L is a filtered poset, then L is a lattice with respect to intersection and

union.
(iv) Let L and M be semilattices, f : L → M be a function, and L and M be

the lattices of nonempty lower sets. Let f∗ = (A �→ ↓ f (A)):L → M.
Then f is a semilattice morphism iff f∗ is a lattice morphism. �

Old notes

The notion of a directed set goes back to the work of [Moore and Smith, 1922],
where they use directed sets and nets to determine topologies. A convenient
survey of this theory is provided in Chapter 2 of [Kelley, b1955]; we shall utilize
this approach in our treatment of topologies on lattices, especially in Chapters II
and III of this work. Thematerial in this section is basic and elementary; a guide
to additional reading – if more background is needed – is provided in the notes
for Section O-2.

O-2 Completeness Conditions for Lattices and Posets

No excuse need be given for studying complete lattices, because they arise so
frequently in practice. Perhaps the best infinite example (aside from the lattice
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O-2 Completeness Conditions for Lattices and Posets 9

of all subsets of a set) is the unit interval I = [0, 1]. Many more examples will
be found in this text – especially involving nontotally ordered lattices.

Definition O-2.1. (i) A poset is said to be complete with respect to directed
sets (shorter: directed complete or also up-complete) if every directed subset
has a sup. A directed complete poset is called a dcpo for short. A dcpo

with a least element is called a pointed dcpo, or a dcpo with zero 0 or with
bottom ⊥.

(ii) A poset which is a semilattice and directed complete will be called a
directed complete semilattice.

(iii) A complete lattice is a poset in which every subset has a sup and an inf.
A totally ordered complete lattice is called a complete chain.

(iv) A poset is called a complete semilattice iff every nonempty (!) subset
has an inf and every directed subset has a sup.

(v) A poset is called bounded complete, if every subset that is bounded above
has a least upper bound. In particular, a bounded complete poset has a smallest
element, the least upper bound of the empty set. �

We advise the reader to keep in mind that “up-complete poset” and “dcpo”
are completely synonymous expressions; this advice is appropriate since the
second terminology has become prevalent in the theoretical computer science
community and since we use it in this book. We observe in the following that
a poset is a complete lattice iff it is both a dcpo and a sup semilattice with a
smallest element. In the exercises for this section we comment further on the
relation of the concepts we have just introduced.

Proposition O-2.2. Let L be a poset.

(i) For L to be a complete lattice it is sufficient to assume the existence of
arbitrary sups (or the existence of arbitrary infs).

(ii) For L to be a complete lattice it is sufficient to assume the existence of
sups of finite sets and of directed sets (or the existence of finite infs and
filtered infs).

(iii) If L is a unital semilattice, then for completeness it is sufficient to assume
the existence of filtered infs.

(iv) L is a complete semilattice iff L is a bounded complete dcpo.

Proof: For (i) we observe that the existence of arbitrary sups implies the exis-
tence of arbitrary infs. Let X ⊆ L and let

B =
⋂

{↓x : x ∈ X}
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10 O A Primer on Ordered Sets and Lattices

be the set of lower bounds of X . (If X is empty, we take B = L .) We wish to
show that

sup B = inf X.

If x ∈ X , then x is an upper bound of B; whence, sup B ≤ x . This proves that
sup B ∈ B; as it clearly is the maximal element of B, this also proves that X
has a greatest lower bound. (There is obviously a dual argument assuming infs
exist.)

For (ii) we first observe by Remark O-1.5 that the existence of finite sups and
of directed sups implies the existence of arbitrary sups and then apply part (i).

For (iii), since the existence of finite infs is being assumed, the existence of
all infs follows from (the dual of) (ii).

For a proof of (iv) if L is a complete semilattice and A ⊆ L is bounded
above, then the set of upper bounds has a greatest lower bound which will be
the least upper bound of A. Conversely, for a bounded complete dcpo L and
Ø �= A ⊆ L the 0 is contained in the set B of lower bounds of A. Any member
of A is an upper bound of B and hence B has a least upper bound which is the
greatest lower bound of A. �

Many subsets of complete lattices are again complete lattices (with respect to the
restricted partial ordering). Obviously, if we assume thatM ⊆ L is closed under
arbitrary sups and infs of the complete lattice L , then M is itself a complete
lattice. But this is a very strong assumption on M . In view of O-2.2, if we
assume only that M is closed under the sups of L , then M is a complete lattice
(in itself as a poset). The well-worn example is with L equal to all subsets of a
topological space X and with M the lattice of open subsets of X . This example
is instructive because in general M is not closed under the infs of L (open sets
are not closed under the formation of infinite intersections). Thus the infs of
M (as a complete lattice) are not the infs of L . (Exercise: What is the simple
topological definition of the infs of M?)

An even more general construction of subsets which form complete lattices
is provided by the next theorem from [Tarski, 1955]. This theorem is of great
interest in itself, as it implies that everymonotone self-map on a complete lattice
has a greatest fixed-point and a least fixed-point.

Theorem O-2.3. (The Tarski Fixed-Point Theorem) Let f : L → L be a
monotone self-map on a complete lattice L. Then the set fix( f ) = {x ∈ L :
x = f (x)} of fixed-points of f forms a complete lattice in itself. In particular,
f has a least and a greatest fixed-point. �
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