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1

The Lefschetz Theorem on Hyperplane Sections

This chapter is devoted to a presentation of Morse theory on affine varieties,
and its application to the proof of the famous Lefschetz theorem on hyperplane
sections, which is the following statement.

Theorem1.1 Let X be a projective n-dimensional variety, and let j: Y ↪→ X
be a hyperplane section such that U= X − Y is smooth. Then the restric-
tion map

j ∗ : Hk(X, Z) → Hk(Y, Z)

is an isomorphism for k< n− 1 and is injective for k= n− 1.

This Lefschetz theorem follows from the vanishing of the cohomology with
compact support in degree> n of a smoothn-dimensional affine variety. Thus,
most of this chapter concerns the study of the topology of affine varieties; the
most general result we present is the following (see Andreotti & Frankel 1959;
Milnor 1963).

Theorem 1.2 A smooth affine variety X of (complex) dimension n has the
homotopy type of a CW-complex of (real) dimension≤ n.

This statement is obtained by applying the results of Morse theory to the square
of the distance functionh0(x) = d(x, 0)2 on X, where the metric is deduced
from a Hermitian metric on the ambient space. The essential point is the fol-
lowing result.

Proposition 1.3 The Morse index of the function h0 at a non-degenerate
critical point is at most equal to n.

19



20 1 The Lefschetz Theorem on Hyperplane Sections

Theorem 1.2 then follows from this proposition and the following basic theo-
rem of Morse theory.

Theorem 1.4 If f : X → R is a Morse function, andλ is a critical value
corresponding to a unique critical point of index r, then the level set Xf≤λ+ε

has the homotopy type of the union of the level set Xf≤λ−ε with a ball Br .

We give an introduction to Morse theory in the first section of this chapter, and
this theorem is proved there. In the second section, we study the case of the
square of the distance function on affine varieties, and deduce the Lefschetz
theorem on hyperplanesections. Finally, in the last section, we give another
proof of this result using Hodge theory and the vanishing theorems. This proof
gives the result for rational cohomology under the hypothesis thatY andX are
smooth.

1.1 Morse theory

1.1.1 Morse’s lemma

Let X be a differentiable variety, and letf be a differentiable function on
X. Assume that everything isC∞, although in fact the result still holds under
weaker hypotheses. We say that 0∈ X is a critical point of f if d f (0)= 0. The
value f (0) ∈ R is then called a critical value off .

Let x1, . . ., xn be local coordinates onX centred at 0. The vector fields∂
∂xi

for i = 1, . . .,n give a basis ofTX,x for everyx in a neighbourhood of 0.

Definition 1.5 The Hessian of f at the point0 is the bilinear form on TX,0

defined by

Hess0 f

(
∂

∂xi
,

∂

∂xj

)
=

(
∂2 f

∂xi ∂xj

)
(0).

The formula for the derivatives of a composition of maps (the chain rule) shows
immediately that Hess0 f does not depend on the choice of coordinates, since
0 is a critical point of f . Moreover, the symmetry of partial derivatives shows
that Hess0 f is symmetric.

Definition 1.6 We say that0 ∈ X is a non-degenerate critical point of f if
the quadratic (or symmetric bilinear) formHess0 f on TX,0 is non-degenerate.
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Such a quadratic formQ can be diagonalised in a suitable basisu1, . . .,un of
TX,0, i.e. there is a basis such that

Q(ui ,u j ) = δi j εi

with εi = ±1.

Definition 1.7 The Morse index of f at0, written ind0 f , is the index of the
quadratic formHess0 f , i.e. the number ofεi equal to−1 in any diagonalisation
as above.

The non-degenerate critical points are classified by their index up to diffeomor-
phism, as shown in the following proposition.

Proposition 1.8 (Morse’s lemma)If 0 is a non-degenerate critical point of a
function f , then in a neighbourhood of0, there exist coordinates x1, . . ., xn
centred at0 such that for x= (x1, . . ., xn), we have

f (x) = f (0)−
r∑

i=1

x2
i +

n∑
i=r+1

x2
i

with r = ind0 f .

The following result is a first corollary of proposition 1.8.

Corollary 1.9 If 0 is a non-degenerate critical point of f , then0 is an isolated
critical point of f , and f(0) is an isolated critical value of f restricted to a
neighbourhood of0.

This corollary also follows immediately from the fact thatHess0 f canbeviewed
as the differential of the mapχ defined (using coordinates) by

x 
→ χ (x) = d fx ∈ (Rn)∗.

If this differential is an isomorphism, i.e. when the Hessian is non-degenerate,
the local inversion theorem shows that in a neighbourhood of 0, the setχ−1(0)
of critical points of f is reduced to{0}.

Proof of proposition 1.8 We proceed by induction onn. If n > 0, then clearly
we can find a hypersurfaceY ⊂ X passing through 0, defined in the neigh-
bourhood of 0, and smooth at 0, such thatf|Y admits 0 as a non-degenerate
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critical point. Indeed, for this last condition to be satisfied, it suffices that the
non-degenerate quadratic form Hess0 f remain non-degenerate on the hyper-
planeTY,0 ⊂ TX,0. By hypothesis, there thus exist coordinatesx1, . . ., xn−1 on
Y such that forx = (x1, . . ., xn−1) ∈ Y, we have

f (x) = f (0)−
r ′∑
i=1

x2
i +

n−1∑
i=r ′+1

x2
i

with r ′ = ind0 f|Y. (Herer ′ can be equal tor or r − 1.) The functionsxi can be
extended to functions also calledxi on X. The function

f − f (0)−
(
−

r ′∑
i=1

x2
i +

n−1∑
i=r ′+1

x2
i

)

on X is thusC∞, and vanishes alongY.
Hadamard’s lemma then shows that ift is an equation definingY, there exists

aC∞ functiong such that

f − f (0)−
(
−

r ′∑
i=1

x2
i +

n−1∑
i=r ′+1

x2
i

)
= tg.

The fact that 0 is a non-degenerate critical point off is then expressed by the
fact that the functiong vanishes at 0 and has non-zero differential at 0.

Lemma 1.10 If g(0)= 0, and if the functions x1, . . ., xn−1, t give a system of
coordinates centred at0, then there existC∞ functionsαi , i = 1. . .,n− 1 and
φ such that

g(x1, . . ., xn−1, t) = 2
n−1∑
i=1

xiαi + tφ.

Temporarily admitting this lemma, let us now set

x′i = xi + εiαi t

for i ≤ n− 1, whereεi is equal to−1 for i ≤ r ′ and to 1 otherwise. Then for
x = (xi , t), we have

f (x) = f (0)−
r ′∑
i=1

x′2i +
n−1∑

i=r ′+1

x′2i + t2ψ,

whereψ is aC∞ function. The fact that 0 is a non-degenerate critical point of
f then immediately implies thatψ(0) �= 0, so in a neighbourhood of 0, we
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can writet2ψ = ±(x′n)
2. Clearly thex′i form a system of coordinates onX

centred at 0 in whichf has the desired expression (possibly after permuting
the coordinates).

Proof of lemma 1.10 We show it by induction, applying Hadamard’s lemma.
The lemma holds onY by the induction hypothesis, so there existC∞ functions
αi onX such thatg−2

∑n−1
i=1 xiαi vanishes onY. Then, by Hadamard’s lemma,

we have

g = 2
n−1∑
i=1

xiαi + tφ.

Now let X be a topological space, andf : X → R a continuous function.

Definition 1.11 We say that f is an exhaustion function if for every element
M ∈ R, the closed subset f−1(]−∞, M ]) ⊂ X is compact.

Such a map is in particular proper, and the fibresXa := f −1(a) are compact.
In what follows, we will writeX≤M for the subsetf −1(]−∞, M ]) for every
M ∈ R, andX[M1,M2] for the subsetf −1([M1, M2]), whereM1 ≤ M2 ∈ R.
These sets are called level sets.

If f is a differentiable exhaustion function having only non-degenerate crit-
ical points, then every critical value corresponds to a finite number of criti-
cal points, and the set of critical values is discrete by corollary 1.9. In par-
ticular, there exists only a finite number of critical values in each interval
]−∞, M ], M ∈ R.

Such a function is called a Morse function. We sometimes require that every
fibre Xλ have at most one critical point, and that the indicesr (λ) for a critical
valueλ increase withλ.

1.1.2 Local study of the level sets

Let us consider the function

f (x) = −
r∑

i=1

x2
i +

n∑
i=r+1

x2
i

defined onRn. Let Bη denote the ball of radiusη centred at 0. LetBr
ε ⊂ Rn
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andSr−1
ε ⊂ Rn denote the ball and the sphere defined by

Br
ε :=

{
(x1, . . ., xn) ∈ Bη

∣∣∣∣ xi = 0, i > r,
∑
i≤r

x2
i ≤ ε

}
⊂ Rn

≤ε,

(1.1)

Sr−1
ε :=

{
(x1, . . ., xn) ∈ Bη

∣∣∣∣ xi = 0, i > r,
∑
i≤r

x2
i = ε

}
⊂ Rn

≤−ε .

We easily see that forε ≤ η2, Br
ε < Bη, for ε = η2, we have

Sr−1
ε = ∂Br

ε = Bη
≤−ε .

Let B denote the ball of radius
√

2ε in Rn, andS its boundary, the sphere of
radius

√
2ε in Rn. We propose to show the following result.

Proposition 1.12 There exists a retraction by deformation of B≤ε onto the
union B≤−ε ∪Sr−1

ε
Br

ε , which induces a retraction by deformation of S≤ε onto
S≤−ε .

More precisely, we will exhibit a homotopy

(Ht )t∈[0,1] : B≤ε → B≤ε

such that

(i) H1 = Id, Ht = Id on B≤−ε

⋃
Sr−1
ε

Br
ε .

(ii) H0 has values inB≤−ε

⋃
Sr−1
ε

Br
ε .

(iii) On S[−ε,ε] , the homotopyHt is given by a trivialisation of the fibration
f : S[−ε,ε] → [−ε, ε], i.e. a diffeomorphism

C = (C0, f ) : S[−ε,ε]
∼= S−ε × [−ε, ε],

and by the retraction by deformationK ′
t of the segment [−ε, ε] onto the

point−ε given byK ′
t (α) = −(1− t)ε + tα.

We have the following lemma.

Lemma 1.13 For ε = η2, there exists a homotopy

(Rt )t∈[0,1] : Bη
≤ε → Bη

≤ε

such that R1 = Id, and Rt is the identity on the ball Brε defined in (1.1). Finally,
Im R0 is contained in the ball Brε , so R0 is a retraction onto Brε .

Note that asBη
≤−ε = Sr−1

ε , the above homotopy is the identity on the level
subsetBη

≤−ε .
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Proof Writing x = (X1, X2)with X1 = (x1, . . ., xr ) andX2 = (xr+1, . . ., xn),
consider the mapRt : Bη → Bη given by

Rt (x) = (X1, t X2).

Wewill nowshow that up to increasing the radius of the ball, we can construct
a retraction by deformation as above, which moreover preserves the boundary.
Let us return to the ballB of radius

√
2ε in Rn, and its boundaryS, the sphere

of radius
√

2ε in Rn.

Lemma 1.14 The restriction of the map f to S does not admit any critical
pointsin the set

S[−ε,ε] := {x ∈ S | −ε ≤ f (x) ≤ ε}.

Proof A critical point of f in S is such that the functionsf = − f1 + f2
and‖ ‖2 = f1 + f2 have proportional differentials, wheref1(x) = ‖X1‖2 and
f2(x) = ‖X2‖2. This implies thatd f1 andd f2 are proportional, and clearly this
is not possible unlessd f1 or d f2 = 0. But then f1 or f2 = 0, so| f | = ‖ ‖2.
Now, this is impossible onS[−ε,ε] , since onS, we have‖ ‖2 = 2ε.

By Ehresmann’s theorem (see vI, prop. 9.3), there exists a trivialisation

C = (C0, f ) : S[−ε,ε]
∼= S−ε × [−ε, ε],

whereC0 : S[−ε,ε] → S−ε is a differentiable map which induces a diffeomor-
phismSt ∼= S−ε for everyt ∈ [−ε, ε].

In fact, it is easy to explicitly produce such a trivialisation. With notation as
above, we take

C0(x) = (α(x)X1, β(x)X2),

where the positive functionsα, β must satisfy the following conditions:

α2 f1 + β2 f2 = 2ε,
(1.2)

−α2 f1 + β2 f2 = −ε.

The conditions (1.2) simply state thatC0(x) ∈ Sand f (C0(x)) = −ε. It is easy
to see that the equations (1.2) have unique solutions inS[−ε,ε] .

Using the above trivialisation, we construct a retraction by deformation
(Kt )t∈[0,1] of S[−ε,ε] ontoS−ε , compatible withf . This means thatKt induces
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the identity onS−ε for every t , K1 = Id, and the image ofK0 is contained
in S−ε . (The compatibility condition also says thatKt (Sα) ⊂ SK ′

t (α) for a cer-
tain retraction by deformationK ′

t of the segment [−ε, ε] onto the pointε.) We
simply set

Kt = C−1 ◦ (C0, (1− t)(−ε)+ t f ).

In other words, in the trivialisationC, Kt is induced by the affine retractionK ′
t

of the segment [−ε, ε] onto the point−ε : K ′
t (u) = (1− t)(−ε)+ tu. Note that

Kt is of the form

Kt (x) = (αt (x)X1, βt (x)X2), (1.3)

where the positive functionsαt , βt for t ∈ [0, 1] are determined by the
conditions

α2
t f1 + β2

t f2 = 2ε,

−α2
t f1 + β2

t f2 = (1− t)(−ε)+ t f.

Proof of proposition 1.12 We construct the homotopyHt by settingHt = Rt

in the ballBη of radius
√

ε, andHt = Kt onS[−ε,ε] . We then look forHt of the
form

Ht (x) = (α′
t (x)X1, β

′
t (x)X2)

in B[−ε,ε] , where the functionsα′
t , β ′

t now satisfy the conditions

α′
t
2 f1 + β ′

t
2 f2 ≤ 2ε, −ε ≤ −α′

t
2 f1 + β ′

t
2 f2 ≤ (− f1 + f2), (1.4)

i.e. Ht (x) ∈ B, f (Ht (x)) ≤ f (x), and must coincide withαt , βt of (1.3) on
S[−ε,ε] and with 1, t in Bη

≤ε . We setHt = Id in B≤−ε .
It is easy to check that we can construct such a pair (α′

t , β
′
t ), which also

satisfies the conditions

Im H0 ⊂ B≤−ε ∪ Br
ε

and

Ht |B−ε∪Sr−1
ε

Br
ε
= Id,

already satisfied inBη andS[−ε,ε] .
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1.1.3 Globalisation

Now letX beadifferentiablevariety, andf : X → Radifferentiableexhaustion
function. Letλ be a critical value, and letε > 0 be such thatλ is the only critical
value of f in [λ − ε, λ + ε]. Let 0i , i = 1, . . ., r be the critical points off on
Xλ, and letri be their Morse indices. The local analysis above, together with
proposition 1.8, allows us to prove the following theorem.

Theorem 1.15 There exists a retraction by deformation of the level set X≤λ+ε

onto the union of X≤λ−ε with ri -dimensional balls Bri glued on X≤λ−ε along
their boundaries, which are disjoint(ri − 1)-dimensional spheres Sri−1.

Proof As f is a fibration over [λ−ε, λ[ and ]λ, λ+ε], Ehresmann’s theorem
shows that it suffices to prove the theorem for very smallε. Morse’s lemma
then shows that in the neighbourhood of each 0i , there exists a ballBi in
which f can be written as in the preceding subsection withr = ri . We may
of course assume that these balls are disjoint. By the preceding subsection,
in each of these ballsBi , we now have a retraction by deformationHi

t of
Bi
≤λ+ε onto Bi

≤λ−ε ∪S
ri −1
ε

Bri
ε , which has the property of being induced by

a trivialisation of the fibrationf in the neighbourhood ofSi[λ−ε,λ+ε] , where
Si = ∂Bi , and by the affine retraction of the segment [λ − ε, λ + ε] onto the
point λ − ε. But since over the segment [λ − ε, λ + ε], the restriction of f
to X − ⋃

i B
i
0 is a fibration of manifolds with boundary (whereBi

0 denotes
the interior ofBi ), the trivialisations of the fibrationf in the neighbourhood
of Si[λ−ε,λ+ε] extend to a trivialisation of the fibrationf on X − ⋃

i B
i
0 over

[λ− ε, λ+ ε]:

C = (C0, f ) :
(
X −

⋃
i
Bi

0

)
[λ−ε,λ+ε]

∼=
(
X −

⋃
i
Bi

0

)
λ−ε

× [λ− ε, λ+ ε].

The (Hi
t )|Si = K i

t then extend to a retraction by deformation of
(X−⋃

i B
i
0)[λ−ε,λ+ε] onto (X−⋃

i B
i
0)λ−ε , given in the trivialisation above by

Ht (x) = (C0(x), K
′
t ( f (x))).

Clearly,Ht can be glued together with theHi
t in Bi and with Id inX≤λ−ε , which

yields the desired retraction by deformation.
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1.2 Application to affine varieties

1.2.1 Index of the square of the distance function

Definition 1.16 A (smooth) affine variety is a (smooth) closed analytic sub-
variety ofCN for some integer N.

Let X be such a smooth, connected variety and letn denote its complex dimen-
sion. If h is a Hermitian metric onCN and 0∈ CN , we obtain aC∞ function
f0 : X → R by setting f0(x) = h(

−→
0x ).

More generally, we can define such a ‘square of the distance’ function for any
differentiable subvarietyX of a Euclidean spaceRN . First consider the general
situation.Obviously, f is always an exhaustion function.

Lemma 1.17 Let X⊂ RN be a differentiable subvariety. Then for a general
point0 of RN, the corresponding function f0 is a Morse function.

Proof We haved f0,x(u) = 2〈−→0x ,u〉 for u ∈ TX,x. Thus,x is a critical point
of f when

−→
0x is orthogonal toTX,x. Let Z ⊂ X × RN be the set

Z = {(x, 0) ∈ X × RN | −→0x ⊥ TX,x}.

Clearly, we have dimZ = N. The second projectionπ : Z → RN is thus
submersive at a point if and only if it is immersive at that point.

Lemma 1.18 Let (x, 0) ∈ Z, and let u ∈ TX,x. Then the tangent vector
(u, 0) ∈ TX,x × TRN ,0 lies in TZ,(x,0) if and only if u∈ TX,x lies in the kernel of
the quadratic formHessx f0.

Admitting this lemma, we see that the set of points 0 for which the functionf0
admits a degenerate critical point is the image underπ of the set of points of
Z whereπ is not an immersion, so not a submersion. By Sard’s lemma (see
Rudin 1966), this set has empty interior.

Proof of lemma1.18 The subsetZ is defined inX × RN as the vanishing
locus of the sectionσ of the vector bundle pr∗1�X given by

σ(x,0) = 〈−→0x , ·〉 = d f0,x.
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Taking local coordinatesxi on X, σ can be written

∑
i

∂ f0
∂xi

dxi .

The tangent space toZ at (x, 0) is thus described by

TZ,(x,0) =
{
(u,w) ∈ TX,x × TRN ,0

∣∣∣∣du ∂ f0
∂xi

+ dw
∂ f0
∂xi

= 0, ∀i
}

.

Writing u = ∑
i ui

∂
∂xi

, the first term is equal to
∑

j u j
∂2 f0

∂xi ∂x j
. Thus, the vector

(u, 0) lies inTZ,(x,0) if and only if we have
∑

j u j
∂2 f0

∂xi ∂x j
= 0 for everyi , which

means by definition thatu lies in the kernel of Hessx f0.

Let us now return to the case whereX is ann-dimensional complex analytic
subvariety ofCN , and the metric is Hermitian.

Proposition 1.19 The index of the function f= f0 is less than or equal to n
at every critical point of f .

Proof Let us introduce the second fundamental form

� : S2TX,x → CN/TX,x,

which can be defined as the differential of the Gauss map

X → Grass(n, N), x 
→ TX,x.

By definition, �(u, v) can be computed as follows. LetV be a vector field
on X defined in the neighbourhood ofx, and whose value atx is v. Then, as
TX ⊂ (TCN )|X, we can seeV as a map with values inCN , and set

�(u, v) = duV mod TX,x.

One knows that this depends only on the vectorv and not on the vector fieldV ;
see vI, lemma 10.7.

Let h be the Hermitian form, andQ = � h = 〈 , 〉 the corresponding
Euclidean scalar product. The formula

d fx(u) = 2〈−→0x ,u〉, u ∈ TX,x

shows immediately by differentiation that for a critical pointx of f , we have

Hessx f (u, v) = 2(〈−→0x , �(u, v)〉 + 〈u, v〉).
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To diagonalise Hessx f , it thus suffices to diagonalise the quadratic form

Q(u, v) = 〈−→0x , �(u, v)〉

in an orthonormal basis for〈 , 〉. But sinceX is a complex subvariety ofCN ,
the second fundamental form� is C-bilinear for the complex structures on
TX,x andCN/TX,x, so thatQ is the real part of theC-bilinear symmetric form
H (u, v) = h(�(u, v),

−→
0x ) onTX,x

∼= Cn ⊂ CN .

Lemma 1.20 Let H be aC-bilinear symmetric form onCn, and let〈 , 〉 = � h
be the Euclidean product associated to a Hermitian form onCn. Then the
eigenvalues of the form Q= � H with respect to the Euclidean form constitute
a set which is stable under the involutionλ 
→ −λ (including multiplicities).

Admitting this lemma, we conclude that the eigenvalues of Hessx f with
respect to theEuclideanmetric areof the form2(1+λi ), 2(1−λi ), i = 1, . . .,n.
Thus, at mostn of these eigenvalues are negative.

Proof of lemma 1.20 The formH , and thus also the formQ = � H , are
multiplied by−1 under the automorphismof Cn induced by multiplication by
i (which is unitary). Thus, the set of eigenvalues is stable under multiplication
by−1. The statement concerning the multiplicities follows easily, since every
form Q = � H is a specialisation of a form of the type� H with distinct
eigenvalues.

Definition 1.21 A compact CW-complex is a topological space which can be
written as a finite union of closed ‘cells’ homeomorphic to closed balls ofRk.
The largest integer k appearing in this cellular decomposition is called the
dimension of the CW-complex.

We define a CW-complex as a topological space which is the countable union
of increasing open setsUi such that the closureUi is a compact CW-complex.
The following result is a consequence of theorem 1.15 and proposition 1.19
(see Andreotti & Frankel 1959; Milnor 1963).

Theorem 1.22 An affine variety X of complex dimension n has the homotopy
type of a CW-complex of real dimension≤ n.

Proof Let X ⊂ CN , and take a Morse function onX of the formh0(x) =
d(x, 0)2, for a Hermitian metric onCN . ThenX can be written as the countable
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union of the interiorsX0
k of the level setsXk = {x ∈ X | h0(x) ≤ k}, and

assuming that the integersk are not critical values, theorem1.15 andproposition
1.19 show that each level setXk+1 has the homotopy type of the union ofXk

with a finite number of balls of dimension≤ k.

1.2.2 Lefschetz theorem on hyperplane sections

LetX beasmooth complexprojective variety, andY
j

↪→ X asmoothhyperplane
section. The cohomology class [Y] ∈ H2(X, Z) is equal toh := c1(OX(1)) (see
vI, Thm 11.33). Let us first show that we have the identity

j ∗ ◦ j∗ = hY∪ : Hk(Y, Z) → Hk+2(Y, Z), (1.5)

wherehY := h|Y = [Y]|Y.
This formula follows immediately from the description of the Gysin mor-

phism j∗ as the compositionk∗ ◦ (∪ηY) ◦ π∗, where

T
π ��

k

��

Y

X

is an open tubular neighbourhood ofY in X, andηY ∈ H2
c (T, Z) is the coho-

mology class with compact support ofY in T . Indeed, forgetting the torsion we
know that the Gysin morphismj∗ : Hk(Y, Z) → Hk+2(X, Z) is the Poincar´e
dual of the restriction morphism

j ∗ : H2n−k−2(X, Z) → H2n−k−2(Y, Z).

Passing to real coefficients, we must check that for a closedk-form β onY and
a closed (2n− k− 2)-formα on X, we have∫

Y
β ∧ j ∗α =

∫
X

η̃Y ∧ π∗β ∧ α.

Here, the form ˜ηY is a de Rham representative ofηY: it is a closed 2-form with
support inT such thatπ∗η̃Y = 1Y (see vI.11.1.2). The form ˜ηY ∧ π∗β onT is
extended toX by 0, and thus the right-hand term is equal to

∫
T η̃Y ∧ π∗β ∧ α.

Now, asT can be retracted by deformation ontoY by π , there exists a closed
(2n− k− 2)-formα′ onY and a (2n− k− 3)-formα′′ onT such that

α|T = π∗α′ + dα′′.
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But then, applying Stokes and the fact thatπ∗η̃Y = 1Y, we find∫
T

η̃Y ∧ π∗β ∧ α =
∫
T

η̃Y ∧ π∗β ∧ π∗α′

=
∫
Y

β ∧ α′ =
∫
Y

β ∧ j ∗α,

which proves the equalityj∗ = k∗ ◦ (∪ηY) ◦ π∗.
As hY is a Kähler class, we can now apply the hard Lefschetz theorem (vI,

Thm 6.25) to conclude that:

The cup-product

∪hY : Hk(Y, Q) → Hk+2(Y, Q)

is injective for k< n− 1 := dimY and surjective for k+ 2 > n− 1= dimY.

As∪hY = j ∗ ◦ j∗, it follows that

j∗ : Hk(Y, Q) → Hk+2(X, Q)

is injective fork < n− 1 and

j ∗ : Hk(X, Q) → Hk(Y, Q)

is surjective fork > n− 1.
Moreover, we also have the equality

j∗ ◦ j ∗ = [Y]∪ = h∪ : Hk(X, Z) → Hk+2(X, Z), (1.6)

which can be proved by the same argument as above.
Applying the Lefschetz theorem cited above toX, we conclude thath∪ =

j ∗ ◦ j∗ is injective onHk(X, Q) for k < n = dimX, which implies that

j ∗ : Hk(X, Q) → Hk(Y, Q)

is injective fork < n = dimX.
Wewill nowuse the topological analysisdeveloped in theprecedingsection to

obtain a much stronger statement, namely the Lefschetz theorem on hyperplane
sections.

Theorem 1.23 Let X ⊂ PN be a (not necessarily smooth) n-dimensional
algebraic subvariety, and let Y= PN−1 ∩ X be a hyperplane section such that
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U := X − Y is smooth and n-dimensional. Then the restriction morphism

j ∗ : Hk(X, Z) → Hk(Y, Z)

is an isomorphism for k< n− 1 and is injective for k= n− 1.

Proof Letusadmit the fact,which isprovedusing triangulations, thatY admits
a fundamental system of neighbourhoodsYi in X which can be retracted by
deformation ontoY. It follows that

Hk(X,Y, Z) ∼= lim→ Hk(X,Yi , Z). (1.7)

By excision, we also obtain isomorphisms

Hk(X,Yi , Z) ∼= Hk(U,Yi ∩U, Z).

But sinceU is an oriented differentiable 2n-dimensional variety, Poincar´e dual-
itygivesan isomorphism(which is canonical, dependingonlyon theorientation)

Hk(U,U − K , Z) ∼= H2n−k(K , Z) (1.8)

for every compact setK ⊂ U having the property thatK is the retraction by
deformation of an open set ofU (see Spanier 1996, 6.2).

If we now apply the Poincar´e duality (1.8) toKi := U − Yi ∩U , we obtain
an isomorphism

Hk(X,Y, Z) ∼= lim→ Hk(U,Yi ∩U, Z) ∼= lim→ H2n−k(Ki , Z).

Since every singular chain is contained in one of the compact setsKi ⊂ U , it
is clear that we have

H2n−k(U, Z) = lim→ H2n−k(Ki , Z).

In conclusion, we have a natural isomorphism

Hk(X,Y, Z) ∼= H2n−k(U, Z). (1.9)

Returning to our proof, we consider the long exact sequence of relative
cohomology of the pair (X,Y):

· · · → Hk(X,Y, Z) → Hk(X, Z) → Hk(Y, Z) → Hk+1(X,Y, Z) → · · ·.
It follows that theorem 1.23 is equivalent to the vanishing of the groups
Hk(X,Y, Z) for k ≤ n − 1 = dimY. Applying the isomorphism (1.9), this
is equivalent to the vanishing of the groupsHk(U, Z) for k ≥ n+ 1.
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Now, U is an affine variety embedded inCN . Let us equipCN with a
Hermitianmetric, and let 0∈ CN besuch that the functionf0 is aMorse function
onU .U can be written as the union of the increasing level setsU≤M , M ∈ Z,
with U≤−1 = ∅. It follows immediately that

Hk(U, Z) = lim−−−−→M→∞
Hk(U≤M , Z),

and it suffices to show that for every level setU≤M , we have

Hk(U≤M , Z) = 0 for k > n.

But this follows immediately, by induction onM , from theorem 1.15 and propo-
sition 1.19. Indeed, assuming for simplicity thatM andM + 1 are not critical
values of f0, there exists a finite number of critical valuesλi of the function f0
contained betweenM andM + 1, i.e.

M < λ1 < · · · < λi < · · · λk < M + 1.

For 1≤ i ≤ k−1, let us chooseλ′i ∈ ]λi , λi+1[, and setM = λ′0, M + 1= λ′k.
Thenby theorem 1.15, each level setU≤λ′i has the homotopy type of the union
of U≤λ′i−1

with ballsB
r j
i, j of dimensionr j equal to the index of the critical point

xi, j of critical valueλi , glued along their boundaryS
r j−1
i, j . By proposition 1.19,

all of these indices are at most equal ton. Thus, for each of these balls, we have

Hk(B, S, Z) = 0 for k > n,

which by excision implies that

Hk(U≤M+1,U≤M , Z) = 0 for k > n.

Thus, by the longexact sequenceof relativehomologyof thepair (UM+1,UM ), if

Hk(U≤M , Z) = 0 for k > n,

then alsoHk(U≤M+1, Z) = 0 for k > n. AsU≤−1 = ∅, we thus have

Hk(U≤M , Z) = 0 for k > n

for everyM . This proves theorem 1.23.

1.2.3 Applications

Recall (see vI.7.2.1) that the cohomology of the projective spacePn is described
by Hi (Pn, Z) = 0 for oddi andH2i (Pn, Z) = Zhi , whereh = c1(OPn(1)) ∈
H2(Pn, Z).
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Moreover, using thedth Veronese embedding

�d : Pn → PN,

which is given by homogeneous polynomials of degreed, and which is such
that the pullback by�d of a linear form onPN is a polynomial of degreed
on Pn, we can consider a hypersurfaceX ⊂ Pn of degreed as an intersection
�d(Pn)∩PN−1. Thus, the following result for hypersurfaces of projective space
follows from theorem 1.23.

Corollary 1.24 Let X ⊂ Pn be a hypersurface. Then Hk(X, Z) = 0 for k
odd, k< dimX, and H2k(X, Z) = Zhk for 2k < dimX.

If moreoverX is smooth, then the next result follows from Poincar´e duality.

Corollary 1.25 Let X ⊂ Pn be a smooth hypersurface. Then Hk(X, Z) = 0
for k odd, k> dimX, and H2k(X, Z) = Zα for 2k > dimX, where the class
α has intersection with hn−1−k equal to1.

Remark 1.26 Let us take the case of a smooth hypersurface X inP4. The
preceding corollary shows that H2(X, Z) = H4(X, Z) is generated by the
unique classα such that〈α, h〉 = 1. If X contains a line, the homology class
of this line is thus equal toα. In general, if d:= degX > 5, then X does not
contain a line (at least if the equation of X is chosen generically). However,
a curve C= X ∩ P2 is of degree d and is thus of class dα. Kollár (1990)
showed that in general, for sufficiently large d, the classα is not the class of
an algebraic cycle, although dα is. This is one of the counterexamples to the
Hodge conjecture for integral cohomology.

Corollaries 1.24 and 1.25 can be generalised immediately to complete inter-
sections in projective space, by repeated applications of theorem 1.23.

A first application of corollary 1.24 concerns the computation of the Picard
group of complete intersections. Recall (see vI.4.3, vI.11.3) that ifX is a pro-
jective variety, then PicX is the group of isomorphism classes of algebraic line
bundles, or equivalently, of isomorphism classes of holomorphic line bundles,
or in the smooth case, of divisors modulo rational equivalence. The second
interpretation gives an identification (see vI.4.3) PicX ∼= H1(X,O∗

X,an), and
the exponential exact sequence gives the long exact sequence

H1(X, Z) → H1(X,OX) → Pic(X)
c1→ H2(X, Z).

If X is now a smooth complete intersection inPn such that dimX ≥ 3, then by
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corollary 1.24, we haveH1(X, Z) = 0, soH1(X,OX) = 0 by Hodge theory,
which shows thatH1(X,OX) is a quotient ofH1(X, C). Moreover, we have an
isomorphism

PicPn
c1∼= H2(Pn, Z) = Zh,

and corollary 1.24 gives a restrictionisomorphismH2(Pn, Z) ∼= H2(X, Z). The
next corollary follows immediately.

Corollary 1.27 If X is a smooth complete intersection of dimension≥ 3 in
Pn, thenPicX = ZOX(1).

In fact, using the arguments of the following section, we can show that under
the hypothesis dimX ≥ 2, the vanishing propertyH1(X,OX) = 0 holds even
whenX is not smooth, so that also corollary 1.27 holds even whenX is not
smooth.

1.3 Vanishing theorems and Lefschetz’ theorem

As observed by Kodaira and Spencer (see Shiffman & Sommese 1985), it is
possible to give a more ‘algebraic’ proof of the Lefschetz theorem 1.23, at least
for cohomology with rational coefficients.

For this, we use the following vanishing theorem due to Akizuki, Kodaira,
and Nakano (see Demailly 1996; Griffiths & Harris 1978). LetX be a complex
variety, and letL be a holomorphic line bundle onX. Recall thatL is said to be
positive if L can be equipped with a Hermitian metric whoseassociated Chern
form is positive (i.e. is a K¨ahler form). By the Kodaira embedding theorem (see
vI.7.1.3), this is equivalent to the fact thatL is ample, i.e. that the holomorphic
sections ofL⊗N for sufficiently largeN give an embedding

�NL : X ↪→ Pr .

Theorem 1.28 Let L → X be a positive line bundle, where X is compact.
Then for p+ q > n := dimX, we have

Hq
(
X, �

p
X(L)

) = 0.

Applying Serre duality (see vI.5.3.2) and noting that by the exterior product,(
�

p
X

)∗ ⊗ KX
∼= �

n−p
X ,
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we also obtain the following equivalent statement:under the same hypotheses,
we have

Hq
(
X, �

p
X(−L)

) = 0 for p+ q < n.

Here, the notationF(−L) meansF ⊗ (L−1), whereF denotes a coherent
sheaf onX.

This theorem yields the following version of the Lefschetz theorem.

Theorem 1.29 Let X be an n-dimensional compact complex variety, and let

Y
j

↪→ X be a smooth hypersurface such thatthe line bundleOX(Y) = (IY)∗ is
positive. Then for k< n− 1, the restriction

j ∗ : Hk(X, Q) → Hk(Y, Q)

is an isomorphism, and for k= n− 1, it is injective.

Remark 1.30 This statement is weaker than theorem 1.23. Indeed, note that
by definition Y is the zero locus of a sectionσY ofOX(Y), so NY is the divisor
of the sectionσ N

Y ofOX(NY). Under the preceding hypotheses, there exists an
embedding�NY of X intoPr such that the pullback of the linear forms gives
exactly the sections ofOX(NY). Thus, under the embedding�NY, Y ⊂ X is
the set-theoretic intersection of X with a hyperplane inPr . Thus, theorem 1.23
implies theorem 1.29. But the latter is strictly weaker, insofar as it deals only
with rational cohomology and smooth hypersurfaces.

Proof of theorem 1.29 By the change of coefficients theorem, we have
Hk(X, C) = Hk(X, Q) ⊗Q C, and a similar statement forY; thus it suffices
to prove this theorem for the cohomology with complex coefficients instead of
the rational cohomology. Now, under the hypotheses of the theorem,X andY
are Kähler (and even projective), and thus, from the Hodge decomposition for
X andY (see vI.6.1), we have

Hk(X, C) =
⊕

p+q=k
Hq

(
X, �

p
X

)
and

Hk(Y, C) =
⊕

p+q=k
Hq

(
Y, �

p
Y

)
with j ∗ = ⊕

p+q=k j ∗p,q, where j ∗p,q : Hq(X, �
p
X) → Hq(Y, �

p
Y) is the restric-

tion morphism induced by the morphism

j ∗p : �
p
X → j∗�

p
Y
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of coherent sheaves. Thus, it suffices to show thatj ∗p,q is an isomorphism for
p+ q < dimY and is injective forp+ q = dimY. Now, the morphismj ∗p is
the composition of the natural morphisms

�
p
X → �

p
X ⊗OY = j∗

(
�

p
X

∣∣
Y

)
(1.10)

and

�
p
X

∣∣
Y → �

p
Y (1.11)

(the latter should in fact be composed withj∗, which induces an isomorphism
in cohomology, and is thus usually omitted). It thus suffices to show that each of
the morphisms (1.10) and (1.11) induces an isomorphism on the cohomology
of degreeq for p+ q < n− 1= dimY, and an injection forp+ q = n− 1.

For this, we apply theorem 1.28 toX and toY. Let us first consider the case
of (1.10). We have the exact sequence

0→ �
p
X(−Y) → �

p
X → �

p
X

∣∣
Y → 0.

The associated long exact sequence and the vanishing propertyHq(X,

�
p
X(−Y)) = 0 for p+ q < dimX immediately imply that the arrow

Hq
(
X, �

p
X

) → Hq
(
Y, �

p
X

∣∣
Y

)
induced by (1.10) is an isomorphism forp+ q < dimY = dimX − 1 and is
injective for p+ q = dimY.

Moreover, we have the conormal exact sequence

0→ OY(−Y) → �X

∣∣
Y → �Y → 0

onY (see vI.3.3.3), where the identification ofOY(−Y) = IY ⊗ OY with the
conormal bundleN∗

Y/X is induced by the differentiald : IY → �X. Passing to
the pth exterior power, this exact sequence induces the exact sequence

0→ �
p−1
Y (−Y) → �

p
X

∣∣
Y → �

p
Y → 0.

The associated long exact sequence of cohomology and theorem 1.28 applied
toY thus show that the morphism

Hq
(
Y, �

p
X

∣∣
Y

) → Hq
(
Y, �

p
Y

)
induced by (1.11) is an isomorphism forp+ q < dimY, and is injective for
p+ q = dimY.
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Exercises

1. Morse theory and the Euler–Poincaré characteristic.Let X1 ⊂ X be
varieties with compact boundaries.
(a) Using the long exact sequence of relative cohomology, show that

χtop(X) = χtop(X1) + χtop(X, X1),

whereχtop(X) := ∑
i (−1)i bi (X) andχtop(X, X1) := ∑

i (−1)i

dimHi (X, X1).
Now let X be a compact differentiable variety, and letf : X → R be a
Morse function.
(b) Let x ∈ X be a critical point off of indexi . Show that forε > 0, the

level setsX≤ f (x)±ε satisfy

χtop
(
X≤ f (x)+ε

) = χtop
(
X≤ f (x)−ε

) + (−1)i .

(c) Deduce the formula

χtop(X) =
∑
i

(−1)i Ni ,

whereNi is the number of critical points of indexi .
2. Subvarieties with ample normal bundle and Lefschetz theorems.Let X be

ann-dimensional smooth projective variety andE a holomorphic vector
bundle of rankr on X. We say thatE is ample if the invertible bundle
OP(E∗)(1) is ample on the projective bundleP(E∗)

π→ X. Thus,
h := c1(OP(E∗)(1)) is a Kähler class onP(E∗). Recall (see vI.11.2) that
the Chern classesci (E∗) are characterisedby the relation

hr +
∑

0<i≤r
π∗ci (E∗)hr−i = 0 in H2r (P(E∗), Z).

(a) Deduce from the hard Lefschetz theorem applied toP(E∗) that if E
is ample, then the map

∪h : Hk+r−2(P(E∗), Q) → Hk+r (P(E∗), Q)

is injective fork ≤ n.
(b) Under the same hypothesis, deduce from the decomposition of

H ∗(P(E∗), Q) (see vI.7.3.3) that the map

∪cr (E) : Hk(X, Q) → Hk+2r (X, Q)

is injective fork ≤ n− r .
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(c) Show that the conclusion of (b) still holds ifE∗ is assumed to be
ample.

Let X be an (n+ r )-dimensional complex variety, and letY
j

↪→ X be an
n-dimensional compact complex subvariety ofX.
(d) Show that the map

j ∗ ◦ j∗ : Hk(Y, Z) → Hk+2r (Y, Z)

is equal to∪cr (NY/X) (see vI.1.2.2, and vI, chapter 11, exercise 3).
Deduce that if the normal bundleNY/X or its dual is ample, then
the map

j∗ : Hk(Y, Q) → Hk+2r (X, Q)

is injective fork ≤ n− r .




