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1
The Lefschetz Theorem on Hyperplane Sections

This chapter is devoted to a presentation of Morse theory on affine varieties,
and its application to the proof of the famous Lefschetz theorem on hyperplane
sections, which is the following statement.

Theorem 1.1 Let X be a projective n-dimensional variety, and letf < X
be a hyperplane section such thatdd X — Y is smooth. Then the restric-
tion map

i* T HYX, Z) > HX(Y, Z)

is an isomorphism for k n — 1 and is injective for k=n — 1.

This Lefschetz theorem follows from the vanishing of the cohomology with
compact support in degree n of a smootm-dimensional affine variety. Thus,
most of this chapter concerns the study of the topology of affine varieties; the
most general result we present is the following (see Andreotti & Frankel 1959;
Milnor 1963).

Theorem 1.2 A smooth affine variety X of (complex) dimension n has the
homotopy type of a CW-complex of (real) dimension.

This statement is obtained by applying the results of Morse theory to the square
of the distance functiohg(x) = d(x, 0)? on X, where the metric is deduced
from a Hermitian metric on the ambient space. The essential point is the fol-
lowing result.

Proposition 1.3 The Morse index of the function, fat a non-degenerate
critical point is at most equal to n.

19



20 1 The Lefschetz Theorem on Hyperplane Sections

Theorem 1.2 then follows from this proposition and the following basic theo-
rem of Morse theory.

Theorem 1.4 If f : X — R is a Morse function, and is a critical value
corresponding to a unique critical point of index r, then the level set;X.
has the homotopy type of the union of the level set; X, with a ball B".

We give an introduction to Morse theory in the first section of this chapter, and
this theorem is proved there. In the second section, we study the case of the
square of the distance function on affine varieties, and deduce the Lefschetz
theorem on hyperplangections. Finally, in the last section, we give another
proof of this result using Hodge theory and the vanishing theorems. This proof
gives the result for rational cohomology under the hypothesisvtizatd X are
smooth.

1.1 Morse theory

1.1.1 Morse’s lemma

Let X be a differentiable variety, and Idt be a differentiable function on
X. Assume that everything 5>, although in fact the result still holds under
weaker hypotheses. We say that X is a critical point off if d f(0) = 0. The
value f (0) € R is then called a critical value of.

Letx, ..., X, be local coordinates oX centred at 0. The vector fieldﬁi—
fori =1,..., ngive abasis offx x for everyx in a neighbourhood of 0.

Definition 1.5 The Hessian of f at the poifis the bilinear form on ¥

defined by
a9 32 f
Hessg f (— —) = ( )(0).
X 0X; 0X; 0X;

The formula for the derivatives of a composition of maps (the chain rule) shows
immediately that Hegd does not depend on the choice of coordinates, since
0 is a critical point off . Moreover, the symmetry of partial derivatives shows
that Hesgf is symmetric.

Definition 1.6 We say thab € X is a non-degenerate critical point of f if
the quadratic (or symmetric bilinear) foridess f on Tx o is non-degenerate.
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Such a quadratic form® can be diagonalised in a suitable basis. . ., u, of
Tx.0, I.€. there is a basis such that

Q(ui, uj) = ije;

with ¢ = +1.

Definition 1.7 The Morse index of f &, writtenind f, is the index of the
gquadmtic formHesg f, i.e. the number af; equal to—1in any diagonalisation
as above.

The non-degenerate critical points are classified by their index up to diffeomor-
phism, as shown in the following proposition.

Proposition 1.8 (Morse’s lemma)f 0 is a non-degenerate critical point of a
function f, then in a neighbourhood 6f there exist coordinates; x.. ., X,
centred at0 such that for x= (xg, .. ., X,), we have

f(x) = f(0)—ix?+ Xn: x2
i=1 i=r+1

withr = indp f.
The following result is a first corollary of proposition 1.8.

Corollary 1.9 If Ois anon-degenerate critical point of f, theins an isolated
critical point of f, and f(0) is an isolated critical value of f restricted to a
neighbourhood oD.

This corollary also follows immediately from the fact that Helssan be viewed
as the differential of the map defined (using coordinates) by

X x(x)=dfy e (R")*.

If this differential is an isomorphism, i.e. when the Hessian is non-degenerate,
the local inversion theorem shows that in a neighbourhood of 0, the $¢d)
of critical points of f is reduced tq0}.

Proof of proposition 1.8 We proceed by induction am If n > 0, then clearly
we can find a hypersurfacé c X passing through 0, defined in the neigh-
bourhood of 0, and smooth at 0, such tHat admits 0 as a non-degenerate
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critical point. Indeed, for this last condition to be satisfied, it suffices that the
non-degenerate quadratic form Hekgemain non-degenerate on the hyper-
planeTyo C Tx.o. By hypothesis, there thus exist coordinates. . ., Xn—1 On

Y such that foix = (Xg, ..., Xh_1) € Y, we have

r’ n-1
f)=f0)=> x+ > ¥
i=1

i=r'+1

with r’ = indp fjy. (Herer’ can be equal to orr — 1.) The functions; can be
extended to functions also calledon X. The function

f — £(0)— (—ixi%r ni xi2>
i=1

i=r'+1

on X is thusC*, and vanishes alonyg.
Hadamard’s lemma then shows thétig an equation defining, there exists
aC®> functiong such that

r’ n—1
f— f(0)— (—in2+ > xﬁ) =tg.
i=1

i=r'+1

The fact that 0 is a hon-degenerate critical poinf dé then expressed by the
fact that the functiorg vanishes at 0 and has non-zero differential at 0.

Lemma 1.10 If g(0) = 0, and if the functions . . ., X,_1, t give a system of
coordinates centred &, then there exisf* functionse;, i = 1...,n— 1and
¢ such that

n-1
o(X1, . - - Xp_1, t) = Zinai + .
i=1

Temporarily admitting this lemma, let us now set
Xi/ =X + €iajt

fori < n— 1, whereg is equal to—1 fori < r’ and to 1 otherwise. Then for
X = (x, t), we have

r’ n-1
fx)=f(0)— Y x7+ Y x7+t?y,
i=1

i=r'+1

wherey is aC*> function. The fact that O is a non-degenerate critical point of
f then immediately implies that(0) # 0, so in a neighbourhood of 0, we
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can writet?yy = £(x)2. Clearly thex form a system of coordinates ox
centred at 0 in whichf has the desired expression (possibly after permuting
the coordinates). O

Proof of lemma 1.10 We show it by induction, applying Hadamard'’s lemma.
The lemma holds ol by the induction hypothesis, so there exi%t functions

aj on X such thag—2 Zi“;ll Xiaj vanishes orY. Then, by Hadamard's lemma,
we have

«Q
|
=}
|
AN

2 Xiaj + to.

Il
[N

O

Now let X be a topological space, arfd: X — R a continuous function.

Definition 1.11 We say that f is an exhaustion function if for every element
M € R, the closed subsett(]—co, M]) C X is compact.

Such a map is in particular proper, and the fibxgs:= f ~(a) are compact.
In what follows, we will write X\ for the subsetf ~1(]—oc, M]) for every
M € R, and X[w, m, for the subsetf ~*([M1, My]), whereM; < M, € R.
These sets are called level sets.

If f is a differentiable exhaustion function having only non-degenerate crit-
ical points, then every critical value corresponds to a finite humber of criti-
cal points, and the set of critical values is discrete by corollary 1.9. In par-
ticular, there exists only a finite number of critical values in each interval
]—o0, M], M € R.

Such afunction is called a Morse function. We sometimes require that every
fibre X, have at most one critical point, and that the indic@g for a critical
valuei increase withh.

1.1.2 Local study of the level sets

Let us consider the function

f(x):—zr:xi2-|- zn: x?
i—1

i=r+1

defined onR". Let B” denote the ball of radiug centred at 0. LeB! C R"
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andS ! c R" denote the ball and the sphere defined by

Bl = {(xl,...,xn) e B”

X =0,i>r, inzfe} c R,
i<r

(1.1)

€

g-1:.= {(xl, ...y Xn) € B

Xi=0,i>r, inzze} CcRY_..

i<r
We easily see that far < »?, B < B, for e = n?, we have
§t=98 =BL..
Let B denote the ball of radiug/2¢ in R", and S its boundary, the sphere of

radius+/2¢ in R". We propose to show the following result.

Proposition 1.12 There exists a retraction by deformation of.Bonto the
union B._ Ug-1 BY, which induces a retraction by deformation ofc ®nto

More precisely, we will exhibit a homotopy
(Ho)tero,1] : B<e = B
such that

() Hi=1d, Hy=IdonB._ Ugq-1 B{.
(i) Ho has values iB-_, Ugfl BL.
(iii) On §—c ], the homotopyH; is given by a trivialisation of the fibration
f 1 §_cq — [—€, €], i.e. adiffeomorphism

C= (CQ, f) . S*G,E] =S . x [—6,6],

and by the retraction by deformatid€{ of the segment{e, €] onto the
point —e given byK/(e) = —(1 — t)e + ta.

We have the following lemma.

Lemma 1.13 For € = 7?2, there exists a homotopy

(Rtepo.1) : BZe — BL,
such that R = Id, and R is the identity on the ball Bdefined in (1.1). Finally,
Im Ry is contained in the ball B so R is a retraction onto B.

Note that asB._, = S, the above homotopy is the identity on the level
subsetB?_..
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Proof Writingx = (X1, Xa)with X; = (Xg, ..., X, )andXs = (Xr41, . . ., Xn),
consider the maj; : B” — B" given by

Ri(x) = (X1, t X2).
i
We will now show that up to increasing the radius of the ball, we can construct
a retraction by deformation as above, which moreover preserves the boundary.
Let us return to the baB of radius+/2¢ in R", and its boundar, the sphere
of radius+/2¢ in R".

Lemma 1.14 The restriction of the map f to S does not admit any critical
pointsin the set

S—e,e] ={xe S| —€ = f(X) < e}

Proof A critical point of f in Sis such that the function$§ = —f; + f;
and| |2 = f; + f, have proportional differentials, wherfg(x) = || X1 > and
f2(x) = || X2||2. This implies that f; andd f, are proportional, and clearly this
is not possible unlessf; ordf, = 0. But thenf; or f, = 0, so|f| = || ||
Now, this is impossible 0§ _. ], since onS, we have|| |2 = 2. O

By Ehresmann’s theorem (see vl, prop. 9.3), there exists a trivialisation
C=(Co, f): G =S x[—¢€ €],

whereCp : §_.q — S_c is a differentiable map which induces a diffeomor-
phismS§ = S . for everyt € [—¢, €].

In fact, it is easy to explicitly produce such a trivialisation. With notation as
above, we take

Co(X) = (a(x) X1, B(X) X2),
where the positive functions, 8 must satisfy the following conditions:

o’ + ,32 fo = 2e,

(1.2)
—Ol2 fj_ + ,32 fg = —€.
The conditions (1.2) simply state thag(x) € Sand f (Co(x)) = —e. Itis easy
to see that the equations (1.2) have unigque solutiorgs iny;.
Using the above trivialisation, we construct a retraction by deformation
(Kttepo,13 Of §—¢,¢] ONt0 S_, compatible withf. This means thak; induces
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the identity onS_, for everyt, K; = Id, and the image oK is contained
in S_¢. (The compatibility condition also says thist(S,) C S for a cer-
tain retraction by deformatioK; of the segmentfe, €] onto the poink.) We
simply set

Ki = C 1o (Co, (1 —t)(—€) +tf).

In other words, in the trivialisatio@, K; is induced by the affine retractid€/
of the segment{e, €] onto the point—¢ : K{(u) = (1 —t)(—e¢) 4 tu. Note that
K; is of the form

Ke(X) = (e (X)X, Br(X) X2), (1.3)

where the positive functiona, g; for t € [0, 1] are determined by the
conditions

a? f+ B2 fo = 2,
—a2fy+ B2 fa = (1 —t)(—e) +tf.
]

Proof of proposition 1.12 We construct the homotogy; by settingH; = R
in the ballB" of radius./€, andH; = K; on §_ ]. We then look forH; of the
form

He(X) = (e (}) X1, Bi(X) X2)
in Bi—c,¢, Where the functiona;, 8 now satisfy the conditions
Olt'z f1+ /3{2 fp <2, —e< —05{2 f1+ ,3(2 fo<(—f1+ f), (1.4)

i.e. Hi(x) € B, f(H(x)) < f(x), and must coincide witk, ; of (1.3) on
S-c.q and with 1t in BZ,. We setH; = Id in B__.

It is easy to check that we can construct such a pdird;), which also
satisfies the conditions

ImHo C B-_ UB
and
Ht|B_€Ui,1Bg =Id,

already satisfied iB” and§_. (. O
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1.1.3 Globalisation

Now let X be adifferentiable variety, anid: X — R adifferentiable exhaustion
function. LetA be a critical value, and let> 0 be such that is the only critical
value of f in[A —e, A +€]. LetQ, i =1,...,r be the critical points of on

Xy, and letr; be their Morse indices. The local analysis above, together with
proposition 1.8, allows us to prove the following theorem.

Theorem 1.15 There exists a retraction by deformation of the level sgt, X
onto the union of X;_. with ri-dimensional balls B glued on X;_. along
their boundaries, which are disjoirft; — 1)-dimensional spheres’S?.

Proof As f isafibration over] —e, A[and Jr, A + €], Ehresmann’s theorem
shows that it suffices to prove the theorem for very sraalMorse’s lemma

then shows that in the neighbourhood of eaghtBere exists a balB; in

which f can be written as in the preceding subsection witk r;. We may

of course assume that these balls are disjoint. By the preceding subsection,
in each of these ball8', we now have a retraction by deformatiet{ of

BL,,. onto BL, Ugi-1 B!, which has the property of being induced by
a trivialisation of the fibrationf in the neighbourhood oq'kdﬂ], where

S = 9B', and by the affine retraction of the segment{ ¢, » + €] onto the
point A — €. But since over the segmerit | ¢, A + €], the restriction off

to X — |J; By, is a fibration of manifolds with boundary (whe&) denotes
the interior of B'), the trivialisations of the fibratiorf in the neighbourhood
of S, .., xtend to a trivialisation of the fibratiof on X — [ J; B; over
[A—e€, A+ €]

C = (Co, f): (x -U Bg)[l_em] ~ (x -U B(i))k_é X [h—e A+ el.

The (H{)s = K{ then extend to a retraction by deformation of
(X = Ui BY)p—e.ite) ONtO (X — J; BY)s—e, given in the trivialisation above by

Hi(x) = (Co(x), K{(f(x))).

Clearly,H; can be glued together with th¢/ in B' and with Id inX-,_., which
yields the desired retraction by deformation. m|
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1.2 Application to affine varieties

1.2.1 Index of the square of the distance function

Definition 1.16 A (smooth) affine variety is a (smooth) closed analytic sub-
variety ofCN for some integer N.

Let X be such a smooth, connected variety and lé¢note its complex dimen-
sion. If h is a Hermitian metric oitN and 0e CN, we obtain ac> function
fo 1 X — R by settingfo(x) = h(0X).

More generally, we can define such a ‘square of the distance’ function for any
differentiable subvariet)X of a Euclidean spadgN. First consider the general
situation.Obviously, f is always an exhaustion function.

Lemma 1.17 Let X c RN be a differentiable subvariety. Then for a general
point0 of RN, the corresponding functiory fs a Morse function.

Proof We haved fyx(u) = 2(&, u) for u € Tx x. Thus,x is a critical point
of f when0x is orthogonal tdlx «. LetZ ¢ X x RN be the set

Z={(x,00e X x RN | X L Txl.

Clearly, we have dinZ = N. The second projection : Z — RN is thus
submersive at a point if and only if it is immersive at that point.

Lemma 1.18 Let(x,0) € Z, and let ue Txx. Then the tangent vector
(U, 0) € Tx x x Tgn g liesin Tz x gy if and only if ue Tx x lies in the kernel of
the quadratic formHess fo.

Admitting this lemma, we see that the set of points 0 for which the fundtjon
admits a degenerate critical point is the image undef the set of points of

Z wherer is not an immersion, so not a submersion. By Sard’s lemma (see
Rudin 1966), this set has empty interior. m|

Proof of lemmal.18 The subse is defined inX x RN as the vanishing
locus of the section of the vector bundle f€2x given by

O(x,0) = (OX, ) = dfox.
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Taking local coordinateg; on X, o can be written

The tangent space @ at (x, 0) is thus described by

af af
dy—2 +d,—2 =0, Vi}.
9X%; aX%;

TZ,(x.O) = {(U, W) S TX,x X TRN,O

92 fo

Writing u = ), u; % the first term is equal td _; u; F%ax; - Thus, the vector

(u, 0) lies inTz (xg) if and only if we haver uj ;X%‘X)J = 0 for everyi, which
means by definition that lies in the kernel of Hesd. O

Let us now return to the case wheXeas ann-dimensional complex analytic
subvariety ofCN, and the metric is Hermitian.

Proposition 1.19 The index of the function £ f; is less than or equal to n
at every critical point of f.

Proof Let us introduce the second fundamental form
@ SPTyx — CN/ Ty,
which can be defined as the differential of the Gauss map
X — Grassq, N), X — Tx .

By definition, ®(u, v) can be computed as follows. L&t be a vector field
on X defined in the neighbourhood &f and whose value atis v. Then, as
Tx C (Ten)x, we can se®/ as a map with values i@N, and set

®(u, v) = d,V mod Tx .

One knows that this depends only on the vectand not on the vector fied;
see vl, lemma 10.7.

Let h be the Hermitian form, and) = %h = (,) the corresponding
Euclidean scalar product. The formula

dfe(u) = 2(0%, u), Uue Txx
shows immediately by differentiation that for a critical poinof f, we have

Hess f (u, v) = 2((0X, ®(u, v)) + (U, v)).
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To diagonalise Hegd , it thus suffices to diagonalise the quadratic form
Q(u, v) = (0X, (U, v))

in an orthonormal basis far, ). But sinceX is a complex subvariety oV,
the second fundamental fori is C-bilinear for the complex structures on
Tx.x andCN/ Ty «, so thatQ is the real part of th&€-bilinear symmetric form
H(u, v) = h(®(u, v), 0X) on Tx x = C" C CN,

Lemmal.20 Let H be aC-bilinear symmetric form of", andlet(,) = % h

be the Euclidean product associated to a Hermitian form@n Then the
eigenvalues of the form & 9 H with respect to the Euclidean form constitute
a set which is stable under the involutian— —2 (including multiplicities).

Admitting this lemma, we conclude that the eigenvalues of Hessith
respect to the Euclidean metric are of the form2(1), 2(1—%;), i = 1,...,n.
Thus, at mosh of these eigenvalues are negative. O

Proof of lemma 1.20 The form H, and thus also the forr® = % H, are
multiplied by —1 under the automorphisof C" induced by multiplication by

i (which is unitary). Thus, the set of eigenvalues is stable under multiplication
by —1. The statement concerning the multiplicities follows easily, since every
form Q = N H is a specialisation of a form of the typeH with distinct
eigenvalues. O

Definition 1.21 A compact CW-complex is a topological space which can be
written as a finite union of closed ‘cells’ homeomorphic to closed balR*of
The largest integer k appearing in this cellular decomposition is called the
dimension of the CW-complex.

We define a CW-complex as a topological space which is the countable union
of increasing open sety; such that the closurg; is a compact CW-complex.
The following result is a consequence of theorem 1.15 and proposition 1.19
(see Andreotti & Frankel 1959; Milnor 1963).

Theorem 1.22 An affine variety X of complex dimension n has the homotopy
type of a CW-complex of real dimensigm.

Proof Let X c CN, and take a Morse function oX of the formhg(x) =
d(x, 0Y, for a Hermitian metric oitN. ThenX can be written as the countable
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union of the interiorsX? of the level setsXy = {x € X | ho(x) < k}, and
assuming that the integeksre not critical values, theorem 1.15 and proposition
1.19 show that each level skt 1 has the homotopy type of the union %f
with a finite number of balls of dimension k. |

1.2.2 Lefschetz theorem on hyperplane sections

Let X be a smooth complex projective variety, ahd’> X asmooth hyperplane
section. The cohomology clasg] e H?(X, Z) is equal tch := ¢;(Ox (1)) (see
vl, Thm 11.33). Let us first show that we have the identity

j*oj. = hyU: HX(Y, Z) - H*2(Y, 7), (1.5)

wherehy :=hy = [Y]}y.
This formula follows immediately from the description of the Gysin mor-
phism j, as the compositiok, o (Uny) o *, where

T—2>Y
|
X

is an open tubular neighbourhoodfin X, andny € HZ(T, Z) is the coho-
mology class with compact supportfin T. Indeed, forgetting the torsion we
know that the Gysin morphisr, : HX(Y, Z) — H¥+2(X, Z) is the Poincas”
dual of the restriction morphism

j* : H2n—k—2(x, Z) — H2n—k—2(Y’ Z)

Passing to real coefficients, we must check that for a clesedm g onY and
aclosed (8 — k — 2)-forma on X, we have

/ﬂ/\j*a:/ﬁy/\n*ﬂ/\a.
Y X

Here, the formy is a de Rham representativergf: it is a closed 2-form with
support inT such thatr,.7jy = 1y (see vl.11.1.2). The formy"Az*BonT is
extended toX by 0, and thus the right-hand term is equalidjy A 7*8 A .
Now, asT can be retracted by deformation ontdy r, there exists a closed
(2n — k — 2)-forma’ onY and a (& — k — 3)-forma” on T such that

ot =n'e’ +da”.
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But then, applying Stokes and the fact thafjy = 1y, we find

/ﬁyAn*ﬂAa:/ﬁy/\n*ﬁ/\n*a’
.

T

=fﬁAw=fﬂAPm
Y Y

which proves the equality, = k, o (Uny) o r*.
As hy is a Kahler class, we can now apply the hard Lefschetz theorem (v,
Thm 6.25) to conclude that:

The cup-product
Uhy : HY(Y, Q) — H*"%(Y, Q)
is injective for k< n— 1 :=dimY and surjective fork-2 > n—1=dimY.
AsUhy = j* o |,, it follows that
j 1 HY(Y. Q) — H"*(X, Q)
is injective fork < n — 1 and
J*rHNX Q) = HY(Y. Q)

is surjective fok > n — 1.
Moreover, we also have the equality

jxo " =[YJU=hu:HXX,Z) - H(X, Z), (1.6)

which can be proved by the same argument as above.
Applying the Lefschetz theorem cited aboveXpwe conclude thahU =
j* o j. is injective onHX(X, Q) for k < n = dim X, which implies that

i HY(X, @ = HY, Q)

is injective fork < n = dim X.

We will now use the topological analysis developed in the preceding section to
obtain a much stronger statement, namely the Lefschetz theorem on hyperplane
sections.

Theorem 1.23 Let X ¢ PN be a (not necessarily smooth) n-dimensional
algebraic subvariety, and let ¥= PN~ N X be a hyperplane section such that
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U := X — Y is smooth and n-dimensional. Then the restriction morphism
i* HY(X, Z) - HX(Y, 2)

is an isomorphism for k n — 1 and is injective for k=n — 1.

Proof Letusadmitthefact, whichis proved usingtriangulations, Yredmits

a fundamental system of neighbourhoodéisn X which can be retracted by
deformation ontd . It follows that

HX(X, Y, Z) = lim HX(X, Y;, Z). (1.7)
By excision, we also obtain isomorphisms
HX(X,Yi, Z) = H¥(U, Y, N U, Z).

But sincel is an oriented differentiable2dimensional variety, Poincadual-
ity gives anisomorphism (which is canonical, depending only on the orientation)

HXU,U — K, Z) = Hani(K, Z) (1.8)

for every compact seK ¢ U having the property that is the retraction by
deformation of an open set bf (see Spanier 1996, 6.2).

If we now apply the Poincarduality (1.8) toK; := U — Y; N U, we obtain
an isomorphism

HK(X, Y, Z) = lim HXU, Y, NU,2) = lim Han-i(Ki, Z).

Since every singular chain is contained in one of the compacksets U, it
is clear that we have

Hank(U, Z) = lim Hon_«(Ki, Z).
In conclusion, we have a natural isomorphism
HX(X, Y, Z) = Hon_k(U, Z). (1.9)

Returning to our proof, we consider the long exact sequence of relative
cohomology of the pairX, Y):

s> HYX, Y, Z) — HYX, Z) - HX(Y, Z) > HYX, Y, Z) — - .

It follows that theorem 1.23 is equivalent to the vanishing of the groups
HX(X,Y,Z) fork < n—1 = dimY. Applying the isomorphism (1.9), this
is equivalent to the vanishing of the grouldg(U, Z) for k > n + 1.
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Now, U is an affine variety embedded i@N. Let us equipCN with a
Hermitian metric, andlet@ CN be such that the functiofy is a Morse function
onU. U can be written as the union of the increasing level Belg, M € Z,
with U-_; = @. It follows immediately that

H(U, Z) = lim H(U<m, Z),

M=oo

and it suffices to show that for every level &bty , we have
Hk(U<m,Z) =0 for k=>n.

But this follows immediately, by induction av, from theorem 1.15 and propo-
sition 1.19. Indeed, assuming for simplicity thdtandM + 1 are not critical
values offy, there exists a finite number of critical valugsof the functionfy
contained betweeN andM + 1, i.e.

M<ti<---<A<---Ak<M+1

Forl<i <k—1,letuschoosg] €], Ai;1[, andsetM = A5, M +1 = A,.
Thenby theorem 1.15, each level 4ét;; has the homotopy type of the union
of Ug;,  with baIIsB ‘ of dimensiorr; equal to the mdex of the critical point
Xi j of crltlcal value)LI , glued along thelr boundarﬁJ . By proposition 1.19,
all of these indices are at most equahtd hus, for each of these balls, we have

Hk(B, S, Z) =0 for k=>n,
which by excision implies that
Hc(U<ms1,U<m,Z) =0 for k> n.
Thus, by the long exact sequence of relative homology of theldgir {, Uy), if
H«U<m,Z)=0 for k>n,
then alsoHk(U<m 41, Z) = 0 fork > n. AsU._; = ¢, we thus have
Hk(U<m,Z)=0 for k=>n

for everyM. This proves theorem 1.23. |

1.2.3 Applications
Recall (see vl.7.2.1) that the cohomology of the projective spacedescribed
by H'(P", Z) = 0 for oddi andH?Z (P", Z) = Zh', whereh = ¢;(Op (1)) €
H?(P", Z).
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Moreover, using théth Veronese embedding
g P" — PN,

which is given by homogeneous polynomials of degiteand which is such
that the pullback bybq of a linear form onPN is a polynomial of degred
onP", we can consider a hypersurfagec P" of degreed as an intersection
d4(P")NPN-L. Thus, the following result for hypersurfaces of projective space
follows from theorem 1.23.

Corollary 1.24 Let X c P" be a hypersurface. ThenXdX, Z) = 0 for k
odd, k< dim X, and H¥(X, Z) = Zh for 2k < dim X.

If moreoverX is smooth, then the next result follows from Poiredtiality.

Corollary 1.25 Let X c P" be a smooth hypersurface. Therf(X, Z) = 0
for k odd, k> dim X, and H¥(X, Z) = Z« for 2k > dim X, where the class
« has intersection with =% equal to1.

Remark 1.26 Let us take the case of a smooth hypersurface ®4nThe
preceding corollary shows that 44X, Z) = H%(X, Z) is generated by the
unique class such that{«, h) = 1. If X contains a line, the homology class
of this line is thus equal ta. In general, if d:= degX > 5, then X does not
contain a line (at least if the equation of X is chosen generically). However,
acurve C= X N P?is of degree d and is thus of class .dKollar (1990)
showed that in general, for sufficiently large d, the clasis not the class of

an algebraic cycle, althoughdis. This is one of the counterexamples to the
Hodge conjecture for integral cohomology.

Corollaries 1.24 and 1.25 can be generalised immediately to complete inter-
sections in projective space, by repeated applications of theorem 1.23.

A first application of corollary 1.24 concerns the computation of the Picard
group of complete intersections. Recall (see vl.4.3, vI.11.3) thétig a pro-
jective variety, then PiX is the group of isomorphism classes of algebraic line
bundles, or equivalently, of isomorphism classes of holomorphic line bundles,
or in the smooth case, of divisors modulo rational equivalence. The second
interpretation gives an identification (see vl.4.3) Ri& H(X, 0% ,.), and
the exponential exact sequence gives the long exact sequence '

H1(X, Z) - HY(X, Ox) — Pic(X) 3 H2(X, Z).

If X is now a smooth complete intersectiorffihsuch that dinX > 3, then by



36 1 The Lefschetz Theorem on Hyperplane Sections

corollary 1.24, we havéi(X, Z) = 0, soHY(X, Ox) = 0 by Hodge theory,
which shows thaH *(X, Ox) is a quotient oH (X, C). Moreover, we have an
isomorphism

C:
PicP" = H2(P", Z) = Zh,

and corollary 1.24 gives a restricti@omorphismH?(P", Z) = H?(X, Z). The
next corollary follows immediately.

Corollary 1.27 If X is a smooth complete intersection of dimensiol in
P", thenPic X = ZOx(1).

In fact, using the arguments of the following section, we can show that under
the hypothesis dinX > 2, the vanishing propertid*(X, Ox) = 0 holds even
when X is not smooth, so that also corollary 1.27 holds even wKes not
smooth.

1.3 Vanishing theorems and Lefschetz’ theorem

As observed by Kodaira and Spencer (see Shiffman & Sommese 1985), it is
possible to give a more ‘algebraic’ proof of the Lefschetz theorem 1.23, at least
for cohomology with rational coefficients.

For this, we use the following vanishing theorem due to Akizuki, Kodaira,
and Nakano (see Demailly 1996; Griffiths & Harris 1978). Xelbe a complex
variety, and leL be a holomorphic line bundle oX. Recall that_ is said to be
positive if L can be equipped with a Hermitian metric wh@ssociated Chern
form is positive (i.e. is a Khler form). By the Kodaira embedding theorem (see
v1.7.1.3), this is equivalent to the fact thHais ample, i.e. that the holomorphic
sections ofL®N for sufficiently largeN give an embedding

@NL:XC—>Pr.

Theorem 1.28 Let L — X be a positive line bundle, where X is compact.
Then for p+ g > n :=dim X, we have

HY(X, QR(L)) = 0.

Applying Serre duality (see v1.5.3.2) and noting that by the exterior product,

(20)" & Ky = 2.
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we also obtain the following equivalent statememtder the same hypotheses,
we have

HI(X, Q%(-L))=0 for p+q<n.

Here, the notatiorF(—L) meansF ® (L~1), whereF denotes a coherent
sheaf onX.
This theorem yields the following version of the Lefschetz theorem.

Theorem 1.29 Let X be an n-dimensional compact complex variety, and let

Y <> X be a smooth hypersurface such ttted line bundleDx (Y) = (Zv)* is
positive. Then for k< n — 1, the restriction

it HYX, Q) - H(Y,Q)

is an isomorphism, and for & n — 1, itis injective.

Remark 1.30 This statement is weaker than theorem 1.23. Indeed, note that
by definition Y is the zero locus of a sectwnof Ox(Y), so NY is the divisor

of the sectioy' of Ox(NY). Under the preceding hypotheses, there exists an
embeddingbyy of X intoP" such that the pullback of the linear forms gives
exactly the sections @x (N Y). Thus, under the embeddidgyy, Y C X is

the set-theoretic intersection of X with a hyperplan®inThus, theorem 1.23
implies theorem 1.29. But the latter is strictly weaker, insofar as it deals only
with rational cohomology and smooth hypersurfaces.

Proof of theorem 1.29 By the change of coefficients theorem, we have
HK(X, C) = HX(X, Q) ®q C, and a similar statement fof; thus it suffices

to prove this theorem for the cohomology with complex coefficients instead of
the rational cohomology. Now, under the hypotheses of the theofeandY

are Kéhler (and even projective), and thus, from the Hodge decomposition for
X andY (see vl.6.1), we have

HYX.C) = P HI(X, @)

p+a=k
and

HX(Y.C) =P

with j* = @p+q:k Jp.q Wherejg ot HI(X, QF) — HI(Y, Q¥) is the restric-
tion morphism induced by the morphism

p
e HA(Y. 00)

in Q% — 0¥
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of coherent sheaves. Thus, it suffices to show fijgtis an isomorphism for
p+q < dimY and is injective forp + g = dimY. Now, the morphisnj; is
the composition of the natural morphisms

Q% - Qf @ Oy = j.(Q%y) (1.10)
and
Qyly — Q¥ (1.11)

(the latter should in fact be composed wijth which induces an isomorphism
in cohomology, and is thus usually omitted). It thus suffices to show that each of
the morphisms (1.10) and (1.11) induces an isomorphism on the cohomology
of degreqy for p4+qg < n—1=dimY, and an injection fop+q =n — 1.

For this, we apply theorem 1.28 ¥ and toY. Let us first consider the case
of (1.10). We have the exact sequence

0— QQ(—Y) — Q§ — Q§|Y — 0.

The associated long exact sequence and the vanishing propiéitX,
QL (=Y)) = 0for p+ g < dim X immediately imply that the arrow

HI(X, @) — HA(Y. 25y)

induced by (1.10) is an isomorphism fpr+ g < dimY =dimX — 1 and is
injective forp+q =dimY.
Moreover, we have the conormal exact sequence

0— Oy(-Y) — Qx|y - Qy— 0

onY (see vl.3.3.3), where the identification ©f (—Y) = Zy ® Oy with the
conormal bundIeN\’;/>< is induced by the differentia : Zy — Qx. Passing to
the pth exterior power, this exact sequence induces the exact sequence

0— 52571(—Y) — Q§|Y — QYp — 0.

The associated long exact sequence of cohomology and theorem 1.28 applied
to Y thus show that the morphism

HA(Y, %[y) = H(Y. @)

induced by (1.11) is an isomorphism fpr+ q < dimY, and is injective for
p+q=dimY. m|
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Exercises

Morse theory and the Euler—Poin@acharacteristicLet X; ¢ X be
varieties with compact boundaries.
(a) Using the long exact sequence of relative cohomology, show that

Xtop(x) = Xtop(xl) + Xtop(x’ X1),

wherexiop(X) := 3= (=1)'bi (X) and xwop(X, X1) = 3 (1)
dimH'(X, Xy).

Now let X be a compact differentiable variety, and fet X — R be a

Morse function.

(b) Letx € X be a critical point off of indexi. Show that for > 0, the
level setsX <t (x)+. satisfy

Xtop(ng(x)+e) = Xtop(ng(x)—e) + (_1)i~

(c) Deduce the formula

Xiop(X) = D (=1 N,

whereN; is the number of critical points of index
Subvarieties with ample normal bundle and Lefschetz theoteshX be
ann-dimensional smooth projective variety aida holomorphic vector
bundle of rank on X. We say tha€ is ample if the invertible bundle
OpE+ (1) is ample on the projective bundk¢E*) % X. Thus,
h := c1(Ope+)(1)) is a Kahler class ofP(E*). Recall (see vl.11.2) that
the Chern classeas(E*) are characteriseldly the relation

h + Y 7*G(Eh ™ =0in H* (P(E*), 2).

O<i=<r

(a) Deduce from the hard Lefschetz theorem applieB(&©*) that if E
is ample, then the map

Uh : H*"2(P(E*), Q) — H*(P(E*), Q)

is injective fork < n.
(b) Under the same hypothesis, deduce from the decomposition of
H*(P(E*), Q) (see vl.7.3.3) that the map

Uc (E) : HY(X, Q) — H*™ (X, Q)

is injective fork < n —r.
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(c) Show that the conclusion of (b) still holdsE* is assumed to be
ample. _

Let X be an @ + r)-dimensional complex variety, and lét—> X be an

n-dimensional compact complex subvariety>of

(d) Show that the map

i*o . HY(Y, Z) — H*2 (Y, 7)

is equal taJc, (Ny,x) (see vl.1.2.2, and vl, chapter 11, exercise 3).
Deduce that if the normal bundMy, x or its dual is ample, then
the map

i« 1 HY(Y, Q) » H*" (X, Q)

is injective fork < n —r.





