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Introduction

In this chapter we introduce the subject. We describe the classical isoperimet-
ric problem in Euclidean space of all dimensions, and give some elementary
arguments that work in the plane. Only one approach will carry over to higher
dimensions, namely, the necessary condition established by classical calcu-
lus of variations, that a domain with C2 boundary provides a solution to the
isoperimetric problem only if it is a disk. Then we give a recent proof of the
isoperimetric inequality in the plane by P. Topping (which does not include a
characterization of equality), and the classical argument of A. Hurwitz to prove
the isoperimetric inequality using Fourier series. This is followed by a symme-
try and convexity argument in the plane for very general boundaries that proves
the isoperimetric inequality, if one assumes in advance that the isoperimetric
functional D �→ L2(∂D)/A(D) has a minimizer. (So this is a weak version –
if the isoperimetric problem has a solution, then the disk is also a solution.)
Finally, we present the background necessary for what follows later in our
general discussion, valid for all dimensions. The subsections of §I.3 include a
proof of H. Rademacher’s theorem on the almost everywhere differentiability of
Lipschitz functions, and a proof of the general co-area formula for C1 mappings
of Riemannian manifolds. We obtain the usual co-area formula, as well as an
easy consequence: Cauchy’s formula for the area of the boundary of a convex
subset of R

n with C1 boundary.

I.1 The Isoperimetric Problem

Given any bounded domain on the real line (that is, an open interval), the
discrete measure of its boundary (the endpoints of the interval) is 2. And given
any bounded open subset of the line, the discrete measure of its boundary is
greater than or equal to 2, with equality if and only if the open set consists of one
open interval. This is the statement of the isoperimetric inequality on the line.
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2 Introduction

In the plane, one has three common formulations of the isoperimetric
problem:

1. Consider all bounded domains in R
2 with fixed given perimeter, length of

the boundary (that is, all domains under consideration are isoperimetric).
Find the domain that contains the greatest area. The answer, of course, will
be the disk. Note that the specific value of the perimeter in question is of no
interest, because all domains of perimeter L1 are mapped by a similarity of
R

2 to all domains with perimeter L2 for any given values of L1, L2, and the
image under the similarity of an area maximizer for L1 is an area maximizer
for L2.

2. One insists on a common area of all bounded domains under consideration,
and asks how to minimize the perimeter.

3. Lastly, one expresses the problem as an analytic inequality, namely, since we
know exactly the values of the area of the disk and the length of its boundary,
the isoperimetric problem is then expressed as proving the isoperimetric
inequality

L2 ≥ 4π A,(I.1.1)

where A denotes the area of the domain under consideration, and L denotes
the length of its boundary. The inequality is extremely convenient, in that it
remains invariant under similarities of R

2, and one has equality if the domain
is a disk. One wishes to show that the inequality is always true, with equality
if and only if the domain is a disk.

One can consider the above for any R
n , n ≥ 2. The proposed analytic isoperi-

metric inequality then becomes

A(∂�)

V (�)1−1/n
≥ A(Sn−1)

V (Bn)1−1/n
,(I.1.2)

where � is any bounded domain in R
n and ∂� its boundary, V denotes n-

measure and A denotes (n − 1)-measure, B
n is the unit disk in R

n , and S
n−1

the unit sphere in R
n . We let ωn denote the n-dimensional volume of B

n and
cn−1 the (n − 1)-dimensional surface area of S

n−1. It is standard that

cn−1 = 2πn/2

�(n/2)
, ωn = cn−1

n
,(I.1.3)

where �(x) denotes the classical gamma function; and (I.1.2) now reads as

A(∂�)

V (�)1−1/n
≥ nωn

1/n.(I.1.4)
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I.1 The Isoperimetric Problem 3

One wants to prove the inequality and to show that equality is achieved if and
only if � is an n-disk. Note that for n = 2 we took in (I.1.4) the square root of
(I.1.1).

Remark I.1.1 Throughout the book, domain will refer to a connected open
set. In general, we consider the isoperimetric problem for relatively compact
domains when we are working in the differential geometric setting (Chapters I,
II, V–VIII). Therefore, the disks that realize the solution in R

n are open. In
Chapters III and IV, where we work in a more general setting, the isoperimetric
problem is considered for compacta. In that setting the disks that realize the
solution in R

n are closed.

Remark I.1.2 We have restricted the isoperimetric problem to domains in R
n;

but if we could solve this problem, then the isoperimetric problem for open
sets consisting of finitely many bounded domains would easily follow from the
solution for single domains. Indeed, assume one has the inequality (I.1.2) for
domains in R

n . If

� = �1 ∪ �2 ∪ · · · ,
where each � j is a relatively compact domain in R

n such that

cl� j ∩ cl�k = ∅ ∀ j 	= k

(cl denotes the closure), then Minkowski’s inequality implies

V (�)1−1/n ≤
∑

j

V (� j )
1−1/n ≤ 1

nωn
1/n

∑
j

A(∂� j )

= 1

nωn
1/n

A(∂�).(I.1.5)

So the inequality extends to the union of domains. Note that equality implies
that � is a domain.

Remark I.1.3 Note that for any domain� in R
n , its volume is the n-dimensional

Lebesgue measure, and if ∂� is C1 then the area of ∂� is given by the standard
differential geometric surface area of a smooth hypersurface in R

n . However, if
∂� is not smooth, then one must propose an area functional defined on a collec-
tion of domains such that the area functional will give a working definition of the
area of the boundaries of the domains. Besides a number of natural properties
[see the discussions in Burago and Zalgaller (1988)], one requires that the new
definition agree with the differential geometric one when applied to a domain
with smooth boundary. Then, with this new collection of domains and definition
of the area of their boundaries, one wishes to prove the isoperimeric inequality.
Also, one wishes to characterize the case of equality in each of these settings.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80267-3 - Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives
Isaac Chavel
Excerpt
More information

http://www.cambridge.org/9780521802673
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

Remark I.1.4 As soon as one expands the problem to the model spaces of
constant sectional curvature, that is, to spheres and hyperbolic spaces, one has
no self-similarities of the Riemannian spaces in question. And if the disks on
the right hand side of (I.1.2) are to have radius r , then the right hand side of the
inequality in (I.1.2) is no longer independent of the value of r . Nonetheless, one
still has the isoperimetric inequality in the sense that all domains in question
with the same n-volume have the (n − 1)-area of their boundaries minimized
by disks. For n = 2, the analytic formulation reads as follows: If M = M

2
κ ,

the model space with constant curvature κ , then the isoperimetric inequality
becomes

L2 ≥ 4π A − κA2,(I.1.6)

with equality if and only if the domain in question is a disk. Of course, one can
still consider the isoperimetric problem, whether or not it is to be expressed as
an inequality, in the first or second formulation above.

Similarly, one can extend the isoperimetric problem and associated inequali-
ties to surfaces, or, more generally, to Riemannian manifolds. We shall consider
such inequalities in Chapter V.

Remark I.1.5 Finally, one can consider a Bonnesen inequality. In R
2, such an

inequality is of the form

L2 − 4π A ≥ B ≥ 0,

where B is a nonnegative geometric quantity associated with the domain that
vanishes if and only if the domain is a disk.

I.2 The Isoperimetric Inequality in the Plane

For any C2 path ω : (α, β) → R
2 in the plane, the velocity vector field of ω is

given by its derivative ω′, and acceleration vector field by ω′′. We assume that
ω is an immersion, that is, ω′ never vanishes. The infinitesimal element of arc
length ds is given by

ds = |ω′(t)| dt.

Given any t0 ∈ (α, β), the arc length function of ω based at t0 is given by

s(t) =
∫ t

t0

|ω′(τ )| dτ.
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I.2 The Isoperimetric Inequality in the Plane 5

Let

T(t) = ω′(t)
|ω′(t)|

denote the unit tangent vector field along ω,

ι : R
2 → R

2

the rotation of R
2 by π/2 radians, and

N = ιT

the oriented unit normal vector field along ω. Then one defines the curvature κ
of ω by

dT
ds

= κN(I.2.1)

(indeed, since T is a unit vector field, its derivative must be perpendicular to
itself). Then the formula for the curvature, relative to the original path, is given
by

κ = dT
ds

·N = ω′′·ιω′

|ω′|3 .

One can easily show that

dN
ds

= −κT.(I.2.2)

The equations (I.2.1) and (I.2.2) are referred to as the Frenet formulae.

One can prove, from (I.2.1), that if the curvature κ is constant, then ω is an arc
on a circle (if not the complete circle).

I.2.1 Uniqueness for Smooth Boundaries

As a warm-up, we give the argument from classical calculus of variations. Given
the area A, let D vary over relatively compact domains in the plane of area A,
with C1 boundary, and suppose the domain �, ∂� ∈ C2, realizes the minimal
boundary length among all such domains D. We claim that � is a disk.

Proof Since � is relatively compact in R
2, there exists a simply connected

domain �0 such that

� = �0\{finite disjoint union of closed topological disks}.
We claim that since � is a minimizer, then �0 = �. If not, we may add the
topological disks to �, which will increase the area of the domain and decrease
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6 Introduction

the length of the boundary, and therefore � will not be a minimizer. Thus
�0 = �, and is bounded by an imbedded circle.

Let � : S
1 → R

2 ∈ C2 be the imbedding of the boundary of �. We always
assume that the path � is oriented so that ν = −N at all points of �, where ν

is the unit normal exterior vector field along ∂�.
One then considers a 1-parameter family �ε : S

1 → R
2 of imbeddings

v : (−ε0, ε0) × S
1 → R

2,

such that the variation function v(ε, t) given by

v(ε, t) = �ε(t) = �(t) + (ε, t)ν(t), (0, t) = 0,

is C1. First,

∂v

∂ε
= ∂

∂ε
ν.

Also

∂v

∂t
= �′ +

{
∂

∂t
ν + ν ′

}
= {1 + κ}�′ + ∂

∂t
ν,

which implies ∣∣∣∣∂v

∂t

∣∣∣∣ =
{

(1 + κ)2 + 1

|�′|2
(
∂

∂t

)2
}1/2

|�′|.

Taylor’s theorem implies, for

φ(t) := ∂

∂ε

∣∣∣∣
ε=0

,

the expansion

(ε, t) = εφ(t) + o(ε),
∂

∂ε
= φ(t) + o(1),

∂

∂t
= O(ε),

which implies ∣∣∣∣∂v

∂t

∣∣∣∣ = |�′| {1 + εκφ + o(ε)} .

Therefore, the area element d A in the curvilinear coordinates (t, ε) is given
by

d A =
∣∣∣∣∂v

∂ε
× ∂v

∂t

∣∣∣∣ dε dt = φ|�′| {1 + o(1)} dε dt = {φ + o(1)} dε ds.
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I.2 The Isoperimetric Inequality in the Plane 7

For the domain �ε determined by �ε we have, for sufficiently small ε,

A(�ε) − A(�) =
∫ ε

0
dσ

∫
�

{φ + o(1)} ds.

Therefore, if A(�ε) = A(�) for all ε, then∫
�

φ ds = 0.

Now let L(ε) denote the length of �ε . Since � has the shortest length, we have
L ′(0) = 0. Therefore, because

L(ε) =
∫

S1

∣∣∣∣∂v

∂t

∣∣∣∣ dt =
∫

S1
|�′| {1 + εκφ + o(ε)} dt =

∫
�

{1 + εκφ + o(ε)} ds,

we have

0 = L ′(0) =
∫
�

κφ ds,
∫
�

φ ds = 0

for any such variation of �.
Similarly, given any φ ∈ C1 such that

∫
�
φ ds = 0, there exists a variation

v of � such that A(�ε) = A(�) for all ε, and L ′(0) = ∫
�
κφ ds. Then, by

assumption, we have∫
�

κφ ds = 0 ∀φ ∈ C1 :
∫
�

φ ds = 0.

To show that this implies that κ is constant, we argue as follows: Given any
ψ : S

1 → R in C1, set

φ = ψ −
∫
�

ψ ds

/∫
�

ds .

Then
∫
�
φ ds = 0, which implies

0 =
∫
�

κ

(
ψ − 1

L

∫
�

ψ ds

)
ds =

∫
�

(
κ − 1

L

∫
�

κ ds

)
ψ ds,

where L denotes the length of �. Since ψ is arbitrary C1, a standard argument
then implies that

κ − 1

L

∫
�

κ ds = 0,(I.2.3)

that is, the curvature κ is constant. Then, as mentioned, (I.2.1) implies that �
is a circle.
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8 Introduction

I.2.2 Quick Proof Using Complex Variables

Theorem I.2.1 (Isoperimetric Inequality in RR
2) Let � be a relatively com-

pact domain, with boundary ∂� ∈ C1 consisting of one component. Then

L2(∂�) ≥ 4π A(�).

Proof We denote any element of the plane as the complex number

z = x + iy,

and the area measure as an oriented volume element; so

d A = dx ∧ dy = i

2
dz ∧ dz.

Then

4π A(�) =
∫∫

�

2π i dz ∧ dz

=
∫∫

�

dz ∧ dz
∫
∂�

dζ

ζ − z

=
∫
∂�

dζ
∫∫

�

dz ∧ dz

ζ − z

=
∫
∂�

dζ
∫
∂�

ζ − z

ζ − z
dz

≤ L2(∂�),

– the second equality follows from the fact that the winding number of ∂�

about any point z ∈ � is 1; the last equality follows from Green’s theorem –
which implies the claim. �

I.2.3 The Method of Fourier Series

Lemma I.2.1 (Wirtinger’s Inequality) If f is a C1, L-periodic function on
R, and ∫ L

0
f (t) dt = 0,

then ∫ L

0
| f ′|2(t) dt ≥ 4π2

L2

∫ L

0
| f |2(t) dt,

with equality if and only if there exist constants a−1 and a1 such that

f (t) = a−1e−2π i t/L + a1e2π i t/L .
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I.2 The Isoperimetric Inequality in the Plane 9

Proof This is an exercise from Fourier series. The function f (t) admits a
Fourier expansion

f (t) ↔
∞∑

k=−∞
ake2π ikt/L with ak = 1

L

∫ L

0
f (t)e−2π ikt/L dt.

Similarly, we have

f ′(t) ↔
∞∑

k=−∞
bke2π ikt/L with bk = 1

L

∫ L

0
f ′(t)e−2π ikt/L dt.

The continuity of f implies b0 = 0, and the hypothesis implies a0 = 0. Inte-
gration by parts implies

bk = 2π ik

L
ak ∀ |k| ≥ 1.

Parseval’s inequality then implies∫ L

0
| f ′|2 dt = L

∑
k 	=0

|bk |2 = L
4π2

L2

∑
k 	=0

k2|ak |2

≥ L
4π2

L2

∑
k 	=0

|ak |2

= 4π2

L2

∫ L

0
| f |2 dt,

which implies the inequality. One has equality if and only if ak = 0 for all
|k| > 1. �

Theorem I.2.2 (Isoperimetric Inequality in RR
2) If � is a relatively compact

domain in R
2, with C1 boundary consisting of one component, then

L2(∂�) ≥ 4π A(�),

with equality if and only if � is a disk.

Proof If necessary, we translate � to guarantee∫
∂�

x ds = 0, x = (x1, x2).

Let x = x1e1 + x2e2 be the vector field on R
2 with base point x = (x1, x2).

One now uses the 2-dimensional divergence theorem, namely, for any vector
field x �→ ξ(x) ∈ R

2 with support containing cl �, one has∫∫
�

div ξ d A =
∫
∂�

ξ·ν ds,(I.2.4)
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10 Introduction

where ν denotes the outward unit normal vector field along ∂�. One can obtain
the formula (I.2.4) by converting the traditional Green’s theorem∫∫

�

{
∂Q

∂x
− ∂P

∂y

}
d A =

∫
∂�

P dx + Q dy,(I.2.5)

by choosing

P = −ξ 2, Q = ξ 1, ξ = ξ 1e1 + ξ 2e2.

For the left hand side of (I.2.5) one has

∂Q

∂x
− ∂P

∂y
= ∂ξ 1

∂x1
+ ∂ξ 2

∂x2
= div ξ.

For the right hand side of (I.2.5) one has

P dx + Q dy = −ξ 2 dx1 + ξ 1 dx2 = ξ·{dx2e1 − dx1e2}
= ξ·{−ι(dx)} = ξ·ν ds.

For our vector field x, we have div x = 2 on all �. Then the divergence
theorem implies

2A(�) =
∫
�

div x d A =
∫
∂�

x·ν ds,

which implies

2A(�) =
∫
∂�

x·ν ds

≤
∫
∂�

|x| ds

≤
{∫

∂�

|x|2 ds

}1/2 {∫
∂�

12 ds

}1/2

= L1/2(∂�)

{∫
∂�

|x|2 ds

}1/2

– the first inequality is the vector Cauchy–Schwarz inequality, and the second
inequality is the integral Cauchy–Schwarz inequality.

Parametrize ∂� with respect to arc length. Note that

|x|2 = (x1)2 + (x2)2,

∣∣∣∣dx
ds

∣∣∣∣2 =
(

dx1

ds

)2

+
(

dx2

ds

)2
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