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Introduction
LOWELL BEINEKE, ROBIN WILSON and PETER CAMERON

1. Graph theory
2. Linear algebra
3. Group theory
References

This introductory chapter is divided into three parts. The first presents the
basic ideas of graph theory. The second concerns linear algebra (for Chapters
1–4), while the third concerns group theory (for Chapters 5–10).

1. Graph theory

This section presents the basic definitions, terminology and notations of graph
theory, along with some fundamental results. Further information can be found in
the many standard books on the subject – for example, West [4] or (for a simpler
treatment) Wilson [5].

Graphs

A graph G is a pair of sets (V, E), where V is a finite non-empty set of elements
called vertices, and E is a set of unordered pairs of distinct vertices called edges.
The sets V and E are the vertex-set and the edge-set of G, and are often denoted
by V (G) and E(G), respectively. An example of a graph is shown in Fig. 1.

The number of vertices in a graph is the order of the graph; usually it is denoted
by n and the number of edges by m. Standard notation for the vertex-set is V =
{v1, v2, . . . , vn} and for the edge-set is E = {e1, e2, . . . , em}. Arbitrary vertices are
frequently represented by u, v, w, . . . and edges by e, f, . . . .

1
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υ2 υ3

υ1 υ4 υ5

G:
V = {υ1, υ2, υ3, υ4, υ5} 

E = {υ1υ2, υ1υ4, υ2υ3, υ2υ4, υ3υ4, υ4υ5}

Fig. 1.

Variations of graphs

By definition, our graphs are simple, meaning that two vertices are connected by
at most one edge. If several edges, called multiple edges, are allowed between
two vertices, we have a multigraph. Sometimes, loops – edges joining vertices
to themselves – are also permitted. In a weighted graph, the edges are assigned
numerical values called weights. Finally, if the vertex-set is allowed to be infinite,
then G is an infinite graph.

Perhaps the most important variation is that of directed graphs; these are dis-
cussed at the end of this section.

Adjacency and degrees

For convenience, the edge {v, w} is commonly written as vw. We say that this edge
joins v and w and that it is incident with v and w. In this case, v and w are adjacent
vertices, or neighbours. The set of neighbours of a vertex v is its neighbourhood
N (v). Two edges are adjacent edges if they have a vertex in common.

The number of neighbours of a vertex v is called its degree, denoted by deg v.
Observe that the sum of the degrees in a graph is twice the number of edges. If
all the degrees of G are equal, then G is regular, or is k-regular if that common
degree is k. The maximum degree in a graph is often denoted by �.

Walks

A walk in a graph is a sequence of vertices and edges v0, e1, v1, . . . , ek, vk , in
which each edge ei = vi−1vi . This walk goes from v0 to vk or connects v0 and vk ,
and is called a v0-vk walk. It is frequently shortened to v0v1 . . . vk , since the edges
may be inferred from this. Its length is k, the number of occurrences of edges. If
vk = v0, the walk is closed.

Some important types of walk are the following:
� a path is a walk in which no vertex is repeated;
� a trail is a walk in which no edge is repeated;
� a cycle is a non-trivial closed trail in which no vertex is repeated.
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Distance

In a connected graph, the distance between two vertices v and w is the minimum
length of a path from v to w, and is denoted by d(v, w). It is easy to see that
distance satisfies the properties of a metric: for all vertices u, v and w,
� d(v, w) ≥ 0, with equality if and only if v = w;
� d(v, w) = d(w, v);
� d(u, w) ≤ d(u, v) + d(v, w)

The diameter of a graph G is the maximum distance between two vertices
of G. If G has cycles, the girth of G is the length of a shortest cycle, and the
circumference is the length of a longest cycle.

Subgraphs

If G and H are graphs with V (H ) ⊆ V (G) and E(H ) ⊆ E(G), then H is a sub-
graph of G. If, moreover, V (H ) = V (G), then H is a spanning subgraph. The
subgraph induced by a non-empty set S of vertices in G is that subgraph H with
vertex-set S whose edge-set consists of those edges of G that join two vertices in
S; it is denoted by 〈S〉 or G[S]. A subgraph H of G is induced if H = 〈V (H )〉. In
Fig. 2, H1 is a spanning subgraph of G, and H2 is an induced subgraph.

Given a graph G, the deletion of a vertex v results in the subgraph obtained by
excluding v and all edges incident with it. It is denoted by G − v and is the subgraph
induced by V − {v}. More generally, if S ⊂ V, we write G − S for the graph
obtained from G by deleting all of the vertices of S; that is, G − S = 〈V − S〉.

The deletion of an edge e results in the subgraph G − e obtained by excluding e
from E ; for F ⊆ E, G − F denotes the spanning subgraph with edge-set E − F .

Connectedness and connectivity

A graph G is connected if there is a path connecting each pair of vertices. A
(connected) component of G is a maximal connected subgraph of G.

A vertex v of a graph G is a cut-vertex if G − v has more components than G.
A connected graph with no cut-vertices is 2-connected or non-separable. The
following statements are equivalent for a graph G with at least three vertices:

G: H1: H2:

graph spanning subgraph induced subgraph

Fig. 2.
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� G is non-separable;
� every pair of vertices lie on a cycle;
� every vertex and edge lie on a cycle;
� every pair of edges lie on a cycle;
� for any three vertices u, v, and w, there is a v-w path containing u;
� for any three vertices u, v, and w, there is a v-w path not containing u;
� for any two vertices v and w and any edge e, there is a v-w path containing e.
More generally, a graph G is k-connected if there is no set S with fewer than k
vertices for which G − S is a connected non-trivial graph. Menger characterized
such graphs.

Menger’s theorem A graph G is k-connected if and only if, for each pair of
vertices v and w, there is a set of k v-w paths that pairwise have only v and w in
common.

The connectivity κ(G) of a graph G is the maximum value of k for which G is
k-connected.

There are similar concepts and results for edges. A cut-edge (or bridge) is any
edge whose deletion produces one more component than before. A non-trivial
graph G is k-edge-connected if the result of removing fewer than k edges is always
connected, and the edge-connectivity λ(G) is the maximum value of k for which
G is k-edge-connected. We note that Menger’s theorem also has an edge version.

Bipartite graphs

If the vertices of a graph G can be partitioned into two non-empty sets so that no
edge joins two vertices in the same set, then G is bipartite. The two sets are called
partite sets, and if they have orders r and s, G may be called an r × s bipartite
graph. The most important property of bipartite graphs is that they are the graphs
that contain no cycles of odd length.

Trees

A tree is a connected graph that has no cycles. They have been characterized in
many ways, a few of which we give here. For a graph G of order n:
� G is connected and has no cycles;
� G is connected and has n − 1 edges;
� G has no cycles and has n − 1 edges.
Any graph without cycles is a forest; note that each component of a forest is a tree.
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Special graphs

We now introduce some individual types of graphs:
� the complete graph Kn has n vertices, each of which is adjacent to all of the

others;
� the null graph Nn has n vertices and no edges;
� the path graph Pn consists of the vertices and edges of a path of length n − 1;
� the cycle graph Cn consists of the vertices and edges of a cycle of length n;
� the complete bipartite graph Kr,s is the r × s bipartite graph in which each

vertex is adjacent to all those in the other partite set;
� in the complete k-partite graph, Kr1,r2,...,rn the vertices are in k sets (having

orders r1, r2, . . . , rk) and each vertex is adjacent to all the others, except those
in the same set. If the k sets all have order r , the graph is denoted by Kk(r ). The
graph Kk(2) is sometimes called the k-dimensional octahedral graph or cocktail
party graph, also denoted by CP(k); K3(2) is the graph of an octahedron.

� the d-dimensional cube (or d-cube) Qd is the graph whose vertices can be
labelled with the 2d binary d-tuples, in such a way that two vertices are
adjacent when their labels differ in exactly one position. It is regular of degree
d , and is isomorphic to the lattice of subgraphs of a set of d elements.

Examples of these graphs are given in Fig. 3.

Operations on graphs

There are several ways to get new graphs from old. We list some of the most
important here.

K5:

K3,3:

N5:

K3(2):

P5: C5:

Q3:

Fig. 3.
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� The complement G of a graph G has the same vertices as G, but two vertices
are adjacent in G if and only if they are not adjacent in G.

For the other operations, we assume that G and H are graphs with disjoint vertex-
sets, V (G) = {v1, v2, . . . , vn} and V (H ) = {w1, w2, . . . , wt }:
� the union G ∪ H has vertex-set V (G) ∪ V (H ) and edge-set E(G) ∪ E(H ).

The union of k graphs isomorphic to G is denoted by kG.
� the join G + H is obtained from G ∪ H by adding all of the edges from

vertices in G to those in H .
� the (Cartesian) product G � H or G × H has vertex-set V (G) × V (H ), and

(vi , w j ) is adjacent to (vh, wk) if either (a) vi is adjacent to vh in G and
w j = wk , or (b) vi = vh and w j is adjacent to wk in H . In less formal terms,
G � H can be obtained by taking n copies of H and joining corresponding
vertices in different copies whenever there is an edge in G. Note that, for
d-cubes, Qd+1 = K2 � Qd (with Q1 = K2).

Examples of these binary operations are given in Fig. 4.
There are two basic operations involving an edge of a graph. The insertion of

a vertex into an edge e means that the edge e = vw is replaced by a new vertex
u and the two edges vu and uw. Two graphs are homeomorphic if each can be
obtained from a third graph by a sequence of vertex insertions. The contraction of
the edge vw means that v and w are replaced by a new vertex u that is adjacent
to the other neighbours of v and w. If a graph H can be obtained from G by
a sequence of edge contractions and the deletion of isolated vertices, then G is
said to be contractible to H . Finally, H is a minor of G if it can be obtained
from G by a sequence of edge-deletions and edge-contractions and the removal

G:

H:

G + H:

G ∪ H:

G    H:

Fig. 4.
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insertion contraction

υ

υ

w

u

u

e

w

Fig. 5.

of isolated vertices. The operations of insertion and contraction are illustrated in
Fig. 5.

Traversability

A connected graph G is Eulerian if it has a closed trail containing all of the edges
of G; such a trail is called an Eulerian trail. The following are equivalent for a
connected graph G:
� G is Eulerian;
� the degree of each vertex of G is even;
� the edge-set of G can be partitioned into cycles.

A graph G is Hamiltonian if it has a spanning cycle, and traceable if it has a
spanning path. No ‘good’ characterizations of these graphs are known.

Planarity

A planar graph is one that can be embedded in the plane in such a way that no
two edges meet except at a vertex incident with both. If a graph G is embedded in
this way, then the points of the plane not on G are partitioned into open sets called
faces or regions. Euler discovered the basic relationship between the numbers of
vertices, edges and faces.

Euler’s polyhedron formula Let G be a connected graph embedded in the plane
with n vertices, m edges and f faces. Then n − m + f = 2.
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It follows from this result that a planar graph with n vertices (n ≥ 3) has at most
3(n − 2) edges, and at most 2(n − 2) edges if it is bipartite. From this it follows
that the two graphs K5 and K3,3 are non-planar. Kuratowski proved that these two
graphs are the only barriers to planarity.

Kuratowski’s theorem The following statements are equivalent for a graph G:
� G is planar;
� G has no subgraph that is homeomorphic to K5 or K3,3;
� G has no subgraph that is contractible to K5 or K3,3.

Graph colourings

A graph G is k-colourable if, from a set of k colours, it is possible to assign a colour
to each vertex in such a way that adjacent vertices always have different colours.
The chromatic number χ (G) is the least value of k for which G is k-chromatic.
It is easy to see that a graph is 2-colourable if and only if it is bipartite, but there
is no ‘good’ way to determine which graphs are k-colourable for k ≥ 3. Brooks’s
theorem provides one of the best-known bounds on the chromatic number of a
graph.

Brooks’s theorem If G is a graph with maximum degree � that is neither an odd
cycle nor a complete graph, then χ (G) ≤ �.

There are similar concepts for colouring edges. A graph G is k-edge-colourable
if, from a set of k colours, it is possible to assign a colour to each edge in such a
way that adjacent edges always have different colours. The edge-chromatic number
χ ′(G) is the least k for which G is k-edge-colourable. Vizing proved that the range
of values of χ ′(G) is very limited.

Vizing’s theorem If G is a graph with maximum degree �, then

� ≤ χ ′(G) ≤ � + 1.

Line graphs

The line graph L(G) of a graph G has the edges of G as its vertices, with two of
these vertices adjacent if and only if the corresponding edges are adjacent in G.
An example is given in Fig. 6.

A graph is a line graph if and only if its edges can be partitioned into complete
subgraphs in such a way that no vertex is in more than two of these subgraphs.
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G: L(G):

Fig. 6.

υ2 υ3

υ1 υ4

D:
V = {υ1, υ2, υ3, υ4}
E = {υ1υ2, υ1υ4, υ2υ1, υ3υ2, υ3υ4}. 

Fig. 7.

Line graphs are also characterized by the property of having none of nine particular
graphs as a forbidden subgraph.

Directed graphs

Digraphs are directed analogues of graphs, and thus have many similarities, as
well as some important differences.

A digraph (or directed graph) D is a pair of sets (V, E) where V is a finite
non-empty set of elements called vertices, and E is a set of ordered pairs of distinct
elements of V called arcs or directed edges. Note that the elements of E are now
ordered, which gives each of them a direction. An example of a digraph is given
in Fig. 7.

Because of the similarities between graphs and digraphs, we mention only the
main differences here and do not redefine those concepts that carry over easily.

An arc (v, w) of a digraph may be written as
−→
vw, and is said to go from v to w,

or to go out of v and go into w.
Walks, paths, trails and cycles are understood to be directed, unless otherwise

indicated.
The out-degree d+(v) of a vertex v in a digraph is the number of arcs that go

out of it, and the in-degree d−(v) is the number of arcs that go into it.
A digraph D is strongly connected, or strong, if there is a path from each vertex to

each of the others. A strong component is a maximal strongly connected subgraph.
Connectivity and edge-connectivity are defined in terms of strong connectedness.

A tournament is a digraph in which every pair of vertices are joined by exactly
one arc. One interesting aspect of tournaments is their Hamiltonian properties:
� every tournament has a spanning path;
� a tournament has a Hamiltonian cycle if and only if it is strong.
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2. Linear algebra

In this section we present the main results on vector spaces and matrices that are
used in Chapters 1–4. For further details, see [3].

The space Rn

The real n-dimensional space Rn consists of all n-tuples of real numbers x =
(x1, x2, . . . , xn); in particular, the plane R2 consists of all pairs (x1, x2), and three-
dimensional space R3 consists of all triples (x1, x2, x3). The elements x are vectors,
and the numbers xi are the coordinates or components of x.

When x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn , we can
form their sum x + y = (x1 + y1, x2 + y2, . . . , xn + yn), and if α is a scalar (real
number), we can form the scalar multiple αx = (αx1, αx2, . . . , αxn).

The zero vector is the vector 0 = (0, 0, . . . , 0), and the additive inverse of
x = (x1, x2, . . . , xn) is the vector −x = (−x1, −x2, . . . ,−xn).

We can similarly define the complex n-dimensional space Cn , in which the
vectors are all n-tuples of complex numbers z = (z1, z2, . . . , zn); in this case, we
take the multiplying scalars α to be complex numbers.

Metric properties

When x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn , their dot
product is the scalar x · y = x1 y1 + x2 y2 + · · · + xn yn . The dot product is some-
times called the inner product and denoted by 〈x, y〉.

The length or norm ‖x‖ of a vector x = (x1, x2, . . . , xn) is

(x · x)1/2 = (
x2

1 + x2
2 + · · · + xn

n

)1/2
.

A unit vector is a vector u for which ‖u‖ = 1, and for any non-zero vector x, the
vector x/‖x‖ is a unit vector.

When x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the distance between x
and y is d(x, y) = ‖x − y‖. The distance function d satisfies the usual properties
of a metric: for any x, y, z ∈ Rn ,
� d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;
� d(x, y) = d(y, x);
� d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The following result is usually called the Cauchy-Schwarz inequality:

Cauchy-Schwarz inequality For any x, y ∈ Rn, |x · y| ≤ ‖x‖ · ‖y‖.
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We define the angle θ between the non-zero vectors x and y by

cos θ = x · y/‖x‖ · ‖y‖.
Two vectors x and y are orthogonal if the angle between them is 0 – that is, if
x · y = 0. In this case, we have the following celebrated result.

Pythagoras’s theorem If x and y are orthogonal, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

An orthogonal set of vectors is a set of vectors each pair of which is orthogonal.
An orthonormal set is an orthogonal set in which each vector has length 1.

In a complex space Cn most of the above concepts are defined as above. One
exception is that the dot product of two complex vectors z = (z1, z2, . . . , zn)
and w = (w1, w2, . . . , wn) is now defined by z · w = z1w1 + z2w2 + · · · + znwn ,
where w is the complex conjugate of w.

Vector spaces

A real vector space V is a set of elements, called vectors, with rules of addition
and scalar multiplication that satisfy the following conditions:

Addition
A1: For all x, y ∈ V, x + y ∈ V ;
A2: For all x, y, z ∈ V, (x + y) + z = x + (y + z);
A3: There is an element 0 ∈ V satisfying x + 0 = x, for all x ∈ V ;
A4: For each x ∈ V , there is an element −x satisfying x + (−x) = 0;
A5: For all x, y ∈ V, x + y = y + x.

Scalar multiplication
M1: For all x ∈ V and α ∈ R, αx ∈ V ;
M2: For all x ∈ V, 1x = x;
M3: For all α, β ∈ R, α(βx) = (αβ)x;

Distributive laws
D1: For all α, β ∈ R and x ∈ V, (α + β)x = αx + βx;
D2: For all α ∈ R and x, y ∈ V, α(x + y) = αx + αy.

Examples of real vector spaces are Rn, Cn , the set of all real polynomials, the
set of all real infinite sequences, and the set of all functions f : R → R, each with
the appropriate definitions of addition and scalar multiplication.

Complex vector spaces are defined similarly, except that the scalars are elements
of C, rather than R. More generally, the scalars can come from any field, such as the
set Q of rational numbers, the integers Zp modulo p, where p is a prime number,
or the finite field Fq , where q is a power of a prime.
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Subspaces

A non-empty subset W of a vector space V is a subspace of V if W is itself a
vector space with respect to the operations of addition and scalar multiplication in
V . For example, the subspaces of R3 are {0}, the lines and planes through 0, and
R3 itself.

When X and Y are subspaces of a vector space V , their intersection X ∩ Y is
also a subspace of V , as is their sum X + Y = {x + y : x ∈ X, y ∈ Y }.

When V = X + Y and X ∩ Y = {0}, we call V the direct sum of X and Y , and
write V = X ⊕ Y .

Bases

Let S = {x1, x2, . . . , xr } be a set of vectors in a vector space V . Then any vector
of the form

α1x1 + α2x2 + · · · + αr xr ,

where α1, α2, . . . , αr are scalars, is a linear combination of x1, x2, . . . , xr . The set
of all linear combinations of x1, x2, . . . , xr is a subspace of V called the span of
S, denoted by 〈S〉 or 〈x1, x2, . . . , xr 〉. When 〈S〉 = V , the set S spans V , or is a
spanning set for V .

The set S = {x1, x2, . . . , xr } is linearly dependent if one of the vectors xi is a
linear combination of the others – in this case, there are scalars α1, α2, . . . , αr , not
all zero, for which

α1x1 + α2x2 + · · · + αr xr = 0.

The set S is linearly independent if it is not linearly dependent – that is,

α1x1 + α2x2 + · · · + αr xr = 0

holds only when α1 = α2 = · · · = αr = 0.
A basis B is a linearly independent spanning set for V . In this case, each vector

x of V can be written as a linear combination of the vectors in B in exactly one
way; for example, the standard basis for R3 is {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and a
basis for the set of all real polynomials is {1, x, x2, . . .}.

Dimension

A vector space V with a finite basis is finite-dimensional. In this situation, any
two bases for V have the same number of elements. This number is the dimension
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of V , denoted by dim V ; for example, R3 has dimension 3. The dimension of a
subspace of V is defined similarly.

When X and Y are subspaces of V , we have the dimension theorem:

dim(X + Y ) = dim X + dim Y − dim(X ∩ Y ).

When X ∩ Y = {0}, this becomes

dim(X ⊕ Y ) = dim X + dim Y.

Euclidean spaces

Let V be a real vector space, and suppose that with each pair of vectors x and y
in V is associated a scalar 〈x, y〉. This is an inner product on V if it satisfies the
following properties: for any x, y, z ∈ V ,
� 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0;
� 〈x, y〉 = 〈y, x〉;
� 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.

The vector space V , together with this inner product, is called a real in-
ner product space, or Euclidean space. Examples of Euclidean spaces are R3

with the dot product as inner product, and the space V of real-valued contin-
uous functions on the interval [−1, 1] with the inner product defined for f, g
in V by 〈f, g〉 = ∫ 1

−1 f(t)g(t) dt . Analogously to the dot product, we can define
the metrical notions of length, distance and angle in any Euclidean space, and
we can derive analogues of the Cauchy-Schwarz inequality and Pythagoras’s
theorem.

An orthogonal basis for a Euclidean space is a basis in which any two distinct
basis vectors are orthogonal. If, further, each basis vector has length 1, then the
basis is an orthonormal basis. If V is a Euclidean space, the orthogonal complement
W ⊥ of a subspace W is the set of all vectors in V that are orthogonal to all vectors
in W – that is,

W ⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ W }.

Linear transformations

When V and W are real vector spaces, a function T : V → W is a linear transfor-
mation if, for all v1, v2 ∈ V and α, β ∈ R,

T (αv1 + βv2) = αT (v1) + βT (v2).

If V = W , then T is sometimes called a linear operator on V .
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The linear transformation T is onto, or surjective, when T (V ) = W , and is
one-one, or injective, if T (v1) = T (v2) only when v1 = v2.

The image of T is the subspace of W defined by

im(T ) = {w ∈ W : w = T (v), for some v ∈ V };
note that T is onto if and only if im(T ) = W .

The kernel, or null space, of T is the subspace of V defined by

ker(T ) = {v ∈ V : T (v) = 0W };
note that T is one-one if and only if ker(T ) = {0V }.

Defining the rank and nullity of T by

rank(T ) = dim im(T ) and nullity(T ) = dim ker(T ),

we obtain the rank-nullity formula:

rank(T ) + nullity(T ) = dim V .

Algebra of linear transformations

When S : U → V and T : V → W are linear transformations, we can form their
composition T ◦ S : U → W , defined by

(T ◦ S)(u) = T (S(u)), for all u ∈ U.

The composition of linear transformations is associative.
The linear transformation T : V → W is invertible, or non-singular, if there

is a linear transformation T −1, called the inverse of T , for which T −1 ◦ T is the
identity transformation on V and T ◦ T −1 is the identity transformation on W .
Note that a linear transformation is invertible if and only if it is one-one and onto.

The matrix of a linear transformation

Let T : V → W be a linear transformation, let {e1, e2, . . . , en} be a basis for V
and let {f1, f2, . . . , fm} be a basis for W . For each i = 1, 2, . . . , n, we can write

T (ei ) = a1i f1 + a2i f2 + · · · + ami fm,

for some scalars a1i , a2i , . . . , ami . The rectangular array of scalars

A =




a11 a12 · · · a1n

a21 a22 · · · · a2n

· · · ·
am1 am2 · · · amn





