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1
Introductory overview

We start by overviewing the origins, motivations, basic ideas and results of the
harmonic superspace (and space) approach. Our major aim here is to give the
reader a preliminary impression of the subject before immersion into the main
body of the book.

1.1 Brief motivations

It is hardly possible to overestimate the rôle of symmetries in the development
of physics. The place they occupy is becoming more and more important every
year. The very family of symmetries is gettingricher all the time: Besides
the old symmetries based on Lie algebras we are now exploiting new kinds of
symmetries. These include supersymmetries which mix bosons with fermions
and are based on superalgebras, symmetries associated with non-linear algebras
of Zamolodchikov’s type, symmetries connected to quantum groups, etc. To
date, the supersymmetric models have been studied in most detail. They turn out
to have quite remarkable features. They open a new era in the search for a unified
theory of all interactions including gravity. They help to solve the hierarchy
problem in the grand unification theories. For the first time in the history of
quantum field theory, supersymmetry has led to the discovery of a class of
ultraviolet-finite local four-dimensional field theories. In these finite theories
the ultraviolet divergences in the boson and fermion loops ‘miraculously’
cancel against each other. Supersymmetries underlie the superstring theories,
which provide the first consistent scheme for quantization of gravity. The
research programs of the leading accelerator laboratories include searches for
supersymmetric partners of the known particles (predicted by supersymmetry
but not yet discovered).

In view of this impressive development, it is imperative to be able to
formulate the supersymmetric theories in a systematic, consistent and clear
way. There already exist several reviews [F2, F3, F4, F7, N2, O4, S13, V1]
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2 1 Introductory overview

and textbooks [B17, G26, W7, W12] devoted to the simplest kind of super-
symmetry,N = 1 (i.e., containing one spinor generator in its superalgebra).
It was this supersymmetry that was first discovered in the pioneering articles
[G38, G39, V4, V5, V6, W8]. The superfield approach appropriate to this case
was developed in the 1970s. However, extended supersymmetries (i.e., those
containing more than one spinor generator) turned out much more difficult. Each
new step in understanding them requires new notions and approaches. Even in
the simplest extendedN = 2 supersymmetry, until 1984 no way to formulate
all such theories off shell, in a manifestly supersymmetric form and in terms
of unconstrained superfields, was known. Such formulations are preferable not
only because of their intrinsic beauty, but also since they provide an efficient
technique, in particular, in quantum calculations or in the proof of finiteness.
The invention of a new, harmonic superspace [G4, G13] made it possible to
develop off-shell unconstrained formulations of all theN = 2 supersymmetric
theories (matter, Yang–Mills and supergravity) and ofN = 3 Yang–Mills
theory.

N = 2 harmonic superspace is standard superspace augmented by the
two-dimensional sphereS2 ∼ SU(2)/U (1). In such an enlarged superspace it is
possible to introduce a new kind of analyticity, Grassmann harmonic [G4, G13].
This proved to be the key to the adequate off-shell unconstrained formulations,
just like chirality [F13], the simplest kind of Grassmann analyticity[G8], is
a keystone inN = 1 supersymmetry. This new analyticity amounts to the
existence of an analytic subspace of harmonic superspace whose odd dimension
is half of that of the full superspace. AllN = 2 theories mentioned above are
naturally described byGrassmann analyticsuperfields, i.e., the unconstrained
superfields in this subspace. A similar kind of analyticity underlies theN = 3
gauge theory [G5, G6].

A most unusual and novel feature of the analytic superfields is the unavoidable
presence of infinite sets of auxiliary and/or gauge degrees of freedom in their
component expansions. They naturally emerge from the harmonic expansions
on the two-sphereS2 with respect to a new sort of bosonic coordinates, the
harmonic variables, which describeS2 in a parametrization-independent way.
These infinite sets, instead of being a handicap, proved to be very helpful indeed.
It is due to their presence in the analytic superfield describing theN = 2
scalar multiplet (hypermultiplet) [F1, S12] off shell that one can circumvent
the so-called ‘no-go’ theorem [H18, S21] claiming that such a formulation is
not possible. In fact, the no-go theorems always implicitly assume the existence
of afiniteset of auxiliary fields.

The Grassmann analytic superfields with their infinite towers of components
can be handled in much the same way as ordinary superfields, using a set of
simple rules and tools. In [G14, G15] we worked out the quantization scheme
for the N = 2 matter and gauge theories in harmonic superspace. The crucial
importance of formulating quantum perturbation theory in supersymmetric
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models in terms ofunconstrainedoff-shell superfields has repeatedly been
pointed out in the literature (see, e.g.,[H16]). Such formulations allow one
to understand the origin of many remarkable properties of quantum supersym-
metric theories which seem miraculous in the context of the component or
constrained superfield formulations. Above all, this concerns the cancellation
of ultraviolet divergences. Harmonic superspace is the only known approach
which provides unconstrained off-shell formulations of both the matter and
gaugeN = 2 multiplets and as such it is indispensable for quantum calculations
in the theories involving these multiplets. A particular representative of this
class of theories isN = 4 super-Yang–Mills theory which, from theN = 2
perspective, is just the minimal coupling of the hypermultiplet in the adjoint
representation of the gauge group to theN = 2 super-Yang–Mills multiplet.

It is worthwhile to emphasize that the harmonic superspace approach is very
close to the twistor one which is an effective tool for solving the self-dual Yang–
Mills and Einstein equations. In fact, harmonic superspace could be regarded
as an isotwistor superspace. However, even when applied to the purely bosonic
self-duality problems, the harmonic space approach has some advantages, one of
them being as follows. We use harmonics (the fundamental isospin 1/2 spherical
functions) as abstract global coordinates spanning the whole two-sphere. This
is in contrast with, e.g., polar or stereographic coordinates which require two
charts on the sphere. So, if one succeeds in solving a self-duality equation in
terms of harmonics, there will be no need to attack the famous Riemann–Hilbert
problem which is central in conventional twistor approaches. We also wish to
stress that the harmonic (super)space formalism heavily uses the Cartan coset
technique, transparent and familiar to many physicists.

A surge of interest in the harmonic superspace methods and, above all, in
the methods for off-shell quantum calculations was mainly motivated by two
remarkable developments in our understanding of supersymmetric field theories
during the 1990s.

The first one stems from the seminal paper by Seiberg and Witten [S5]
where it was suggested thatN = 2 gauge theories are exactly solvable at the
full quantum level under some reasonable hypotheses likeS duality intimately
related to extended supersymmetry [W17]. The study of the structure of the
quantum low-energy effective actions ofN = 2 gauge theories, in both the
perturbative and non-perturbative sectors, is of great importance in this respect.
The quantum harmonic superspace methods were successfully applied for this
purpose, in particular for computing the holomorphic and non-holomorphic
contributions to the effective action (see [B14, B15, B16, I8] and references
therein).

The second source of interest is the famous Maldacena AdS/CFT conjecture
[G42, M1, W16]. This is the idea that the quantumN = 4 super Yang–Mills
theory in the limit of large number of colors and strong coupling is dual to the
type IIB superstring onAdS5 × S5 and contains the corresponding supergravity
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as a sub-sector of its Hilbert space. This conjecture greatly stimulated thorough
analysis of the structure of this exceptionalgauge theory from different points
of view using different calculational means. The harmonic superspace methods,
as was shown in several recent papers [E1, E3, E4, E5, H14], can drastically
simplify the calculations and allow one to make far reaching predictions inN =
4 super-Yang–Mills theory.

All this justifies the need for a comprehensive introduction to the harmonic
superspace approach. We hope that the present book will meet, at least partly,
this quest. Here we do not discuss the latest developments but prefer to concen-
trate on the basics of the harmonic superspace method. Some developments
are briefly addressed in the Conclusions. When reading this book one may
find it helpful to consult the reviews and books mentioned above. We also
point out that there are a few papers devoted to the mathematical aspects of
harmonic superspace and, in particular, to a more rigorous definition of it, e.g.,
[H3, H10, H12, R6, S4]. We do not address these special issues in our rather
elementary exposition.

1.2 Brief summary

The present book has been conceived as a pedagogical review of all the extended
supersymmetricN = 2 theories and ofN = 3 Yang–Mills theory in the
framework of harmonic superspace. The details of these theories are discussed,
as well as some applications. A special emphasis is put on their geometrical
origin and on the relationship with hyper-Kähler and quaternionic complex
manifolds which appear as the target manifolds ofN = 2 supersymmetric sigma
models in a flat background and in the presence of supergravity, respectively.
The Cartan coset techniques are used systematically with emphasis on their
power and simplicity. The self-duality Yang–Mills and Einstein equations
are treated in this language with stress on their deep affinity withN = 2
supersymmetric theories and on comparing the harmonic space approach with
the twistor one.

A detailed outline of the content of this book is given at the end of Chapter
1. In order to help the reader, we preface the main body of the book with an
overview of the basic ideas, notions and origins. We begin with a discussion of
spaces and superspaces for the realization of symmetries and supersymmetries,
emphasizing the importance of making the right choice:The same symmetry
can be realized in different ways, one of them being much more appropriate for
a given problem than the others.

1.3 Spaces and superspaces

Manifestly invariant formulations of field theories make use of some space (or
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superspace) where a given symmetry (or supersymmetry) is realized geometri-
cally by coordinate transformations.Two examples are well known:

(i) In Minkowski spaceM4 = (xa) the Poincaŕe group transformations have
the form

x′a = 3a
bxb + ca . (1.1)

In classical and quantum field theories the action principle and the equations of
motion are manifestly invariant under (1.1), the form of the corresponding field
transformations being completely fixed by (1.1) and the tensor properties of the
field, e.g.,

f ′(x′) = f (x) (1.2)

for a scalar field f (x). It is important that this transformation law does not
depend on the model under consideration.

(ii) One usually attempts to formulate manifestly invariantN-extended super-
symmetric theories in the standard superspace [S1]

R4|4N = (xa, θα
i , θ̄ α̇i ) , i = 1, 2, . . . , N (1.3)

involving the spinoranticommutingcoordinatesθα
i , θ̄ α̇i in addition to xa.

Their transformation rules under the Poincaré group are evident, while the
transformations under supersymmetry (supertranslationswith anticommuting
parametersεα

i , ε̄α̇i ) are given by

δxa = i (ε i σ aθ̄i − θ i σ aε̄i ) , δθα
i = εα

i , δθ̄ α̇i = ε̄α̇i . (1.4)

Superfields8(x, θ, θ̄ ) are defined as functions on this superspace and their
transformation law is completely determined by (1.2). For example, for a scalar
superfield

8′(x′, θ ′, θ̄ ′) = 8(x, θ, θ̄ ) . (1.5)

Of course, this law is model-independent. Expanding a superfield8(x, θ, θ̄ ) in
powers of the spinor (anticommuting, hence nilpotent) variablesθ, θ̄ yields a
finite set of usual fieldsf (x), ψα(x), . . . , called components of the superfield.

As an alternative toR4|4N , N-extended supersymmetry can also be realized
in the so-called chiral superspaceC4|2N which iscomplexand contains onlyhalf
of the spinor coordinates [F13]:

δxa
L = −2i θ i

Lσ aε̄i , δθα
L i = εα

i . (1.6)

In fact, the real superspaceR4|4N can be viewed as a real hypersurface in the
complex superspaceC4|2N :

xa
L = xa + i θ i σ aθ̄i , θα

L i = θα
i , θα

L i = θ̄ α̇ i . (1.7)
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1.4 Chirality as a kind of Grassmann analyticity

The superfields8(xL , θL) = 8(x + i θσ θ̄, θ) defined inC4|2N can be treated as
Grassmann analytic superfields. Indeed, they obey the constraint

D̄α̇i 8 =
(

− ∂

∂θ̄ α̇i
− i (θi σ

a)α̇

∂

∂xa

)
8 = 0 , (1.8)

where D̄i
α̇ is the covariant (i.e., commuting with the supersymmetry transfor-

mations) spinor derivative. In the basis(xL , θL , θ̄ ) this derivative simplifies to
D̄i

α̇ = −∂/∂θ̄ α̇i . Then the constraint (1.8) takes the form of a Cauchy–Riemann
condition,

∂ 8

∂ θ̄ α̇
i

= 0 , (1.9)

which means that8 is a function ofθL but is independent of̄θ (cf. the standard
theory of analytic functions where the Cauchy–Riemann condition∂ f (z)/∂ z̄ =
0 means that the function depends on the variablez and is independent of its
conjugatēz). The notion of Grassmann analyticity [G8] in this simplest form is
most useful inN = 1 supersymmetry. In this book the reader will see that there
exist non-trivial generalizations of this concept which underlie theN = 2 and
N = 3 supersymmetric theories.

It should by emphasized that finding the adequate superspace for a given
theory is, as a rule, a non-trivial problem. The above superspacesR4|4N and
C4|2N prove to be appropriate for off-shellformulations only in the simplest
case ofN = 1 supersymmetry. These ‘standard’ superspaces cease to be so
useful in the extended (N > 1) supersymmetric theories. Finding and using the
adequate superspaces forN = 2, 3 is the main subject of this book.

Now, before approaching the main problem, we recall in a few words some
key points inN = 1 supersymmetry.

1.5 N = 1 chiral superfields

As already said,N = 1 supersymmetric theories can be formulated in the
superspacesR4|4 or C4|2. Consider, for example, the simplestN = 1
supermultiplet, the matter one. On shell it contains a spin 1/2 field ψα and a
complex scalar fieldA(x). In R4|4 it can be described by a scalar superfield
8(x, θ, θ̄ ). However, the latter involves too many fields in itsθ expansion:
Four real scalars, two Majorana spinors and a vector of various dimensions. To
eliminate the extra fields, it is necessary to impose aconstrainton the superfield,
which turns out to be just the chirality (Grassmann analyticity) condition

D̄α̇8 = 0 . (1.10)

As explained above, this constraint means that8 is an analytic superfield. In the
N = 1 case the expansion of such a superfield (written down in the chiral basis)
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is very short [F13]:

8(x, θ, θ̄ ) = 8(xL , θL) = φ(xL) + θα
L ψα(xL) + θα

L θLα F(xL) . (1.11)

The fieldsφ, ψα, F form theoff-shell N= 1 matter supermultiplet.
The chiral (N = 1 analytic) superspaceC4|2 is the cornerstone of all the

N = 1 theories: They are either formulated in terms of chiral superfields (matter
and its self-couplings) or are based on gauge principles which respect chirality
(Yang–Mills and supergravity and their couplings to matter). The reader will
see that forN = 2 and N = 3 the suitably modified concept of Grassmann
analyticity will also be crucial.

1.6 Auxiliary fields

Besides the physical fieldsφ(xL), ψα(xL), the superfield8(xL , θL) also con-
tains anauxiliary complex scalar fieldF(xL) of non-physical dimension 2. As
a consequence, this field can only appear in an action without derivatives and
thus can be eliminated by its equation of motion. In the presence of auxiliary
fields the supersymmetry transformations aremodel-independentand so have
the same form off and on shell. They form aclosed supersymmetry algebra.
For example, in the case of the chiral scalar superfield above one obtains from
(1.5), (1.6) and (1.11)

δφ(x) = −εαψα(x) ,

δψα(x) = −2i σ a
αα̇ε̄

α̇ ∂aφ(x) − 2εα F(x) ,

δF(x) = −i ε̄α̇σ a
αα̇ ∂aψ

α(x) . (1.12)

The commutator of two such supertranslations yields an ordinary translation
with a parameter composed in accordance with the supersymmetry algebra.
(See Chapter 2 for more details on the realization of supersymmetry in terms
of fields.)

Of course, one can find a realization of supersymmetry on the physical fields
only, with the auxiliary fields eliminated by the equations of motion of a given
model. In fact, the first known realizations of supersymmetry were of just such
a kind, and it was to some extent an ‘art’ to simultaneously find the invariant
action and the supersymmetry transformations leaving it invariant. In contrast
with the transformations in the presence of auxiliary fields, now one has:

(i) Supersymmetry transformations depending on the choice of the specific
field model. They are in general non-linear and the structure of this
non-linearity varies from one action to another.

(ii) The algebra of these transformations closes only modulo the equations of
motion, i.e., on shell. Such algebras are referred to asopenor soft.
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These complications cause difficulties when trying to exploit the conse-
quences of supersymmetry, in particular, in studying theultraviolet behavior.
Working in a manifestly invariant manner, in terms of the appropriate super-
fields, has undeniable advantages for such purposes. Note that some people
prefer to avoid the use of superfields and instead work directly with the off-shell
supermultiplets of fields including the auxiliary ones (e.g.,φ(x), ψα(x), F(x) in
our N = 1 example). Then one needs a set of rules for handling such multiplets,
known astensor calculus. The superfield approach automatically reproduces
all such rules in a nice geometrical way. This concerns the composition rule
for supermultiplets (it amounts to multiplication of superfields), the building of
invariant actions, etc.

The reader should realize that the notion of auxiliary fields is not peculiar to
supersymmetry, it also appears in the usual non-supersymmetric theories. For
instance, the Coulomb field is auxiliary in quantum electrodynamics.

The auxiliary fields play an extremely important rôle in the theories with
extended supersymmetry, their number there may even become infinite. The
reader will learn from the present book that this is due to a new feature of the
harmonic superspace: It involves auxiliary bosonic coordinates. This superspace
of a new kind is the only one that provides us with a systematic tool for off-shell
realizations of all theN = 2 extended supersymmetries and theN = 3
Yang–Mills theory.

1.7 Why standard superspace is not adequate forN = 2 supersymmetry

‘Not adequate’ means that in the framework of the standard superspacesR4|8 and
C4|4 it is impossible to find off-shell actions for an unconstrained description of
all the N = 2 supersymmetric theories. We illustrate this on the example of
the Fayet–Sohnius matter hypermultiplet [F1, S12]. On shell this supermultiplet
contains four scalar fields forming anSU(2) doublet f i (x) and two isosinglet
spinor fieldsψα(x), κ̄ α̇(x). To incorporate them as components of a standard
superfield one has to use [S12] an isodoublet superfieldqi (x, θ, θ̄ ) defined in
R4|8. Due to the large number of spinor variables this superfield contains a lot
of redundant field components in addition to the physical ones listed above. The
extra fields are eliminated by imposing the constraint [S12]

D(i
α q j ) = D̄(i

α̇ q j ) = 0 , (1.13)

where (i j ) means symmetrization andDi
α, D̄i

α̇ are the supercovariant spinor
derivatives obeying the algebra

{Di
α, D̄α̇ j } = −2i δi

j σ
a
αα̇

∂

∂xa
(1.14)

(for their precise definition see Chapter 3). These constraints eliminate the
extra field components ofqi , leaving only the above physical fields (and their
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derivatives in the higher terms of theθ expansion):

qi (x, θ, θ̄ ) = f i (x) + θ i αψα(x) + θ̄ i
α̇ κ̄

α̇(x) + derivative terms. (1.15)

However, at the same time the above constraints put allthe physicalfields on the
free mass shell:

¤ f i (x) = (σ a)αα̇ ∂

∂xa
ψα(x) = σ a

αα̇

∂

∂xa
κ̄ α̇(x) = 0 . (1.16)

The reason for this is that the constraints (1.13) are not integrable off shell:
The supercovariant spinor derivatives do not anticommute. Equations (1.16)
follow from the constraints (1.13) and the algebra (1.14), taking into account
the definitions

f i (x) = qi |θ=θ̄=0 , ψα(x) = 1

2
Di

αqi |θ=θ̄=0 , κα̇(x) = 1

2
D̄α̇

i qi |θ=θ̄=0 .

(1.17)
In order to extend this theory off shell and to introduce interactions it has

been proposed to relax, in one way or another, the constraints (1.13) [H15, Y1].
However, according to the general no-go theorem [H18, S21] (see Chapter 2),
this is impossible in the framework of the standardN = 2 superspacesR4|8 or
C4|4 using afinite numberof auxiliary fields (or, equivalently, afinite number
of standardN = 2 superfields). A natural way out was to look for other
superspaces.

1.8 Search for conceivable superspaces (spaces)

Above we saw that it is helpful to consider different superspaces even in the
simplest caseN = 1. For any (super)symmetry there exists a number of
admissible (super)spaces. The inadequacy of the standard superspacesR4|8

andC4|4 for off-shell realizations ofN = 2 supersymmetry suggested to start
searching through the list of other available superspaces. This list is provided
by the standard coset construction due to E. Cartan [C4]∗ that allows one to
classify the different (super)spaces of some (super)groupG and to handle them
effectively. One has to examine the conceivable quotients (we prefer the term
‘coset’) G/H of the groupG over some of its subgroupsH . For instance,
Minkowski space is the cosetM4 = P/L = (xa) of the Poincaŕe groupP
over its Lorentz subgroupL. As we shall see later, the Poincaré group for
the Euclidean spaceR4 can also be realized in another way, using the coset
spaceP/SU(2) × U (1), with SU(2) × U (1) being a subgroup of the rotation
groupSO(4) = SU(2) × SU(2). This space is closely related to the so-called
twistor space(more precisely, the traditional twistor space is related by a similar
procedure to the Poincaré group of the complexified Minkowski spaceM4).

∗ Subsequently rediscovered by physicists [C11, O3, V3].
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Analogously, the standard real superspacesR4|4N are the coset spaces

R4|4N = SuPN

L = (xa, θα
i , θ̄ α̇i ) , (1.18)

whereSuPN is the N-extended super-Poincaré group involving the generators
of the Poincaŕe group and the spinor supersymmetry generatorsQi

α , Q̄α̇i . In the
same way, the chiral superspaces are the following coset spaces

C4|2N = SuPN

{L, Q̄α̇i }
= (xa, θα

i ) . (1.19)

Note the important difference between (1.18) and (1.19). In the latter the
stability supergroupcontains half of the spinor generators in addition to the
Lorentz group ones. In Chapter 3 the coset techniques [C4, C11, O3, V3]
are presented in detail. These techniques provide simple rules on how to find
explicit transformation laws, how to construct invariants making use of covariant
derivatives (obtained from the appropriate Cartan forms), etc.

1.9 N = 2 harmonic superspace

Certainly,R4|4N andC4|2N do not exhaust the list of possible superspaces for
realizations ofN-extended supersymmetry. Let us briefly outline some general
features ofN = 2 harmonic superspace, our main topic of interest in this book.

The N = 2 superalgebra{
Qi

α, Q̄α̇ j
} = 2δi

j (σ
a)αα̇ Pa , i, j = 1, 2 (1.20)

possesses anSU(2) group of automorphisms,Qi
α, Q̄α̇, j beingSU(2) doublets

(indices i, j ) and Pa being a singlet. In the standard case of eqs. (1.18)
and (1.19) (withN = 2) this SU(2) can be viewed as present both in the
numerator and the denominator, thus effectively dropping out. To obtain the
harmonic superspace, one has to keep only theU (1) subgroup ofSU(2) in the
denominator instead of the wholeSU(2):

H4+2|8 = SuP2

L × SU(2)

U (1)
. (1.21)

In other words, one has to enlarge theN = 2 supersymmetry group by its
automorphisms groupSU(2) realized in the coset spaceSU(2)/U (1). The latter
is a two-dimensional space known to have the topology of the two-sphereS2. So,
harmonic superspace is a tensor product ofR4|8 and a two-sphereS2.

1.10 Dealing with the sphereS2

Before discussing the harmonic superspace as a whole it is instructive to study
its much more familiar partSU(2)/U (1). Of course, one could choose polar
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(θ, φ) or stereographic (t, t̄) coordinates on this sphere. However, it turns out
much more convenient to coordinatize it by some ‘zweibeins’u+i , u−

i = u+i

havingSU(2) indicesi andU (1) charges±. After imposing the constraint

u+i u−
i = 1 , (1.22)

the matrix

‖ u ‖ =
(

u+
1 u−

1

u+
2 u−

2

)
= 1√

1 + t t̄

(
ei ψ −t̄e−i ψ

tei ψ e−i ψ

)
, 0 ≤ ψ < 2π

(1.23)
represents the groupSU(2) in the familiar stereographic parametrization. We
are interested in its coset spaceSU(2)/U (1). This means that the zweibeins
have to be defined up to aU (1) phase corresponding to a transformation of the
U (1) group in the coset denominator:

u+′
i = ei αu+

i , u−′
i = e−i αu−

i (1.24)

(this transformation can be realized as right multiplications of the matrix (1.23)
with the Pauli matrixτ 3 as the generator). So the phaseψ in the parametrization
(1.23) is inessential and one effectively deals only with the complex coordinates
t, t̄ . In order for the phase not to show up, the ‘functions’ on the sphere must
have adefinite U(1) chargeq and, as a consequence, all the terms in their
harmonic expansion must contain only products of zweibeinsu+ , u− of the
given chargeq. For instance, forq = +1

f +(u) = f i u+
i + f (i jk )u+

i u+
j u−

k + · · · . (1.25)

Such quantities undergo homogeneousU (1) phase transformations, according
to their overall charge. This requirement on the harmonic functions can be called
U (1) charge preservation. In each term in (1.25) complete symmetrization in
the indicesi, j, k, . . . is assumed, otherwise the term can be reduced to the
preceding ones by eq. (1.22).

In fact, the zweibeinsu+
i , u−

i are the fundamental spin 1/2 spherical harmon-
ics familiar from quantum mechanics, and (1.25) is an example of a harmonic
decomposition onS2. This is why we callu+

i , u−
i harmonic variables(or simply

‘harmonics’).

1.10.1 Comparison with the standard harmonic analysis

We would like to point out the following important features of the harmonic
space approach that differ from the standard ones in textbooks and reviews on
harmonic analysis [B9, C2, C3, G31, G37, H5, H6, V2, W13]:

(i) We use the harmonics themselves as coordinates of the sphere. This
amounts to refraining from using any explicit parametrization like the
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stereographic one (1.23). Instead, we assume the defining constraint (1.22)
together with the requirement ofU (1) charge preservation.

(ii) We deal with symmetrized products of harmonics instead of sets of special
functions, like the Jacobi polynomials or the spherical functions familiar
from the harmonic analysis on the two-dimensional sphere.

These formal modifications turn out very convenient for the following main
reasons:

(i) The coefficients in the harmonic expansions (likef i , f (i jk ), . . . in (1.25))
transform as irreducible representations of theSU(2) group of the coset
numerator. This is of special value inN = 2 supersymmetry because the
N = 2 supermultiplets are classified, in particular, according to theSU(2)

automorphism group.

(ii) Working with local coordinates one is confronted with the Riemann–Hilbert
problem: Two maps are needed to cover the two-sphere or the extended
complex plane. So, given a function which is well defined in the northern
hemisphere, one has to worry about defining it consistently in the southern
hemisphere. Remarkably enough, this problem does not appear if one
exploits the harmonicsu+

i , u−
i as ‘global’ coordinates onS2. If one has

succeeded in solving some equation in terms of harmonics, then the solution
obtained is well defined on the entire sphere, after substitution of the
parametrization (1.23) (or any other local one).

The latter statement can be illustrated by the following simple example. On
the sphereS2 one may introduce two covariant derivatives consistent with the
constraint (1.22) and havingU (1) charges+2 and−2:

D++ = u+i ∂

∂u−i
and D−− = u−i ∂

∂u+i
. (1.26)

They will be heavily used in what follows and referred to as harmonic deriva-
tives. In the twistor literature [I2, H2, H22, K8] these derivatives are known
as theedth and antiedthoperators and their expressions in terms of polar or
stereographic coordinates are used, e.g.,

D++ f (q)(u) = −e(q+2)i ψ

[
(1 + t t̄)

∂φ(q)

∂ t̄
+ qt

2
φ(q)

]
. (1.27)

Here f (q)(u) = eiqψφ(q)(t, t̄) is a harmonic function ofU (1) chargeq. As
explained above, it depends on the coordinateψ associated with theU (1) charge
through a simple phase factor. In contrast to the harmonic form (1.26), the edth
operatorD++ (1.27) explicitly involves theU (1) chargeq.
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From the definition (1.26) follow the obvious rules for the action ofD++ on
the harmonics

D++u+
i = 0 , D++u−

i = u+
i . (1.28)

Let us consider the simple harmonic differential equation

D++ f + = 0 . (1.29)

In harmonics its solution is immediately obtained from (1.25):

f + = f i u+
i , (1.30)

where f i are arbitrary constants. Indeed,f + has this form because all other
terms in its harmonic expansion includeu−.

Now it is instructive to compare this ‘harmonic’ procedure with solving the
same equation as a partial differential equation with respect to the complex
coordinatest, t̄ . It is easy to find the general solution of this equation forq = 1
in the form

f +(t, t̄, ψ) = ei ψ(1 + t t̄)− 1
2 F(t) , (1.31)

whereF(t) is an arbitrary holomorphic function. However, we are interested in
solutions well-behaved on the whole two-sphere (we wish to solve the Riemann–
Hilbert problem). This requirement restricts the functionF(t) to the form of a
polynomial of degree 1:F(t) = f 1 + f 2t , where f 1, f 2 are arbitrary constants.
In this way one obtains the same solution (1.30) in the particular parametrization
(1.23). Note, however, that the solution (1.30) ismanifestly SU(2) covariant
(the constantsf i form a doublet) whereas in a particular parametrizationSU(2)

is realized as a non-linear coordinate transformation.
Finally, a word about integration on the two-sphere. In the harmonic approach

it is defined by the following formal rules:∫
du 1 = 1 ,

∫
du u+

(i1
..u+

i k
u−

i k+1
..u−

i k+l )
= 0 . (1.32)

This definition means the vanishing of the integrals of any spherical function
with spin (represented by symmetrized products of harmonics). Of course, it
admits integration by parts, etc. These rules can be justified by the use of some
specific parametrization for the harmonics, e.g., (1.23). However, the abstract
form (1.32) is most convenient in field theory, as the reader will have a number
opportunities to see.

1.11 Why harmonic superspace helps

We now return to the harmonic superspaceH4+2|8 = R4|8 × SU(2)/U (1) with
the coordinates{xa, θα

i , θ̄ α̇i , u±
i }. We explain, on the example of the Fayet–

Sohnius hypermultiplet, why adding the two-sphere is so crucial for the off-shell
formulation ofN = 2 supersymmetric field theories.
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With the help of the harmonicsu±
i we can give the constraints (1.13) another,

more suggestive form. Let us multiply them byu+
i , u+

j . Introducing the notation

D+
α = u+

i Di
α, D̄+

α̇ = u+
i D̄i

α̇ (1.33)

and
q+ = u+

i qi (1.34)

one rewrites (1.13) as

D+
α q+ = 0 , D̄+

α̇ q+ = 0 . (1.35)

Equation (1.34) simply means thatq+ depends linearly on the harmonicsu+
i (in

this basis). It can be recast in an equivalent form using the harmonic derivative
D++:

D++q+ = 0 (1.36)

(cf. (1.29)). Equations (1.35) and (1.36) together are clearly equivalent to the
constraints (1.13). However, these equations turn out to have a deeper meaning
than (1.13). First of all, we remark that the derivatives entering the modified
constraints (1.35), (1.36) mutually (anti)commute,

{D+
α , D̄+

α̇ } = [D++, D+
α ] = [D++, D̄+

α̇ ] = 0 , (1.37)

in contrast to the derivatives entering the original constraints (1.13). This
property is of great significance. Owing to it one can consider equations (1.35)
as thegeneralized Cauchy–Riemann condition of Grassmann analyticity. To
reveal its meaning one should choose an adequate basis in superspace, the
so-calledanalytic basis(an analog of the chiral basis (1.7)):

xa
A = xa − 2i θ(i σ aθ̄ j )u+

i u−
j , θ±

Aα = u±
i θ i

α , θ̄±
Aα̇ = u±

i θ̄ i
α̇ . (1.38)

In this basis the spinor derivativesD+
α andD̄+

α̇ become simple partial derivatives
and the constraints (1.35) take the form

D+
α q+ = ∂

∂θ−α
q+ = 0 , D̄+

α̇ q+ = ∂

∂θ̄−α̇
q+ = 0 . (1.39)

Like the Cauchy–Riemann condition of ordinary analyticity or that ofN = 1
Grassmann analyticity (chirality), equations (1.39) express the fact thatq+ is
independent of half of the relevant variables, this time of the spinor coordinates
θ−α, θ̄−α̇. Their solution is

q+ = q+(xA, θ+, θ̄+, u±) . (1.40)

The same condition can be imposed on harmonic superfields withU (1) charges
different from+1. We refer to conditions like (1.35) or (1.39) asGrassmann
analyticityconditions and to the subspace

HR4+2|8 = (xA, θ+, θ̄+, u±) = (ζ, u±) (1.41)



1.12 N= 2 supersymmetric theories 15

asGrassmann analytic superspace. It contains only half of the original spinor
coordinates (those havingU (1) charge equal to+1) and yet it is closed under
the full N = 2 supersymmetry transformations. We can state that all the
N = 2 supersymmetric theories (matter, Yang–Mills and supergravity) are most
adequately formulated in its framework.

In the analytic basis (1.38) the harmonic derivative takes the form

D++ = u+i ∂

∂u−i
− 2i θ+σ aθ̄+ ∂

∂xa
A

, (1.42)

where one sees space-time derivatives. As a consequence, eq. (1.36) becomes
dynamical and yields the free equations of motion for all physical matter fields.
So, we have succeeded in reformulating the original constraints (1.13) (whose
rôle was to eliminate the extra fields and simultaneously to put the remaining
physical fields on shell) into the analyticity constraints (1.39) (having the evident
solution (1.40)) and the (free) equation of motion (1.36). This was achieved
due to the presence of the harmonicsu±

i . Now we can go a step further and
introduce general self-interactions. This simply amounts to inserting a general
sourceJ+++ of U (1) charge+3 in the right-hand side of eq. (1.36):

D++q+ = J+++(q+, u±) . (1.43)

One has to realize that the harmonic expansion of the analytic superfieldq+

contains aninfinite numberof auxiliary fields. This is how harmonic superspace
gets around the no-go theorem [H18, S21] asserting that it is not possible to
describe the above complex hypermultiplet off shell with a finite number of
auxiliary fields.

1.12 N = 2 supersymmetric theories

Now we are ready to very briefly overview theN = 2 matter, Yang–Mills and
supergravity theories formulated in harmonic superspace in order to give some
guidelines to the main text where the reader will find all the details and, the
authors hope, a deeper insight.

1.12.1 N= 2 matter hypermultiplet

The general action forN = 2 supersymmetric matter is written down as an
analytic superspace integral:

S = −
∫

du dζ (−4) [q̃+D++q+ − L+4(q+, q̃+, u)] . (1.44)

Here L+4 is an arbitrary function of its arguments carryingU (1) charge+4.
It gives rise to the source term in the equation of motion (1.43),J+++ =
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∂L+4/∂q̃+. The operatioñ is a special involution preserving the analytic
harmonic superspace (1.41) (it is reduced to ordinary complex conjugation
for the u-independent quantities), and the integration measure of the analytic
superspace is defined as

dζ (−4) = d4x d2θ+ d2θ̄+ . (1.45)

This measure carries negativeU (1) charge because Grassmann integration is
equivalent to differentiation [B7] with respect to the odd coordinates of the
analytic superspaceθ+

α , θ̄+
α̇ . These formulas look simple. However, in order to

be able to effectively work with them one needs precise definitions and details,
especially of the harmonic calculus onS2. In particular, one needs to know how
to solve differential equations onS2 to which the auxiliary field equations of
motion following from (1.44) are reduced. All this will be explained in the main
body of the book.

Here we make a few comments only. The off-shell action (1.44) corresponds
to the generalN = 2 supersymmetric sigma model. The target spaces of such
sigma models are known to belong to a remarkable class of 4n-dimensional
complex manifolds: According to the theorem of ref. [A2] they are the so-called
hyper-K̈ahler manifolds. This means that they admit a triplet of covariantly
constant complex structures forming the algebra of quaternionic units or, equiv-
alently, that their holonomy group lies inSp(n). The essentially new point in
the harmonic approach is that the interaction LagrangianL+4(q, q̃, u) appears
as the hyper-K̈ahler potential which encodes the complete information about
the local properties of a given manifold. For example,L+4 = λ(q+)2(q̃+)2

describes the well-known Taub–NUT hyper-Kähler manifold. It is worthwhile
mentioning that the four-dimensional hyper-Kähler manifolds (corresponding
to a single hypermultiplet action) represent solutions of the self-dual Einstein
equations, among them the gravitational instantons.

1.12.2 N= 2 Yang–Mills theory

N = 2 supersymmetric Yang–Mills theory is similar to ordinary (N = 0) Yang–
Mills theory. It is based on making an internal symmetry group local in the
analytic harmonic superspace(xA, θ+, θ̄+, u±) = (ζ, u±) (1.41) (instead of just
Minkowski space in theN = 0 case):

δq+
r = i λk(tk)rsq

+
s ⇒ δq+

r (ζ, u±) = i λk(ζ, u±)(tk)rsq
+
s (ζ, u±) , (1.46)

where tk are the generators of the internal symmetry group andλk are the
corresponding parameters. As usual, one should covariantize the derivatives
entering the action. In our case, it is the harmonic one:

D++ ⇒ D++ = D++ + iV ++(ζ, u) . (1.47)
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The gauge connectionV++(ζ, u) = V++k(xA, θ+, θ̄+, u±)tk is a Lie algebra-
valued analytic harmonic superfield. It transforms under the gauge group
according to the standard rule

δV++(ζ, u) = −D++λ(ζ, u) , λ(ζ, u) ≡ λk(ζ, u)tk . (1.48)

This superfield describes just the off-shellN = 2 Yang–Mills supermultiplet,
as the reader will see in Chapter 7. This multiplet consists of a gauge vector
field Aa(x), a doublet of Weyl spinorsψ i

α(x), a complex scalar fieldφ(x) and a
triplet of auxiliary fieldsD(i j )(x). It should be pointed out that, as opposed to
the matter hypermultipletq+(ζ, u), the gauge superfieldV++(ζ, u) contains a
finitenumber of auxiliary fields. Instead, it has an infinite number of pure gauge
degrees of freedom which are gauged away by the transformations (1.48). The
harmonic superspace formulation reveals the close similarity betweenN = 2
super-Yang–Mills theory and the ordinary bosonic (N = 0) Yang–Mills theory.

Having defined the covariant derivative (1.47), one can immediately introduce
the minimal Yang–Mills–matter coupling by simply covariantizing the action
(1.44). The details of how to construct an invariant action for the Yang–Mills su-
perfield itself will be given in Chapter 7. The general class ofN = 2 Yang–Mills
field theories in interaction with hypermultiplets is known to contain a subclass
of four-dimensionalultraviolet finite quantum field theories(in particular,N =
4 Yang–Mills theory). They also reveal remarkable properties of duality [S5].
Harmonic superspace considerably simplifies many aspects and makes manifest
many features of these theories, e.g., the proof of non-renormalization theorems,
finding out the full structure of the quantum effective actions, etc.

The harmonic approach is also convenient for the description of general
non-minimal self-couplings of vectorN = 2 supermultiplets. These theories
are unique because they are the onlyN = 2 supersymmetric field-theoretical
models that admit a natural chiral structure of interactions. For this reason they
may be useful in the phenomenological context as a possible basis ofN = 2
GUT models. Sigma models inherent to these couplings are of interest in their
own right. Their tangent manifolds are of some special Kähler type [C7, C10]
and have been discussed in connection with the so-calledc∗-map [C8, C9].

A historical comment is due here. UnlikeN = 2 matter, theN = 2
Yang–Mills theory can be formulated in terms of standardunconstrainedR4|8

superfields (since it only involves a finite set of auxiliary fields). Such a more
‘traditional’ formulation of N = 2 Maxwell theory was first given in [M3]
and its non-Abelian version in [G28]. The main drawback of this approach is
the lack of geometric meaning of the Yang–Mills prepotential and gauge group,
which makes quantization particularly cumbersome. In Chapter 7 we shall show
that theseR4|8 objects can be derived from the harmonic superspace ones by a
special choice of gauge with respect to the transformations (1.46), (1.48).
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1.12.3 N= 2 supergravity

Now we make a few comments on theN = 2 supergravity theory. It is an exten-
sion of Einstein’s theory of gravity describing the metric fieldgmn(x) (graviton)
and its N = 2 superpartners: anSU(2) doublet of Rarita–Schwinger fields
ψ i

mα(x), ψ̄ i
mα̇(x) (‘gravitini’) and a vector gauge fieldAm(x) (‘graviphoton’).

The underlying principle is gauge invariance under some supergroup containing
the diffeomorphism group of four-dimensional space-time as a subgroup. To
formulateN = 2 supergravity theory one has to answer the following questions:

(i) What kind of superspace is appropriate?

(ii) What is the gauge supergroup needed?

(iii) What are the unconstrained prepotentials?

(iv) How to construct the invariant action?

(v) How many versions of the theory do exist and what are the differences
between them?

The answers to the above questions given in this book are as follows:

(i) The superspace forN = 2 supergravity is harmonic superspace.

(ii) The appropriateN = 2 (conformal) supergravity gauge supergroup is the
superdiffeomorphism group of the harmonic analytic superspace(ζ, u):

δxm = λm(ζ, u) ,

δθµ+ = λµ+(ζ, u) , δθ̄ µ̇+ = λ̄µ̇+(ζ, u) ,

δu+
i = λ++(ζ, u)u−

i , δu−
i = 0 , (1.49)

where the local parametersλ are arbitrary analytic harmonic functions.
Note that only the harmonicsu+ but notu− transform, a peculiarity due
to the special realization of theN = 2 superconformal group (see Chapter
9).

(iii) As in N = 2 Yang–Mills theory, theN = 2 supergravity prepotentials
appear in the covariantized harmonic derivative

D++ = u+
i

∂

∂u−
i

+ H++++u−
i

∂

∂u+
i

+ H++m ∂

∂xm
A

+ H++µ̂+ ∂

∂θµ̂+ (1.50)

(here µ̂ = µ, µ̇). Covariantization is achieved by adding to the flat
harmonic derivativeD++ = u+

i ∂/∂u−
i appropriate vielbein terms with

analytic vielbeinsH++++(ζ, u), H++m(ζ, u), H++µ̂+(ζ, u) (the counter-
parts of the gauge connectionV++(ζ, u) in the Yang–Mills case). These
vielbeins are the unconstrained prepotentials ofN = 2 supergravity. Their
gauge transformation laws follow from (1.49).
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In fact, the supergroup (1.49) and the prepotentials (1.50) are relevant to
the so-called conformal (or Weyl) supergravity. This kind of supergravity
possesses a somewhat bigger gauge symmetry than EinsteinN = 2
supergravity. The extra gauge transformations have to be compensated
by coupling conformal supergravity to some matter supermultiplets called
compensators. This procedure is widely used in gravity and supergravity
theories [D17, D18, D19, D20, D21, D22, F14, G26, G27].

(iv) The action forN = 2 Einstein supergravity is written down as the action
for the N = 2 compensators in the background ofN = 2 conformal
supergravity. Two such compensating supermultiplets are needed. One
of them is always an Abelian vector supermultiplet, but there exist several
alternative choices for the second one.

(v) It should be stressed that different sets of compensators lead to different
off-shell versions ofN = 2 Einstein supergravity having different sets
of auxiliary fields. In the harmonic superspace approach one can repro-
duce all the versions previously found in the component field approach
[D15, D16, D17, D18, D19, F15]. Naturally, the latter always contains a
finiteset of auxiliary fields. Consequently, the corresponding compensators
are described byconstrainedGrassmann analytic superfields (e.g., by
the so-called tensor or non-linear multiplets). The presence of such
constraints restricts the possible form of matter couplings, the latter have
to be consistent with the former. For instance, the matter hypermultiplets
self-couplings must possess some isometries. However, the harmonic
superspace approach provides a new, ‘principal’ version ofN = 2 Einstein
supergravity with anunconstrainedhypermultipletq+ as a compensator.
This version admits the most general matter couplings. At the same time, it
naturally contains an infinite number of auxiliary fields and thus could not
be discovered by traditional methods. The bosonic target manifolds of the
correspondingN = 2 sigma models arequaternionic[B1, B4] in contrast
to the hyper-K̈ahler ones in the flatN = 2 case. The harmonic superspace
approach clearly exhibits this important property [G7, G19] and offers an
efficient tool for the explicit calculation of quaternionic metrics [G7].

1.13 N = 3 Yang–Mills theory

The harmonic superspace concept is not limited toN = 2 supersymmetry only.
However, going toN > 2 requires some major changes. At present,N = 3
Yang–Mills theory is fully understood [G5, G6, G12]. Here are some of the
basic ideas.N = 3 harmonic superspace is a tensor product of the standard
real superspaceR4|12 and the six-dimensional coset spaceSU(3)/U (1) × U (1),
whereSU(3) is the automorphism group ofN = 3 supersymmetry. So, instead
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of just one we now deal withtwo U(1) charges. The corresponding harmonics

uI
i = (u(1,0)

i , u(0,−1)
i , u(−1,1)

i ) ; ui
I = uI

i ; i = 1, 2, 3 (1.51)

are subject to the defining conditions

ui
I u

J
i = δ J

I ; ui
I u

I
j = δi

j ; detu = 1 .

The spinor variablesθi α, θ̄
i
α̇ form the representations 3 and 3of SU(3).

With the help of the harmonics (1.51) they are projected onto six independent
variables:

θ(−1,0)
α , θ (0,1)

α , θ (1,−1)
α , θ̄

(1,0)
α̇ , θ̄

(0,−1)
α̇ , θ̄

(−1,1)
α̇ .

The analytic N = 3 superspace contains only four of them,θ(1,−1)
α , θ(0,1)

α ,
θ̄

(1,0)
α̇ , θ̄

(−1,1)
α̇ (and not half, as was the case inN = 2). The analytic

Yang–Mills prepotentialsV (1,1), V (2,−1), V (−1,2) are introduced as the gauge
connections for the harmonic derivativesD(1,1),D(2,−1),D(−1,2). They have the
usual transformation lawδV (a,b) = D(a,b)λ , whereλ is a chargeless analytic
superfield parameter. The action is very unusual, it is written down as a
Chern–Simons term:

SN=3
SYM =

∫
du dζ (−2,−2)

A Tr
(
V (2,−1)F (0,3) + V (−1,2)F (3,0) + V (1,1)F (1,1)

− iV (1,1)[V (2,−1), V (−1,2)]
)
, (1.52)

where the threeF ’s are the field strengths, e.g.,F (3,0) = −i [D(1,1),D(2,−1)].
Note that the Chern–Simons-type action (1.52) was proposed as early as 1985
and it describes a very non-trivial dynamics. Nowadays Chern–Simons actions
are becoming popular in connection with string field theory and topological field
theory [W15].

There remain a lot of important problems in supersymmetric theories that one
can hope to solve within the harmonic superspace approach. These techniques
have already been employed to approachN = 4 supersymmetric Yang–Mills
theory [S18], ten-dimensional Yang–Mills and supergravity theories in the
context of superparticle and superstring models [G3, N3, N4, N5, S16, S17],
etc.

1.14 Harmonics and twistors. Self-duality equations

The harmonic superspace approach has a close relationship to the famous twistor
theory [P2, P3, P4]. Common for both is an extension of space-time (in twistor
theory) and superspace (in the harmonic superspace approach) by adding some
two-dimensional sphereS2. In such an extended space the self-dual Yang–Mills




