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Arrangements in Dimension Two
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1

Congruent Domains in the Euclidean Plane

Let K be a convex domain. According to the classical result of L. Fejes Tóth
[FTL1950], the density of a packing of congruent copies of K in a hexagon
cannot be denser than the density of K inside the circumscribed hexagon
with minimal area. Besides this statement, we verify that the same density
estimate holds for any convex container provided the number of copies is
high enough. In addition, we show that if K is a centrally symmetric domain
then the inradius and circumradius of the optimal convex container cannot be
too different. Following L. Fejes Tóth [FTL1950] in case of coverings, the
analogous density estimate is verified under the “noncrossing” assumption,
which essentially says that the boundaries of any two congruent copies inter-
sect in two points. In case of both packings and coverings, congruent copies
can be replaced by similar copies of not too different sizes. Finally, we verify
the hexagon bound for coverings by congruent fat ellipses even without the
noncrossing assumption, a result due to A. Heppes.

Concerning the perimeter, we show that the convex domain of minimal
perimeter containing n nonoverlapping congruent copies of K gets arbitrarily
close to being a circular disc for large n. However, if the perimeter of the
compact convex set D covered by n congruent copies of K is maximal then
D is close to being a segment for large n.

1.1. Periodic and Finite Arrangements

Let K be a convex domain. Given an arrangement of congruent copies of
K that is periodic with respect to some lattice 
 (see Section A.13) and
given m equivalence classes, it is natural to call m · A(K )/det 
 the density
of the arrangement. We define the packing density δ(K ) to be the supre-
mum of the densities of periodic packings of congruent copies of K and
the covering density to be the infimum of the densities of periodic coverings
by congruent copies of K . In addition, we define �(K ) = A(K )/δ(K ) and
(K ) = A(K )/ϑ(K ).
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4 Congruent Domains in the Euclidean Plane

It is not hard to show that optimal clusters asymptotically provide the same
densities as periodic arrangements (see Lemma 1.1.2). Our main result is that,
in the planar case, finite packings are not denser (asymptotically) than periodic
packings, and the analogous statement holds for coverings. We note that this
is a planar phenomenon: Say, if d ≥ 3 and K is a right cylinder whose base
is a (d − 1)-ball, then linear arrangements are of density one, whereas any
periodic packing is of density at most δ′ for some δ′ < 1, and any periodic
covering is of density at least ϑ ′ for some ϑ ′ > 1 (see Lemma 7.2.5).

Theorem 1.1.1. Let K be a convex domain, and let n tend to infinity.

(i) If Dn is a convex domain of minimal area containing n nonoverlapping
congruent copies of K then A(Dn) ∼ n · �(K ).

(ii) If D̃n is a convex domain of maximal area that can be covered by n
congruent copies of K then A(D̃n) ∼ n · (K ).

Since periodic arrangements correspond canonically to finite arrangements
on tori (see Section A.13), �(K ) is the infimum of V (T )/m over all tori T
and integers m such that there exists a packing of m embedded copies of K
on T , and (K ) is the supremum of V (T )/m over all tori T and integers m
such that there exists a covering of T by m embedded copies of K . The first
step towards verifying Theorem 1.1.1 is the case of clusters.

Lemma 1.1.2. Given convex domains K and D with r (D) > R(K ), let N be
the maximal number of nonoverlapping congruent copies of K inside D, and
let M be minimal number of congruent copies of K that cover D. Then

(i)
(

1 + R(K )
r (D)

)2 · A(D) ≥ N · �(K ) ≥
(

1 − R(K )
r (D)

)2 · A(D);

(ii)
(

1 + R(K )
r (D)

)2 · A(D) ≥ M · (K ) ≥
(

1 − R(K )
r (D)

)2 · A(D).

Remark. Instead of the upper bound in (i), we actually prove the stronger
estimate A(D + R(K ) B2) ≥ N · �(K ).

Proof. We place K and D in a way that K ⊂ R(K )B2 ⊂ D. In particular,
assuming that K ′ is congruent to K , if the circumcentre c of K ′ lies outside
D + R(K )B2 then K ′ avoids D, and if c ∈ (1 − R(K )/r (D))D then K ′ ⊂ D.
Given a torus T , we write the same symbol to denote a convex domain in R

2

and its embedded image on T .
We present the proof only for packings because the case of cover-

ings is completely analogous. Let T = R
2/
 be any torus satisfying that
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1.1. Periodic and Finite Arrangements 5

C = D + R(K ) B2 embeds isometrically into T , and let K1, . . . , Km be the
maximal number of nonoverlapping embedded copies of K on T . Writing xi
to denote the circumcentre of Ki , we have (see (A.50))∫

T
# ((C + x) ∩ {x1, . . . , xm}) dx = m · A(C). (1.1)

Thus there exists a translate C + x that contains at most k ≤ m · A(C)/A(T )
points out of x1, . . . , xm , say, the points xi1, . . . , xik . After replacing
Ki1, . . . , Kik by the N nonoverlapping embedded copies of K contained in
x + D, we obtain a packing of m − k + N embedded copies of K on T . In
particular, N ≤ k follows by the maximality of m. We conclude

A(D + R(K ) B2) ≥ N · �(K ),

which in turn yields the upper bound in (i).
Turning to (ii), we let λ < 1 satisfy λ · A(C)/�(K ) > �A(C)/�(K )� − 1.

It follows by the definition of �(K ) that there exist a torus T = R
2/


and m nonoverlapping embedded copies K1, . . . , Km of K on T satisfy-
ing A(T ) < λ−1m�(K ), and D embeds isometrically into T . We define
C = (1 − R(K )/r (D))D; hence, (1.1) yields that some translate C + x con-
tains at least m · A(C)/A(T ) points out of the circumcentres of K1, . . . , Km .
We may assume that these points are the circumcentres of K1, . . . , Kl ;
therefore, l ≥ λ · A(C)/�(K ) and K1, . . . , Kl are contained in D + x .
Thus N ≥ l ≥ A(C)/�(K ) by the definition of λ, completing the proof of
Lemma 1.1.2. �

Proof of Theorem 1.1.1. We present the argument only for packings because
just the obvious changes are needed for the case of coverings. In the following
the implied constant in O(·) always depends only on K .

Theorem 1.1.1 for packings follows from the following statement: If ε > 0
is small, and n > 1/ε5 then

A(Dn) = (1 + O(ε)) · n�(K ). (1.2)

Dense clusters show (see Lemma 1.1.2) that

A(Dn) ≤ (1 + O(ε)) · n�(K ).

Therefore, it is sufficient to verify that

A(Dn) ≥ (1 − O(ε)) · n�(K ). (1.3)

If r (Dn) > 1/ε then (1.3) follows from Lemma 1.1.2. Thus we assume
that r (Dn) ≤ 1/ε, a case that requires a more involved argument. We actually
prove that there exists a rectangle R that contains certain N congruent copies
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6 Congruent Domains in the Euclidean Plane

of K , where

A(R)

N
≤ (1 + O(ε)) · A(Dn)

n
. (1.4)

Since the minimal width w of Dn is at most 3/ε according to the Steinhagen
inequality (Theorem A.8.2), there exists a rectangle R̃ such that its sides
touch Dn , and two parallel sides of R̃ are of length w. We say that these sides
are vertical; hence, Dn has a vertical section of length w. Writing l to denote
the length of the horizontal sides, we have A(Dn) ≥ wl/2. For k = �1/ε�, we
decompose R̃ into k3 congruent rectangles R1, . . . , Rk3 in this order, where the
vertical sides of Ri are of length w and the horizontal sides are of length l/k3.

Out of the circumcentres of the n nonoverlapping congruent copies of K
that lie in Dn , let ni be contained in Ri . Now the total area of R1, . . . , Rk2+1

and of Rk3−k2, . . . , Rk3 is(
1 + 1

k2

)
2wl

k
≤ (1 + O(ε)) 4εA(Dn) ≤ (1 + O(ε)) 4�(K ) · εn,

and hence
∑k3−k2

i=k2+1 ni ≥ (1 − O(ε)) n. In particular, there exists some index
j such that k2 + 1 ≤ j ≤ k3 − k2 and

A(R j ∩ Dn)

n j
≤ (1 + O(ε)) · A(Dn)

n
. (1.5)

Let R′ be the rectangle whose sides are vertical and horizontal, with each
touching R j ∩ Dn . We write a to denote the common length of the vertical
sides of R′, which readily satisfies a ≥ 2r (K ). Since w/k2 < 4ε, we de-
duce that R j ∩ Dn contains a rectangle whose horizontal side is of length
l/k3, and the vertical side is of length a − 8ε. In particular, A(R′) is at
most (1 + O(ε))A(R j ∩ Dn). Finally, the rectangle R whose horizontal sides
are of length l/k3 + 2R(K ) and vertical sides are of length a contains
N = n j nonoverlapping congruent copies of K . Now 3l/ε ≥ n A(K ) yields
l/k3 ≥ 1/[4A(K )ε]. Thus we conclude (1.4) by (1.5).

Since the arrangement in R induces a periodic packing of K , (1.4) readily
yields (1.3) and hence Theorem 1.1.1 as well. �

Remark 1.1.3. Given a strictly convex domain K , if Dn is a convex domain
with minimal area that contains n nonoverlapping congruent copies of K then
r (Dn) tends to infinity.

We sketch the argument for Remark 1.1.3: We suppose indirectly that
there exists a subsequence of {r (Dn)} that is bounded by some ω > 0. For
any ε > 0, the proof of Theorem 1.1.1 yields a parallel strip �ε and a packing
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1.1. Periodic and Finite Arrangements 7

� of congruent copies of K inside �ε such that the packing is periodic with
respect to a vector parallel to �ε, the width of �ε is at most 3ω, and the
density of the packing � inside �ε is at least (1 − ε) δ(K ). We reflect this
arrangement through one of the lines bounding �ε and write �′ to denote
the image of �. Because K is strictly convex, there exist positive ν1 and ν2

depending only on K with the following property: Translating the packing
�′ first parallel to �ε by a vector of length ν1, then towards �ε orthogonally
by a vector of length ν2, we obtain an arrangement �′′ such that the union
of � and �′′ forms a packing. If ε < ν2/(2ω) then the union of � and �′′

determines a periodic packing in the plane whose density is larger than δ(K ).
This contradiction verifies that r (Dn) tends to infinity.

Open Problems.
(i) Let K be a convex domain that is not a parallelogram. We write Dn

(D̃n) to denote a convex domain with minimal (maximal) area that
contains n nonoverlapping congruent copies of K (i.e., is covered by
n congruent copies of K ). Is

r (Dn), r (D̃n) > c
√
n

for a suitable positive constant c depending on K ? If the answer is yes
then the ratio R(Dn)/r (Dn) stays bounded as n tends to infinity, and
a similar property holds for D̃n .

For packings, various partial results support an affirmative answer:
The statement holds if K is centrally symmetric (see Corollary 1.4.3)
or the packing is translative (see Theorem 2.4.1). Strengthening the
method of Remark 1.1.3 yields that r (Dn) > c 3

√
n holds if K is any

strictly convex domain. For coverings, the statement holds if K is a
fat ellipse (see Theorem 1.7.1) or if K is centrally symmetric and only
translative coverings are allowed (see Corollary 2.8.2).

(ii) Is ϑ(K ) ≤ 2π/
√

27 = 1.2091 . . . for any convex domain K ; namely,
is the covering density maximal for circular discs (see Theorem 1.7.1)?

D. Ismailescu [Ism1998] proved ϑ(K ) ≤ 1.2281 . . . for any convex
domain K . However, ϑ(K ) ≤ 2π/

√
27 if K is centrally symmetric

(see L. Fejes Tóth [FTL1972]).
(iii) Does it hold for any convex domain that there exist a periodic packing

whose density is the packing density and a periodic covering whose
density is the covering density? It is known that there exist no optimal
lattice arrangement for the typical convex domain (see G. Fejes Tóth
and T. Zamfirescu [FTZ1994] and G. Fejes Tóth [FTG1995a]).
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8 Congruent Domains in the Euclidean Plane

Comments. The packing and covering densities were originally introduced
in the framework of infinite packing and covering of the space (see G. Fejes
Tóth and W. Kuperberg [FTK1993]). Readily, (K ) ≤ A(K ) ≤ �(K ). W.M.
Schmidt [Sch1961] proved that (K ) = A(K ) or �(K ) = A(K ) if and only
if some congruent copies of K tile the plane (see also Lemma 7.2.5).

According to the hexagon bound of L. Fejes Tóth [FTL1950] (see The-
orem 1.3.1), �(K ) is at least the minimal area of circumscribed hexagons
for any convex domain K , where equality holds if K is centrally symmetric.
Concerning absolute lower bounds on the packing density, G. Kuperberg and
W. Kuperberg [KuK1990] verified that δ(K ) >

√
3/2 = 0.8660 . . . holds for

any convex domain K . In addition a beautiful little theorem of W. Kuperberg
[Kup1987] states that δ(K )/ϑ(K ) ≥ 3/4, where equality holds for circular
discs. It is probably surprising but the packing density, π/

√
12 = 0.9068 . . .

of the unit disc is not minimal among centrally symmetric convex domains,
which is shown say by the regular octagon. By rounding off the corners of
the regular octagon, K. Reinhardt [Rei1934] and K. Mahler [Mah1947] pro-
posed a possible minimal shape whose density is 0.9024 . . . . P. Tammela
[Tam1970] proved that δ(K ) > 0.8926 for any centrally symmetric convex
domain K .

Concerning coverings, D. Ismailescu [Ism1998] proved ϑ(K ) ≤
1.2281 . . . for any convex domain K . For very long the only convex domains
with known covering densities were the tiles (when the covering density is
one), and circular discs (when the covering density is 2π/

√
27 according

to R. Kershner [Ker1939]; see also Corollary 5.1.2). Recently A. Heppes
[Hep2003] showed that the covering density of any “fat ellipse” (when the
ratio of the smaller axis to the greater axis is at least 0.86) is 2π/

√
27 (see also

Theorem 1.7.1). A substantial improvement is due to G. Fejes Tóth [FTG?b]:
On the one hand [FTG?b] generalized A. Heppes’ theorem to ellipses when
the ratio of the smaller axis to the greater axis is at least 0.741. On the other
hand if K is a centrally symmetric convex domain and r (K )/R(K ) ≥ 0.933
then [FTG?b] proves that (K ) is the maximal area of polygons with at
most six sides inscribed into K . Readily if K is either type of the convex do-
mains considered in [FTG?b], and C ⊂ K is a convex domain that contains
a centrally symmetric hexagon of area (K ) then (C) = (K ).

1.2. The Hexagon Bound for Packings Inside an Octagon

Given a convex domain K , we write H (K ) to denote a circumscribed con-
vex polygon with at most six sides of minimal area. The aim of this sec-
tion is to verify the hexagon bound for packings of congruent copies of K
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1.2. The Hexagon Bound for Packings Inside an Octagon 9

inside a hexagon; namely, the density is at most A(K )/A(H (K )). Later we
will prove the hexagon bound with respect to any convex container (see
Theorem 1.4.1).

Theorem 1.2.1. If a polygon D of at most eight sides contains n ≥ 2 con-
gruent copies of a given convex domain K then

A(D) ≥ n · A(H (K )).

The main idea of the proof Theorem 1.2.1 is to define a cell decompo-
sition of D into convex cells in a way such that each cell contains exactly
one of the congruent copies of K ; hence, the average number of sides of the
cells is at most six according to the Euler formula. Then we verify that the
minimal areas of circumscribed k-gons are convex functions of k (see Corol-
lary 1.2.4), and we deduce that the average area of a cell is at least A(H (K )).
Unfortunately, we cannot proceed exactly like this because no suitable cell
decomposition of D may exist. In spite of this we can still save the essential
properties of a cell decomposition (see Lemma 1.2.2) and verify the hexagon
bound. Lemma 1.2.2 is presented in a rather general setting because of later
applications.

Lemma 1.2.2. Let D be a convex domain that contains the nonoverlapping
convex domains K1, . . . , Kn, n ≥ 2. Then there exist nonoverlapping convex
domains �1, . . . , �n ⊂ D satisfying the following properties:

(i) Ki ⊂ �i .
(ii) �1, . . . , �n cover ∂D.
(iii) �i is bounded by ki ≥ 2 convex arcs that we call edges. The edges

intersecting int D are segments, and the rest of the edges are the
maximal convex arcs of ∂D ∩ �i .

(iv) The number b of edges contained in ∂D satisfy

n∑
i=1

(6 − ki ) ≥ b + 6.

In addition, if D is a polygon of at most eight sides and k∗
i denotes

the number of sides of �i then
∑n

i=1(6 − k∗
i ) ≥ 0.

Proof. Let �1, . . . , �n be nonoverlapping convex domains such that Ki ⊂
�i ⊂ D and the total area covered by the convex domains �1, . . . , �n is
maximal under these conditions. Since two nonoverlapping convex sets can
be separated by a line, each �i is the intersection of a polygon Pi and D.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521801575 - Finite Packing and Covering
Karoly Boroczky
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521801575


10 Congruent Domains in the Euclidean Plane

Now int Pi ∩ ∂D consists of finitely many convex arcs whose closures we
call edges of �i . The rest of the edges of �i are the segments of the form
s ∩ D, where s is a side of Pi that intersects int D, and the vertices of �i are
the endpoints of the edges.

It may happen that �1, . . . , �n do not cover D, and we call the closure
of a connected component of int D\∪n

i=1 �i a hole. Let Q be a hole. Then
there exists an edge e1 of some �i1 such that e1 intersects int D, and e1 ∩ ∂Q
contains a segment s1, where we assume that s1 is a maximal segment in e1 ∩
∂Q. Since�i1 cannot be extended because of the maximality of

∑
A(� j ), one

endpoint v2 of s1 is contained in the relative interior of e1; hence, v2 ∈ intD.
Therefore, v2 is the endpoint of an edge e2 of some �i2 such that e2 ∩ ∂Q
contains a maximal segment s2. Continuing this way we obtain that ∂Q is the
union of segments s1, . . . , sk with the following properties (where s0 = sk): s j
is contained in an edge e j of some �i j , and s j ∩ s j−1 is a common endpoint
v j ∈ int D that is an endpoint of e j and not of e j−1 for any j = 1, . . . , k;
moreover, different si and s j do not intersect otherwise. We deduce that Q is
a convex polygon and Q ⊂ int D.

Now (ii) readily follows; namely, �1, . . . , �n cover ∂D. Next, we
construct a related cell decomposition � of D by cells �̃1, . . . , �̃n . If there
exists no hole then �̃i = �i . Otherwise, let {Q1, . . . , Qm} be the set of holes,
let q j ∈ int Q j , and we define �̃i to be the union of �i and all triangles of
the form conv{q j , s} such that s is a side of Q j and s ⊂ �i . In particular, the
number of edges of � contained in �̃i is at least ki ; hence

∑
(6 − ki ) ≥ b + 6

is a consequence of Lemma A.5.9. If, in addition, D is a polygon of at
most eight sides then

∑
k∗
i ≤ 8 + ∑

ki ; thus b ≥ 2 completes the proof of
Lemma 1.2.2. �

Given the convex domain K , let tK (m) denote the minimal area of a cir-
cumscribed polygon of at most m sides for any m ≥ 3. Next, we show that
tK (m) is a convex function of m, more precisely, that tK (m) is even strictly
convex if K is strictly convex.

Lemma 1.2.3. If K is a strictly convex domain and m ≥ 4 then

tK (m − 1) + tK (m + 1) > 2 tK (m).

Proof. For any m ≥ 3, we choose a circumscribed polygon �m of minimal
area among the circumscribed polygons of at mostm sides. Since K is strictly
convex, �m is actually an m-gon, and each side of �m touches K at the
midpoint of the side.
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1.2. The Hexagon Bound for Packings Inside an Octagon 11

Letm ≥ 4, and let 3 ≤ k ≤ l satisfy that A(�k) + A(�l) is minimal under
the condition k + l = 2m. We suppose that k < m and seek a contradiction.
The idea is to decrease the total area of �k and �l by interchanging certain
sides. We write p1, . . . , pk and q1, . . . , ql to denote the midpoints of the
sides of �k and �l , respectively, according to the clockwise orientation,
and we write ei and f j to denote the side of �k and �l containing pi and
q j , respectively. For p, q ∈ ∂K , let [p, q) denote the semi open arc of ∂K ,
which starts at p and terminates at q according to the clockwise orientation,
and the arc contains p and does not contain q . The k semi open convex
arcs [pi−1, pi ) on ∂K (with p0 = pk) contain the l ≥ k + 2 midpoints for
�l , and hence either there exists [pi−1, pi ), which contains say q1, q2, q3, or
there exist two semi open arcs of the form [pt−1, pt ) such that each contains
two midpoints from �l . In the first case, let �′

k+1 be obtained from �k by
cutting off the vertex ei−1 ∩ ei by aff f2, and let �′′

l−1 be obtained from �l

by removing the side f2, and hence aff f1 ∩ aff f3 is the new vertex of �′′
l−1.

Then �′
k+1 and �′′

l−1 have k + 1 and l − 1 sides, respectively, and �′′
l−1\�l

is strictly contained in �′
k+1\�k . Therefore,

A(�′
k+1) + A(�′′

l−1) < A(�k) + A(�l).

This is absurd, and hence we may assume thatq1, q2 ∈ [p1, p2) andq j−1, q j ∈
[pi−1, pi ) for i �= 2. In this case let �′

k ′ be the circumscribed k ′-gon defined
by affine hulls of

e1, f2, . . . , f j−1, ei , . . . , ek .

In addition, let �′′
l ′ be the circumscribed l ′-gon defined by affine hulls of

f1, e2, . . . , ei−1, f j , . . . , fl ;

thus k ′ + l ′ = 2m. When constructing �′
k ′ and �′′

l ′ , we remove the part of
�k at the corner enclosed by e1 and e2 and cut off by ∂�l , and we add two
nonoverlapping domains contained in this part (where one of the domains
degenerates if q1 = p1). Because the situation is analogous at the corner of
�k enclosed by ei−1 and ei , we deduce that

A(�′
k ′) + A(�′′

l ′) ≤ A(�k) + A(�l).

The polygons were constructed in a way that f j−2 ∩ f j−1 is a common
vertex for �′

k ′ and �l , whereas f j ∩ f j−1 is a vertex for �l but not for �′
k ′ ,

and hence q j−1 is not the midpoint of the side of �′
k ′ containing it. Therefore,

there exists a circumscribed k ′-gon whose area is less than A(�′
k ′), which

contradicts the minimality of A(�k) + A(�l). �
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