

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge, CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

Text © 2002 Michael Zeilik

Art © 2002 Boris Starosta and Michael Zeilik

Michael Zeilik asserts the moral right to be identified as the author of this work.

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United States of America

Typeface Meridien Roman 10/13 System QuarkXPress® [GH]

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Zeilik, Michael.

Astronomy: the evolving universe / Michael Zeilik – 9th ed. p. cm.
Includes bibliographical references and index.
ISBN 0-521-80090-0 (pb.)
1. Astronomy. I. Title.

QB45.Z428 2001 520 – dc21

2001035088

ISBN 0 521 80090-0 (paperback)

This project was supported, in part, by the National Science Foundation.

Cover Image

Magnificent Messier 82 (sometimes called the Cigar galaxy) captured by the Subaru Telescope on Mauna Kea, Hawaii, U.S.A. This irregular galaxy lies about 12 million light years away in the constellation Ursa Major. Messier 82 is the brightest galaxy in the sky in infrared light. Its core appears to have been disrupted by a close encounter with another galaxy, triggering a colossal round of starbirth. Winds from these hot, young stars expel supersonic hydrogen gas (red filaments) from the galaxy. Copyright 2000 National Astronomical Observatory of Japan.

About the Author

Dr. Michael Zeilik works as Professor of Astronomy at the University of New Mexico. In his teaching, he specializes in innovative, introductory courses for the novice, non–science major student. His classes include cooperative learning teams to explore key astronomical concepts with hands-on activities. He has been supported by grants from the National Science Foundation, NASA, the Exxon Educational Foundation, and the Slipher Fund of the National Academy of Sciences for innovations in astronomy education, delivery of astronomy to the general public, and astronomy workshops for in-service teachers.

Dr. Zeilik's current research activities focus on two areas: astronomy education and astronomy in the historic and prehistoric Pueblo world in the U.S. Southwest. He has published more than 100 professional articles and four books and has given more than 200 talks to professional and lay audiences.

Dr. Zeilik earned his A.B. in Physics with honors at Princeton University and his M.A. and Ph.D. in Astronomy at Harvard University. He has been a Woodrow Wilson Fellow, a National Science Foundation Fellow, and a Smithsonian Astrophysical Observatory Predoctoral Fellow. At the University of New Mexico, he has been named a Presidential Lecturer, the highest award for all-around performance by a faculty member. In 1998, he was appointed a Research Fellow with the National Institute of Science Education.

In 2000, he became Chair of the Astronomy Education Committee of the American Association of Physics Teachers.

Dr. Zeilik is listed in American Men and Women of Science, The Writers Directory, Contemporary Authors, Who's Who in the West, and Who's Who of Emerging Leaders in America. He is a member of the Authors Guild and the Text and Academic Authors Association. The 8th edition of Astronomy: The Evolving Universe won a 1997 Texty Award from the Text and Academic Authors Association.

iii

Contents

retace		ΧI
Concep	t Clusters	ΧV
low to	Study Astronomy	xvii
PART 1	Changing Conceptions of the Cosmos	1
Chapte	r 1 From Chaos to Cosmos	2
1.1	The Visible Sky Constellations 4 Angular Measurement 4 Motions of the Stars 4	4
1.2	The Motions of the Sun Motions Relative to the Horizon 8 Motions Relative to the Stars 9 View from the Southern Hemisphere 12	7
1.3	The Motions of the Moon Motions Relative to the Stars 12 Phases 13	12
1.4	The Motions of the Planets Retrograde Motion 14 Elongations, Conjunctions, and Oppositions 15 Angular Speed and Relative Distances 16	14
1.5	Eclipses of the Sun and Moon	16
	chment Focus 1.1	
	cession of the Equinoxes	11
	chment Focus 1.2 gular Size and Speed	18

	Chapte	r 2 The Birth of Cosmological Models	22
	2.1	Scientific Models Building Models 24	24
		Evaluation of Models 24	
	2.2	Greek Models of the Cosmos	25
		Harmony and Geometry 25	
		A Physical Geocentric Model 26	27
		A Contrary View: A Sun-Centered Model Stellar Parallax in a Finite Cosmos 27	2/
		Expanding the Geocentric Model 29	
	23	Claudius Ptolemy:	
	2.3	A Total Geocentric Model	31
		A Geocentric Model Refined 31	
		Nonuniform Motion 32	
		Ptolemy's Complete Model 34	
		The Size of the Cosmos 34	
		Model Evaluation 35	
	2.4	Describing Basic Observations	
ŀ		with a Geocentric Model	35
İ		chment Focus 2.1	
	Surv	veying the Earth	28
	Chapte	r 3 The New Cosmic Order	40
	3.1	Copernicus the Conservative	42
		The Heliocentric Concept 43	
		The Plan of De Revolutionibus 43	
	3.2	The Heliocentric Model of Copernicus Details of the Model 44	44
		Retrograde Motion Explained Naturally	45

iv

Contents • v

Planetary Distances 46 Relative Distances of the Planets 46		Orbits and Escape Speed 84 Newton's Cosmology 85	
Problems with the Heliocentric Model 48 The Impact of the Heliocentric Model 49		Enrichment Focus 4.1 Speed, Velocity, and Acceleration	69
3.3 Tycho Brahe: First Master of Astronomical Measurement	50	Enrichment Focus 4.2 Newton, the Apple, and the Moon	80
The New Star of 1572 50 Tycho's Hybrid Model 50		Enrichment Focus 4.3 The Mass of the Sun	81
3.4 Johannes Kepler and the Cosmic Harmonies	52	Enrichment Focus 4.4 Escape Speed	86
The Harmonies of the Spheres 51 3.5 Kepler's New Astronomy	53		90
The Battle with Mars 53		Chapter 5 The Birth of Astrophysics	
Properties of Ellipses 54 Kepler's Laws of Planetary Motion 55		5.1 Sunlight and Spectroscopy Atoms and Matter 92	92
The New Astronomy 57		A Model of the Atom 92 Simple Spectroscopy 93	
Enrichment Focus 3.1		5.2 Analyzing Sunlight	94
Sidereal and Synodic Periods in a Heliocentric Model	47	Kirchhoff's Rules 96	34
Enrichment Focus 3.2	7,	The Conservation of Energy 97	
Geometry of Ellipses	54	Kinetic Energy 98	
deometry of Empses	J -7	Potential Energy 99	
Chapter 4 The Clockwork Universe	62	5.3 Spectra and Atoms Light and Electromagnetic Radiation	99 <i>99</i>
4.1 Galileo: Advocate		Waves 99	
of the Heliocentric Model	64	The Electromagnetic Spectrum 100	
The Magical Telescope 64 The Starry Messenger 66	:	Atoms, Light, and Radiation 101	
Galileo's Discoveries		Solving the Puzzle of Atomic Spectra	102
and the Copernican Model 66		Energy Levels 103	
The Crime of Galileo 66		Other Atoms 105	105
4.2 Galileo and a New Physics of Motion	68	5.4 Spectra from Atoms Absorption-Line Spectra 106	105
Acceleration, Velocity, and Speed 68		Enrichment Focus 5.1	
Natural Motion Revisited 69		Kinetic Energy	98
Forced Motion: Gravity 70			30
Planets and Pendulums 70		Enrichment Focus 5.2	102
Galileo's Cosmology 71		Energy and Light	102
4.3 Newton: A Physical Model of the Cosmos	72	Chapter 6 Telescopes and Our Insight	
The Prodigious Young Newton 72	12	into the Cosmos	110
The Magnificent Principia 73		6.1 Observations and Models	112
Forces and Motions 73		6.2 Visible Astronomy:	112
Newton's Laws of Motion 74		Optical Telescopes	113
4.4 Newton and Gravitation	76	The Basis of Optics 113	
Centripetal Acceleration 76		Optics and Images 114	
Newton's Law of Gravitation 78		Telescopes 115	
4.5 Cosmic Consequences		Functions of a Telescope 116	
of Universal Laws	81	Next Generation of Telescopes 118	
The Earth's Rotation 81 Precession of the Earth's Axis 81		New Optical Techniques 119	430
The Earth's Revolution		6.3 Invisible Astronomy Ground-Based Radio 121	120
and the Sun's Mass 82		Resolving Power	
Gravity and Orbits 82		and Radio Interferometers 122	
•			

vi • Contents

Enric	Ground-Based Infrared 123 Space Astronomy 124 Image Collection and Processing Understanding Intensity Maps 125 Photography 126 Charge-Coupled Devices (CCDs) 126 chment Focus 6.1 perties of Telescopes	125	Origin and Development of the Oceans 160 Evolution of the Atmosphere 161 Evolution of the Earth's Surface Temperature 161 8.7 The Earth's Evolution: The Big Picture 8.8 Models of Planets Enrichment Focus 8.1	161 163
Chapte	r 7 Einstein's Vision	130	Radioactivity and the Dating of Rocks	154
7.1	Natural Motion Reexamined Newton's Assumptions 133 Motion and Geometry 133	133	Chapter 9 Moon and Mercury, Mars and Venus: <i>Terrestrial Planets</i>	166
		36	9.1 General Orbital and Physical Characteristics Moon 168 Mercury 170 Mars 172 Venus 172	168
7.3	The Geometry of Spacetime Euclidean Geometry 137 Non-Euclidean Geometry 138 Local Geometry and Gravity 138 The Curvature of Spacetime 139 Spacetime Curvature in the Solar System 139	137	9.2 Surface Environments Moon 174 Mercury 179 Mars 180 Venus 183 The Active Surface of Venus 184	174
	Experimental Tests of General Relativity 141 Geometry and the Universe Cosmic Geometry 142 Relativity and the Cosmos	142 143	9.3 Magnetic Fields Moon 186 Mercury 187 Mars 188 Venus 188	186
	Escape Speed and the Critical Density The Future of the Universe 143	143	9.4 History and Evolution Moon 189 Mercury 189 Mars 191	189
	The Planets: Past and Present r 8 The Earth: An Evolving Planet	147 148	Venus 192 Enrichment Focus 9.1	
•	•	140	Tides and Tidal Friction	169
	The Mass and Density of the Solid Earth	150	Enrichment Focus 9.2 Distances in the Solar System	171
	The Earth's Interior and Age	150	Enrichment Focus 9.3	
8.3	The Earth's Magnetic Field Origin 155 Magnetosphere 155	153	Impact Cratering	177
8.4	The Blanket of the Atmosphere The Greenhouse Effect 156	155	Chapter 10 The Jovian Planets: Primitive Worlds	196
	Atmospheric Circulation 157 The Evolution of the Crust Planetary Evolution and Energy 158 Volcanism and Plate Tectonics 158	157	10.1 Jupiter: Lord of the Heavens Physical Characteristics 200 Atmospheric Features and Composition 200	198
8.6	Evolution of the Atmosphere and Oceans	159	A Model of the Interior 202 Magnetic Field 203	

Contents • vii

10.2	The Many Moons and Rings			Models of Origin 241	
	of Jupiter	203	11.5	Basics of Nebular Models	241
	lo 204			Angular Momentum 241	
	Europa 205			Heating of the Nebula 244	
	Ganymede 205		11.6	The Formation of the Planets	244
	Callisto 206			Making Planets 244	
10.2	The Rings of Jupiter 207	207		Chemistry and Origin 245	
10.3	Saturn: Jewel of the Solar System Atmosphere and Interior 207	207			247
	Similarities to Jupiter 208			Our Moon: A Different Story! 248 Evaluation of the Nebular Model 248	
10 4	The Moons and Rings of Saturn	209	Emei.	chment Focus 11.1	
10.7	Titan 211	203	!	mentum and Angular Momentum	242
	Other Moons 211		14101	Heritain and Angular Momentain	272
	Ring System 213				
10.5	Uranus: The First New World	214			254
	Atmospheric and Physical Features 214		PARI 3	The Universe of Stars	<u> 251</u>
	Moons and Rings 215		Chapte	r 12 Our Sun: Local Star	252
	Magnetic Field 216		12.1	A Solar Physical Checkup	254
10.6	Neptune: Guardian of the Deep	217		How Far? 254	
	Physical Properties 217			How Big? 254	
	Moons and Rings 217 Atmospheric Features 220	,		How Massive? 254	
	Magnetic Field 220			How Dense? 254	
10.7	Pluto and Charon: Guardians		12.2	Ordinary Gases	255
10.7	of the Dark	221		Temperature 255	
	Orbital and Physical Properties 221		42.2	Pressure 256	256
	Charon: Pluto's Companion Planet 222		12.3	The Sun's Continuous Spectrum	256
Enri	chment Focus 10.1			Luminosity 256 Surface Temperature and Blackbody	
The	Doppler Shift	201		Radiators 257	
				Opacity 260	
a .	44 = 0		12.4	The Solar Absorption-Line Spectrum	260
Chapte	r 11 The Origin and Evolution	226		The Origin of Absorption Lines 260	
	of the Solar System	226		The Chemical Composition	
11.1	Debris between the Planets:			of the Photosphere 261	
	Asteroids	228	12.5	Energy Flow in the Sun	262
	Asteroids: Minor Planets 228			Conduction, Convection, Radiation 262	
11 2	Composition 229	220		Photosphere 262	
11.2	Comets: Snowballs in Space Composition 232	229		Chromosphere 263 Corona 263	
	Orbits 233			Solar Wind 265	
	The Comet Cloud 233		12.6	The Solar Interior	265
	Interactions with the Solar Wind 233			Energy Sources 265	
	Halley's Comet 234			Nuclear Transformations 265	
	Comet Shoemaker-Levy 9 and the Great			Fusion Reactions 266	
	Comet Crash on Jupiter 237			Solar Neutrino Problem 268	
11.3	Meteors and Meteorites	237		Solar Vibrations and Interior 268	
	Types of Meteorites 238		12.7	The Active Sun	269
11 4	Origin of Meteorites 238			Sunspots 269	
11.4	Pieces and Puzzles of the Solar System	240		Sunspot Cycle 269 Physical Nature of Sunspots 271	
	Chemistry 240	270		Flares 271	
	Dynamics 240			Coronal Loops and Holes 272	

viii • Contents

Enrichment Focus 12.1			14.3	Starbirth: Theoretical Ideas	317
The Sun's Luminosity				Collapse Models 317	
Enrichment Focus 12.2				Protostar Formation 317	
Emi	ssion from Blackbodies	259		Collapse with Rotation 318	
			14.4	Starbirth: Observational Clues	319
Chapte	r 13 The Stars as Suns	278		Signposts for the Birth	
•	Some Messages of Starlight	280		of Massive Stars 320	
15.1	Brightness and Flux 281	280		The Birth of Massive Stars 320	
	Flux and Luminosity 281			The Birth of Solar-Mass Stars 320	
	The Inverse-Square Law for Light 283			Molecular Outflows and Starbirth 322	
13.2	Stellar Distances: Parallaxes	284		Planetary Systems? 323 Brown Dwarfs: Failed Stars 325	
	Stellar Colors, Temperatures,	204	145		
13.3	and Sizes	287	14.5	Neighboring Planetary Systems: Found!	326
	Color and Temperature 287	207		Center-of-Mass Motions 326	320
	Temperature and Radius 287			Doppler Shift Detections 327	
	Direct Measurement of Diameters 289		F:		
13 4	Spectral Classification of Stars	289		chment Focus 14.1 ssion Nebulas: Forbidden Lines	310
13.4	Temperature and the Balmer Lines 289		Emi	ssion Nebulas: Forbidden Lines	310
	Spectral Classification 290				
13.5	The Hertzsprung–Russell Diagram	292	Chapte	r 15 Star Lives	332
15.5	Temperature versus Luminosity 293	272	15.1	Stellar Evolution and the	
	Spectroscopic Distances 295			Hertzsprung-Russell Diagram	334
13.6	Weighing and Sizing Stars:			Classifying Objects 334	
13.0	Binary Systems	296		Time and the H-R Diagram 335	
	Binary Stars 296	230	15.2	Stellar Anatomy	336
	Spectroscopic Binary Systems 298			Pressure and Energy Balance 336	
	The Mass-Luminosity Relation			Energy Transport 336	
	for Main-Sequence Stars 298		15.3	Star Models	337
	Stellar Densities 299			Goals of Models 338	
	Stellar Lifetimes 300			General Results 338	
Enri	chment Focus 13.1		15.4	Energy Generation and the	
Flux	cand Magnitude	282		Chemical Compositions of Stars	338
Enri	chment Focus 13.2			Hydrogen Burning 338	
	iocentric (Trigonometric)			Helium and Carbon Burning 339	
	lar Parallax	286	15.5	Theoretical Evolution	
				of a 1-Solar-Mass Star	340
Chapte	r 14 Starbirth and Interstellar Matter	304		Evolution to the Main Sequence 340	
•		306		Evolution on the Main Sequence 341 Evolution off the Main Sequence 342	
14.1	The Interstellar Medium: Gas Bright Nebulas 306	300		Evolution to the End 343	
	Interstellar Atoms 306			The Fate of the Earth 344	
	21-cm Emission from Atomic Hydrogen	307		Lower-Mass Stars 344	
	Clouds and Intercloud Gas 310	307		Chemical Composition and Evolution 34	14
	Interstellar Molecules 310		15.6	Theoretical Evolution	
	Molecular Clouds 311		13.0	of Massive Stars	344
14.2	The Interstellar Medium: Dust	312		Evolution of a 5-Solar-Mass Star 345	_ , ,
	Cosmic Dust 312			More Massive Stars 345	
	Dust and Infrared Observations 315		15.7		
	The Nature of Interstellar Dust 315			for Stellar Evolution	346
	Dust and the Formation			Stars in Groups 346	
	of Molecules 316			Globular Clusters 347	
	Formation of Cosmic Dust 317			Stellar Populations 349	

Contents • ix

	Comparison with the H–R Diagram	
	of Clusters 350	
	Variable Stars 351	
	Central Stars of Planetary Nebulas 352	
15.8	The Synthesis of Elements in Stars	353
	Nucleosynthesis in Red Giant Stars 353	
	chment Focus 15.1	
Deg	generate Gases	342
Chante	r 16 Stardeath	358
•		
16.1	White Dwarf Stars: Common Corpses	360
	Physics of Dense Gases 360	
	White Dwarfs in Theory 360	
46.3	Observations of White Dwarfs 361	264
16.2	Neutron Stars: Compact Corpses	361
	Degenerate Neutron Gases 361	
16.2	Physical Properties 362	262
10.3	Novas: Mild Stellar Explosions Ordinary Novas 363	362
	A Nova Model 363	
16.4		364
10.4	Supernovas: Cataclysmic Explosions Classifying Supernovas 365	304
	The Origin of Supernovas 366	
	Supernova 1987A 367	
	Supernova Remnants 368	
	The Crab Nebula:	
	A Supernova Remnant 371	
16.5	•	373
	Nucleosynthesis in Stars 373	
	Nucleosynthesis in a Supernova 373	
	Other Sites of Nucleosynthesis 374	
16.6	Pulsars: Neutron Stars in Rotation	374
	Observed Characteristics 375	
	Clock Mechanism 375	
	Pulsars and Supernovas 375	
	A Lighthouse Model for Pulsars 376	
	Binary Radio Pulsars 377	
	Very Fast Pulsars 377	
	Pulsars with Planets 378	
16.7	Black Holes: The Ultimate Corpses	378
	The Schwarzschild Radius 379	
	The Singularity 380	
16.0	Perilous Journey into a Black Hole 380	201
10.0	Observing Black Holes	381
	Binary X-Ray Sources 381 Observing Black Holes 382	
16.0	_	202
16.9	High-Energy Bursters Everywhere! X-Ray Bursters 383	383
		383
Cn.:	chment Focus 16.1	,,,,
	rmal and Nonthermal	
	ichrotron) Emission	370

PART 4	Galaxies and Cosmic Evolution	387
Chapte	r 17 The Evolution of the Galaxy	388
17.1	The Galaxy's Overall Structure	390
17.2	Galactic Rotation: Matter in Motion	392
	The Sun's Speed around the Galaxy 392	
	The Sun's Distance from the Center 392	
	Rotation Curve and the Galaxy's Mass 39)3
17.3	Galactic Structure from Optical	
	Observations	395
	Spiral Tracers and Spiral Structure 395	
	Optical Maps of Spiral Structure 396	
17.4	Exploring Galactic Structure	
	by Radio Astronomy	397
	Radial Velocities and Rotation 397	
	Radio Maps of Spiral Structure 397	
17.5	The Evolution of Spiral Structure	398
	The Windup Problem 398	
	The Density-Wave Model 399	
	Status of the Density-Wave Model 400	
17.6	The Heart of the Galaxy	401
	Radio Observations 401	
	Infrared Observations 402	
	X-Rays 402	
	The Inner 30 Light Years 403 Does a Black Hole Lurk in the Core? 403)
177		
17.7	The Halo of the Galaxy	404
	Globular Clusters 404 Other Material in the Halo 405	
17.8		405
17.6	Populations and Positions 405	405
	The Birth of the Galaxy 406	
	·	
	chment Focus 17.1	
The	Mass of the Galaxy	394
Chapte	r 18 The Universe of Galaxies	410
18.1	The Extragalactic Debate	412
	Basic Arguments 412	
	The Debate's Resolution 413	
18.2	Normal Galaxies: A Galaxian Zoo	414
	Ellipticals 415	
	Disks (Spirals) 415	
	Irregulars 416	
	Luminosity Classes 416	
18.3	Surveying the Universe of Galaxies	418
	Judging Distances 418	
	Distance Indicators 418	
18.4	Hubble's Law and Distances	419
	Redshifts and Distances 419	
	"Age" of the Cosmos 422	
	An Accelerating Expansion? 423	

x • Contents

18.5	General Characteristics of Galaxies	423	Enri	chment Focus 19.1	
	Size 423 Mass 424		Fast	ter Than Light?	456
	Luminosities 425		Chapte	r 20 Cosmic History	462
	Mass-Luminosity Ratios 425		20.1	Cosmological Assumptions	
	Colors 426			and Observations	464
	Spin 427			Assumptions 464	
18.6	Clusters of Galaxies	427		Observations 466	
	The Local Group 427			A Brief Review of Cosmology 466	
	Other Clusters of Galaxies 429		20.2	The Basic Big Bang Model	466
	Clusters and the Luminosity of Galaxies	429		The Cosmic Background Radiation	467
	Interacting Galaxies 430			Discovery! 467	
18.7	Superclusters and Voids	433		Confirmation! 468	
	The Cosmic Tapestry 434			Properties 470	
18.8	Intergalactic Medium	43.4	20.4	The Primeval Fireball	470
	and Dark Matter	434		The Hot Start 470	
	chment Focus 18.1			Creation of Matter from Photons 471	
	oble's Constant and the Age	422		Temperature Greater than 1012 K 472	
of t	he Universe	422		Temperature about 10 ¹² K 472	
				Temperature about 10° K 472	
Chapte	r 19 Cosmic Violence	438		Temperature about 3000 K 473	
19.1	Violent Activity in Galaxies	440	30.5	Evidence for the Big Bang 473	474
	Evidence of Violence in Our Galaxy 440			The End of Time?	474
	Synchrotron Emission Revisited 441			From Big Bang to Galaxies	475
	Active Galaxies 441		20.7	Elementary Particles and the Cosmos	476
19.2	Radio Galaxies	442		The Forces of Nature 476	
	Two High-Profile Active Galaxies 443			GUTs and the Cosmos 477	
	Structures of Radio Emission 445		20.0	GUTs and Galaxy Formation 478	470
19.3	Seyfert Galaxies and BL Lacertae		20.8	The Inflationary Universe The Flatness Problem 479	479
	Objects	446		The Horizon Problem 480	
	Seyfert Galaxies 446			THE HOUZON FRODIEM 400	
40.4	BL Lacertae Objects 448	440	Appen	dix A Units	485
19.4	Quasars: Unraveling the Mystery	449	, , ,	dix B Planetary Data	489
	Quasar Redshifts 450		• •	•	703
	General Observed Properties 450 The Light from Quasars 451		Append	dix C Physical Constants and Astronomical Data	494
	Line Spectra 451				474
	Variability in Luminosity 452		Append	dix D Nearby Stars in the Hipparcos	40E
19 5	Grand Illusions: Gravitational Lenses	452		Catalogue	495
	Troubles with Quasars	453	Append	dix E The Most Luminous Stars	400
. 5.0	Energy Sources in Quasars 455	.55	_	in the Hipparcos Catalogue	496
	A Generic Quasar and AGN Model 457		Append	dix F Periodic Table of the Elements	497
	A Model for Quasars and AGNs 457		Expand	led Glossary	499
	The Host Galaxies for Quasars 459		Index		533

Preface

A *ninth* edition! I really cannot believe that an idea that I had some twenty-five years ago has lived so long and gone so far. Many instructors and students have told me that they've enjoyed using the book, and that feedback has certainly helped me along. I also desire to improve this book so that it innovates and evolves as a better learning tool. Finally, astronomy changes rapidly, especially with the advent of new space and ground-based telescopes. Our outer vision grows, and our inner one intensifies. So what's new for this edition?

One, the obvious **updating of the material**. Constant change drives the excitement of astronomy. That is a main reason why astronomy appeals to me, and, I hope, to you. There's always something new and unexpected for us to discover in the universe. However, I have done the updating with great care to focus on discoveries that I think have long-term value and connect with the major concepts.

Two, a **streamlining of the material** so as to make the descriptions, concepts, and explanations as clear and concrete as possible. I have taken great care to minimize the use of technical terms and the passive voice. I also gave special attention to the Learning Outcomes and Key Concepts to keep them concise and precise.

Three, a **refined art program**. The figures have been reviewed and revised with the goal of

better understanding by the novice student (while keeping the science accurate). I have tried to incorporate a human perspective whenever possible. I have also aimed for clarity and simplicity so that careful "viewing" of the figures will illuminate key concepts.

Four, a **research-based pedagogy**. I have targeted concepts in this edition more than ever, based on research in astronomy education carried out by myself and others. But concepts in isolation have little value – they must be *connected*. The right connections of key concepts result in the "big picture" of the cosmos. My goal for my course and this book is to provide a connected understanding of astronomy. To do so, I have introduced a new organizing feature, Celestial NavigatorsTM.

Each chapter contains one **Celestial Naviga-tor**TM. These maps provide visual guides of major concepts in the chapter and explicitly show their connections. I have tested them in my classes, and they result in large, robust gains in students' connected understanding of astronomy.

To promote an even higher level of conceptual unification, each part begins with a **Part Concept**, followed by an **Inquiry Focus** – a series of "How do we know . . . ?" questions to link concepts across chapters within a Part. Again, the goal is the "big picture," this time within a thematically-unified Part.

хi

xii • Preface

THEMATIC AND TOPICAL STRUCTURE

Previous editions have developed the notion of "how do we know?" in astronomy. I have made that question more explicit and the central theme for the entire book. I believe that answering the "how do we know?" promotes the understanding of any subject, but astronomy more so than many others do. Why? Because once we leave the earth and solar system, astronomy becomes quite abstract, essentially light, physics, and models.

Yet people tend to view science as a disconnected collection of facts, and our culture reinforces this view. Take for instance, the quiz show *Who Wants to Be a Millionaire*. The questions use a multiple-choice format, which is common in schools in the United States. Here is one question for the big prize, \$1,000,000:

How long does it take the light from the sun to reach the earth?

- A. 42 seconds
- B. 3 minutes
- C. 8 minutes
- D. I hour

Do you know the answer? (It is C.) Now, that's OK, but do you know the unasked question? How do we know that the sun is 8 light-minutes from the earth? That's a much deeper question and requires a level of understanding far more fundamental than the first (which can just be memorized).

"How do we know?" is the governing theme of this edition. In terms of topics, this book has two main aspects: to describe in narrative form the range of the astronomical universe and its cosmic connections; and to introduce students to how astronomers think about the cosmos so they can gain some understanding about its operation. I hope that students will become so enticed by the contents that they will become intrigued by the concepts linking and illuminating astronomical phenomena.

This edition is designed for a one-semester introduction to astronomy. Note that it is much shorter than previous editions, with fewer and shorter chapters. Yet it retains the previous structure of four coherent parts, each focusing on a key subtheme of cosmic evolution. Like the cosmos, each part connects to the others, so you can really approach the four parts in any order.

Part 1: Changing Conceptions of the Cosmos

This part accents the evolution of cosmological ideas, from the geometric views of the Greeks to the mind-boggling visions of modern astronomy. It leads off with the simplest observations you can make without a telescope from the earth and ends with the farthest reaches of the visible universe. Part 1 acquaints the reader with the idea of *scientific models*, the conceptual core of modern scientific thought. Scientific models are born from our imagination and experience; they mark the essential creative act of the scientific enterprise. As such models evolve, they shape our changing conceptions of the cosmos. The development of scientific models resounds throughout the book; it is *the* fundamental tool to understand the universe.

Essential to the formation of models are new astronomical observations. In the age of microelectronics and space astronomy, we have greatly expanded our vision of the cosmos. Many space telescopes, especially the Hubble Space Telescope, marked great changes in the outer vision of twentieth-century astronomy. In this century, we know that new technology telescopes on the earth will surpass space telescopes in some ways. We can hope that lunar-based telescopes will augment the observational legacy of space telescopes. New generations of computers endow our minds with another way to see the physical processes in the cosmos by the simulation of astronomical systems. Together, computers and telescopes work as the tools to impart innovative ideas to astronomers.

Part 2: The Planets: Past and Present

Flyby spacecraft and gangly landers have provided new insights to our understanding of the planets. This part focuses on the physical properties of the planets to infer their origin and evolution. It first takes a comparative look at our current knowledge of the planets, especially our earth and moon, as well as Mercury, Venus, and Mars. These planets show different degrees of evolution, with the earth being the most evolved. The other planets – Jupiter, Saturn, Uranus, Neptune, and Pluto – have, in contrast, changed little since their birth.

Space missions have disclosed that the moons of the outer planets are really worlds unto themselves, places of rock and ice scarred by violence in the

Preface • xiii

past. These new worlds provide important clues, along with comets and meteorites, of the early history of the solar system. So planetary evolution traces back to origin – the birth of the solar system from an interstellar cloud of gas and dust. By astronomical standards, that birth was quick, violent, and chaotic – shaping the primitive forms of the planets. This picture implies that many other single stars have planetary systems and that these other worlds resemble the local planets in broad ways.

Part 3: The Universe of Stars

Our sun and its planets swing around in a vast island of stars called the Milky Way Galaxy – our home galaxy. As the nearest star, our sun serves as the close-up model for other stars, especially to understand the physical processes within them. The Galaxy contains some hundreds of billions of stars at various stages of their lives. These stars have been born, like the sun, from clouds of interstellar gas and dust. Modern technology supplies us with views deep into the regions of starbirth, showing us the early lives of stars.

Because stars live long by human standards, we cannot directly observe their evolution. We can build models of stars with computers, and these models provide us with the dimension of time to map out the lives of stars. Ordinary stars, powered by fusion reactions, grow old and blow off material before their demise. Many have violent deaths, leaving bizarre corpses such as neutron stars. Massive stars undergo violent deaths, which are signaled by enormous explosions that build heavy elements and propel them into space to seed the next generation of stars. The span of the lives of stars guides us to an understanding of what will happen to our sun in its old age.

Part 4: Galaxies and Cosmic Evolution

The universe contains galaxies, in which the most visible material of the cosmos resides. This part first examines ordinary galaxies, like our Milky Way, and then hyperactive ones. We now realize that galaxies with unusual activity are interacting by gravity with their neighbors, which triggers the celestial fireworks. The show includes long, thin jets of material, confined by magnetic fields, rocketing out of the cores of these galaxies. All these galaxies

dwell in clusters with other galaxies, and we have just come to the realization that clusters are laid out in long chains with vast voids in between – the cosmic tapestry. Amid this remarkable layout of visible matter lurks matter that we cannot yet see – the so-called dark matter that shapes the visible universe, both its structure and destiny.

The cosmic design in the large-scale architecture was imprinted in the awesome explosion in which the universe began. That explosion – the Big Bang – linked the smallest pieces of matter to the universe at large. The Big Bang also left relics that we observe today, evidence of the violence of creation. From the Big Bang some 15 billion years ago, cosmic evolution shaped us at where we are and when we are in the universe.

QUICK START

This book is for students, who are probably novices to astronomy. I want them to learn effectively from it. I have designed a four-part structure so that you can investigate each part somewhat independently of the others. Many cross-references, especially to the basic physical and astronomical ideas, should help you to link the parts together. I have made a concerted effort to introduce ideas as concretely as possible. Within parts, I deal with the most familiar first: Chapter 1 (Part 1) with the visible sky; Chapter 8 (Part 2) with the earth; Chapter 12 (Part 3) with the sun; and Chapter 17 (Part 4) with the Milky Way Galaxy. Within chapters, I have tried to present concrete examples before abstract notions.

The **Enrichment Focus** sections furnish another linkage throughout the text. I have set these optional sections off from the main text to enrich ideas by basic mathematics (algebra, trigonometry, and geometry). You will need to decide which of them will be specifically assigned. You will note problems and activities at the end of each chapter. Some of them draw on the material in the Focus sections.

To aid novice science students, I worked to simplify the language as much as I can by using ordinary English rather than technical jargon. My rule when using technical terms is: Define every term you use, and use every term you define. I try to avoid a one-time use of a technical term just for the sake of completeness.

If your students are really baffled by a good

xiv • Preface

strategy to learn astronomy, please tell them to read carefully the special section by Mark Hollabaugh (who teaches at Normandale Community College in the United States) on "How to Study Astronomy." It provides a general strategy for studying plus specific guides to each of the learning features of this book.

NOTE. If you have picked up this book because you are curious about astronomy, you may be interested in taking a college-level course by mail for academic credit. Write to: Independent Study, Continuing Education, The University of New Mexico, 1634 University NE, Albuquerque, NM 87131, USA. The course is called Astronomy 101C; I am the instructor.

INSTRUCTORS' RESOURCES

We have centralized all instructor resources on the Web site for this book. The URL is

http://www.The Evolving Universe.com.

ACKNOWLEDGMENTS

Locally, Sabrina Moore initiated the effort to acquire the new visual images in the book. Louise Shaler provided in-depth editorial work on the manuscript. She also assisted me in the final round of exploring for astronomical images and acquiring the permissions for them. Artist Boris Starosta and I collaborated on the art and the creation of the Celestial NavigatorTM maps.

Other folks include my correspondence students (who have just the book and their brains) and the students in my regular Astronomy 101 course at UNM. I have also received letters and e-mail from students at other colleges and universities, as well as from instructors. Thank you all!

Any errors in the text are my responsibility. It is a little known fact that minor corrections and changes *can* be made in future printings of *this* edition. Please keep this fact in mind and send me any errors you may find. When ordering, please request the *latest printing* of the book so your students will have the most correct version.

Your feedback can improve this book! Please send any comments to me at the Department of Physics and Astronomy, The University of New Mexico, 800 Yale Blvd NE, Albuquerque, NM, 87131–1156, USA. My Internet mail address:

zeilik@la.unm.edu.

Michael Zeilik

Santa Fe, New Mexico, U.S.A., October 2001

Abbreviations

Abbreviations are often used for the names of major observatories and agencies (particularly in the figure captions). These are:

AAO – Anglo-Australian Observatory

AUI – Associated Universities, Inc.

AURA – Association of Universities for Research in Astronomy

CTIO - Cerro Tololo Interamerican Observatory

ESA – European Space Agency

ESO – European Southern Observatory

HST – Hubble Space Telescope

KPNO - Kitt Peak National Observatory

NASA – National Aeronautics and Space Administration

NCAR – National Center of Atmospheric Research NCSA – National Center for Supercomputer Applications

NOAO – National Optical Astronomy Observatories

NRAO - National Radio Astronomy Observatory

NSO – National Solar Observatory

SAO – Smithsonian Astrophysical Observatory

SOHO – Solar and Heliospheric Observatory

STScI – The Space Telescope Science Institute

TRACE – Transition Region and Coronal Explorer

VLA – Very Large Array radio telescope

VLT - Very Large Telescope, ESO

Concept Clusters

The material in this book falls into four clusters of related concepts; these clusters themselves are interrelated. The Celestial Navigators(tm) include a subset of the most important concepts, also organized by cluster.

1. Cosmic Distances

Angles/angular diameters/positions Angular speeds/relative motions Astronomical Unit/Kepler's laws Heliocentric parallax/triangulation Inverse-square law for light/flux Luminosity classes from H-R diagram/ spectroscopic distances Doppler shifts of interstellar clouds/rotation curve of the Galaxy Period-luminosity relation for cepheids Structure of the Milky Way Galaxy/distances Distance indicators to galaxies (cepheids, supernovas) Clusters and superclusters of galaxies Hubble law/Hubble constant/red shifts/ age of universe

2. Heavenly Motions

Angles/angular speeds/relative distances Motions of sun, moon relative to horizon, stars/eclipses Motions of the planets relative to sun, stars/
retrogrades/oppositions/elongations
Geocentric/heliocentric
Heliocentric parallax
Kepler's laws/orbits/periodic motion/
dark matter
Newton's laws of motion and gravitation/
orbits/mass/weight/freefall/escape speed
Binary stars/masses of stars/center of mass
Tidal forces
Gravitational accretion/contraction
General relativity/spacetime/curved geometry
Conservation of energy/types of energy
Conservation of angular momentum

3. Celestial Light and Spectra

Electromagnetic radiation/spectrum
Emission/absorption
Kirchhoff's rules (emission, absorption, continuous spectra)
Atomic energy levels/photons/excitation/
radiative energy

ΧV

xvi • Concept Clusters

Telescopes: detectors; resolving, light-gathering, magnifying power; interferometers Planck curve/black body/colors/temperature Synchrotron emission/magnetic fields Fusion reactions/nucleosynthesis Energy transport (radiation, convection, conduction) Chemical composition/spectra Doppler shift/radial velocity/blue and Stellar spectral and luminosity classes Hertzsprung-Russell (H-R) diagram/ star clusters Mass-luminosity (M-L) relation/stellar lifetimes Spectra of the interstellar medium/ intergalactic medium Spectra of galaxies/ red shifts/expansion of cosmos Cosmic background radiation/Big Bang model

4. Scientific Models

Assumptions, aesthetics/Geometry, physics Observations (errors)/Predictions, explanations Quantum theory/photons/energy levels Age/radioactive dating/half life Properties of matter (solids, liquids, gases, plasmas)/density Solar system (geocentric/heliocentric) Planets/planetary evolution/tectonics/ volcanism/thermal energy Magnetic fields/dynamo model Sun/stars/stellar evolution/H-R diagram Novas/supernovas/nucleosynthesis/mass loss Stellar corpses /white dwarfs/neutron stars/ black holes Starbirth/planetary systems/protostars and protoplanets/brown dwarfs Milky Way Galaxy/normal galaxies Active galaxies/supermassive black holes Formation of galaxies/protogalaxies Big Bang model/critical density/ inflationary models/GUTs

How to Study Astronomy

Mark Hollabaugh
Normandale Community College, Minnesota, U.S.A.

Welcome to astronomy! When I was growing up in Michigan, I would go outside on crisp winter nights to watch the northern lights dance across the sky. In August, I counted meteors during the Perseid meteor shower. I could imagine the terror ancient peoples must have felt as the moon turned blood red during a lunar eclipse. I looked through a real telescope for the first time when I was in seventh grade. A science teacher who spent summers in our town set up his telescope each Friday night in the city park. After a brief peek through the scope, I would run back to the end of the line for another look. I was hooked on astronomy. Later, after studying physics, I did research on comets and asteroids, and on cosmic rays.

Throughout these experiences, I have marveled with fascination at the grandeur and intricacies of the universe. Now, I try to pass that fascination on to my students. That is also what Dr. Zeilik does in Astronomy: The Evolving Universe. My association with Mike began with my interest in Native American astronomy. We also share an interest in helping college students like you to enjoy learning astronomy effectively. Your professor has chosen a superb textbook for you to use in your astronomy course.

I'd like to give you some suggestions to assist your learning.

UNDERSTANDING YOUR LEARNING STYLE

Each of us learns in different ways. Some of us learn best by reading. Others find listening to a lecture to be most helpful. Talking with others can help us clarify our own understanding. Drawing diagrams or pictures can help us see the relationships among concepts.

When learning something new, it helps to know our own strengths, weaknesses, and learning style. As you begin your study of astronomy, make a list of the kinds of activities that help you learn best. You will find a variety of learning resources presented in your astronomy course: lectures, textbook readings, laboratory exercises, classroom demonstrations, computer simulations, learning team activities, Web sites, videotapes, or slides. These are all a part of your "tool kit" for understanding astronomy. Concentrate extra effort on those kinds of learning activities where you are the weakest. You may, for example, need to learn how to use your textbook as a resource to clarify ideas you don't understand from a lecture.

Memorization may help you correctly answer questions on an examination, but you will not be able to apply the concepts later. Avoid memorizing

xvii

xviii • How to Study Astronomy

and seek rather to understand concepts and relate them to one another. The connected understanding of astronomy will reward you with the grand "big picture" of the cosmos!

Learning to Learn

Ask yourself some questions about your study habits. Do you set aside a specific block of time each day to study a given subject? Do you work in a quiet place, free of distractions, such as the library? Do you study at a time of the day when you are at your best for learning new material? When you prepare for an examination, have you kept up with your reading of the text so all you need to do is review? Do you attend all class lectures and other activities? Do you concentrate on understanding concepts as opposed to memorizing facts or data? If you have answered yes to these questions, you have developed some excellent study habits! If not, set goals for yourself to change your learning habits during the current semester. Find out if your institution has an office that helps students to improve their study skills.

Learning from Lectures

Should I read the book first or go to the lecture first? How you personally answer the question depends on your own learning style. It is usually helpful if you have some basic introduction to a topic before you go to your lecture. Look at the syllabus and make a note of the topics for the day. Then scan the *Learning Outcomes* for the chapter. Read the *Key Concepts* at the end of the appropriate chapter. Then skim the chapter in the textbook. If, for example, the lecture will be on Venus and Mars, page through Chapter 9. Examine the images and make note of any questions you might have about them. Pay special attention to the diagrams; be sure that you understand them. After class you should, of course, read the chapter more carefully.

Learning by Taking Notes

Taking effective notes is a two-step process. First, you will make some notes in class as your professor lectures. Try to keep your notes in outline form. Don't worry about making a formal outline. Rather,

just indent subtopics under major topics. If your professor has provided a course outline for you, *use it.* Concentrate on getting down the "big ideas" and explanations of concepts. Your instructor wants you to *understand* astronomy! You can fill in the details later as you read the text.

The second step in taking good notes is editing them. Check for concepts or learning objectives that you don't understand and look them up in the textbook. Jot down any definitions you may have missed. In short, edit your notes, making sure you understand the principal ideas. This process will keep you well prepared for taking examinations.

Learning with Other Students

Other students are *the* most important resource to your learning. You will understand more about astronomy if you explain, elaborate, or defend ideas to others. Forming small, informal study groups out of class is an important strategy. You can use the resources of the textbook to quiz one another. Come to such study groups prepared: Edit your notes, review the key concepts, and make a list of questions for your group. Learning together means you learn more. Don't wait to work together until the night before an examination. Make time in your schedule for regular meetings of your study group. If your institution has a computer network available to all students, you can contact other students by electronic mail or an electronic bulletin board.

Learning astronomy with a small group of students is an effective and fun way to increase your understanding of this fascinating subject. Your professor may use formal cooperative learning groups or may simply ask you to work together on a task or assignment. In either case following a few simple guidelines will enable your group to work well together. First, and perhaps most important, come to your group *prepared*. Be ready not only by mastering concepts in astronomy but also with questions about things that you do not yet understand.

Actively talk with one another. Make sure everyone participates. Ask questions. No idea or question is too trivial! Don't rush to conclusions, explore all the possibilities, and dig deeper! You will learn more in a learning group if you and the other group members explain or elaborate upon ideas. This process often happens in response to the simple

How to Study Astronomy • xix

question, "Why?" So don't be hesitant to challenge or to be skeptical about a group member's idea. Finally, ask yourselves, "What did we do well as a group and what can we do better next time?" Working together will give you a better understanding of the evolving universe.

Learning from the Textbook

Dr. Zeilik has incorporated many useful learning tools into your textbook to help you discover the excitement of astronomy. You should be aware of what your instructor expects of you. He or she probably will omit some topics, even whole sections of the textbook, perhaps even entire chapters! You may or may not be assigned specific Learning Outcomes from each chapter. It may help you to view your textbook as your primary reference. It supplements the lecture and other activities in the class. The textbook is your teacher away from the classroom. Your professor will expect you to read carefully and understand the assigned sections in *Astronomy: The Evolving Universe*.

Take notes as you read. Simply highlighting text is not particularly effective in placing concepts into our long-term memory. You will learn more, and recall it later, if the process of jotting down notes stimulates your brain as you read. Make notations in the margins of your textbook. Later, transcribe these notes into outline form to your notebook. Try to focus on the big ideas and reasons the universe works the way it does.

Take a few moments to become familiar with the design of the book by looking at the various sections of a chapter.

Learning Outcomes. Your instructor may indicate to you the learning outcomes for which you are responsible. These outcomes will help you know what is important. Before beginning to study the chapter, read the objectives. Then, as you read the chapter, think of the outcomes. After you have studied the chapter, write out a brief (one or two sentences) response to each outcome. If the outcome says "explain" or "describe," do just that. Although this may seem time-consuming, it is an excellent way to summarize and apply what you have learned. You will find review questions at the end of each chapter keyed directly to the outcomes.

Central Concept. Each chapter has a theme. Keeping this theme in mind as you read will help you to understand the unifying idea of each chapter. Try to relate concepts back to the central question.

Celestial NavigatorsTM. To help you see the "big picture," each chapter contains one Celestial NavigatorTM map. These serve as visual guides to the main concepts of a chapter and their connections with other concepts. You can copy these maps and use them as an organizing guides to the entire chapter. Write in your annotations on them as you read and study the material.

Key Concepts. When you read a mystery novel, you probably wouldn't read the ending first. However, in reading Astronomy: The Evolving Universe, begin a chapter by studying the Key Concepts at the end of the chapter. Along with the Concept Clusters and Celestial NavigatorsTM, this will give you an overview of the principal ideas in the chapter. The Key Concepts also will be very useful when reviewing for an examination.

Enrichment Focus. For some astronomy students, encountering a mathematical equation in a text can be both distracting and discomforting. You will notice that mathematical topics are discussed in short, compact essays. If your instructor covers these topics, you will want to review carefully these focus boxes. In most cases you should actually work through the calculations with your calculator. By using some of the data tables in the text, you can make up other examples to work.

Study Exercises. At the end of each chapter are a series of review exercises. They require you to explain concepts you have encountered in the chapter. Use these in your study group. These review exercises are keyed back to the Learning Outcomes. Test your understanding of specific outcomes with specific questions.

The most effective way to use these Study Exercises is to work on them with other students. You, and your friends, will learn more in the process. If you do not answer a question to your satisfaction, check the objective and discuss the material again. Then attempt the question a second time. It is not particularly beneficial for you simply to look up the answers to the multiple-choice questions. Try to give explanations of why your answer is correct, or why other answers to multiple-choice questions are incorrect.

xx • How to Study Astronomy

Problems and Activities. These typically require some knowledge of simple geometry or algebra. Or they may involve graphing or some observations. Your instructor will inform you about them.

Key Terms. Astronomy, and all of science, is rich with specific, technical terms. Each chapter includes boldface key terms. Write a brief definition of each term as you encounter it and then check it with the Expanded Glossary. Simply being able to define a term may not mean you understand it. Always give explanations. When you read, you may even encounter nontechnical words you don't fully understand. If you can't determine the meaning from the context, look the word up in a dictionary. A small, paperback dictionary in your book bag is as essential as a pen or calculator. If you forget the

meaning of an astronomical term, look in the Expanded Glossary first. The Expanded Glossary contains additional terms that may not be used in the text itself but which you may encounter in other astronomical readings.

Appendices. At the end of the textbook, these contain many tables of useful data and information. If it has been some time since you have taken a science class, or you are unfamiliar with the units of measurement in astronomy, you should carefully review Appendix A.

We hope you will enjoy your study of astronomy. Approach your class with a sense of awe and curiosity. Try to understand how the universe works. And, as another famous "science officer" has said, "Live long and prosper!"