Contents

Preface page xiii
Acknowledgments xvii
Acronyms and Abbreviations xix

Part I Spin-1/2 Fermions in Quantum Field Theory, the Standard Model, and Beyond

1 **Two-Component Formalism for Spin-1/2 Fermions**
1.1 The Lorentz Group and Its Lie Algebra 3
1.2 The Poincaré Group and Its Lie Algebra 6
1.3 Spin-1/2 Representation of the Lorentz Group 7
1.4 Bilinear Covariants of Two-Component Spinors 12
1.5 Lagrangians for Free Spin-1/2 Fermions 20
1.6 The Fermion Mass Matrix and Its Diagonalization 24
1.7 Discrete Spacetime and Internal Symmetries 30
1.8 Parity Transformation of Two-Component Spinors 33
1.9 Time-Reversal of Two-Component Spinors 36
1.10 Charge Conjugation of Two-Component Spinors 40
1.11 CP and CPT Conjugation of Two-Component Spinors 41
Exercises 43

2 **Feynman Rules for Spin-1/2 Fermions**
2.1 Fermion Creation and Annihilation Operators 52
2.2 Properties of Two-Component Spinor Wave Functions 53
2.3 Charged Two-Component Fermion Fields 59
2.4 Feynman Rules for External Fermion Lines 61
2.5 Feynman Rules for Propagators 62
2.6 Feynman Rules for Fermion Interactions 70
2.7 General Structure and Rules for Feynman Graphs 79
2.8 Examples of Feynman Diagrams and Amplitudes 81
2.9 Self-Energy of Scalar and Vector Bosons 95
2.10 Self-Energy of Two-Component Fermions 107
2.11 Feynman Rules for External Fermion Lines Revisited 124
Exercises 127
Contents

3 From Two-Component to Four-Component Spinors

3.1 Four-Component Spinors and Dirac Gamma Matrices 136
3.2 Four-Component Spinor Indices 141
3.3 Bilinear Covariants and Their P, T, and C Properties 145
3.4 Lagrangians for Free Four-Component Fermions 151
3.5 Properties of Four-Component Spinor Wave Functions 155
3.6 Feynman Rules for Four-Component Fermions 159
3.7 Feynman Rules for External Fermion Lines 165
3.8 Examples of Feynman Diagrams and Amplitudes 166
3.9 Self-Energy of Four-Component Fermions 172
3.10 Feynman Rules for External Fermion Lines Revisited 182
Exercises 184

4 Gauge Theories and the Standard Model

4.1 Abelian Gauge Field Theory 191
4.2 Nonabelian Gauge Groups and Their Lie Algebras 192
4.3 Nonabelian Gauge Field Theory 196
4.4 Feynman Rules for Gauge Theories 199
4.5 Spontaneously Broken Gauge Theories 202
4.6 Complex Representations of Scalar Fields 210
4.7 The Standard Model of Particle Physics 214
4.8 Parameter Count of the Standard Model 223
Exercises 224

5 Anomalies

5.1 Anomalous Chiral Symmetries 229
5.2 Gauge Anomalies and Their Cancellation 243
5.3 Discrete Gauge Anomalies 249
Exercises 256

6 Extending the Standard Model

6.1 The Seesaw-Extended Standard Model 250
6.2 The Two-Higgs Doublet Model (2HDM) 264
6.3 Grand Unification and Unification of Couplings 298
Exercises 318

Part II Constructing Supersymmetric Theories

7 Introduction to Supersymmetry

7.1 Motivation: The Hierarchy Problem 331
7.2 Enter Supersymmetry 335
7.3 Historical Analogies 343
Exercises 346
8 Supersymmetric Lagrangians 347
 8.1 A Free Chiral Supermultiplet 347
 8.2 Interactions of Chiral Supermultiplets 352
 8.3 Supersymmetric Gauge Theories 355
 8.4 Gauge Interactions for Chiral Supermultiplets 357
 8.5 Summary: How to Build a Supersymmetric Model 359
 8.6 Soft Supersymmetry-Breaking Interactions 363
 Exercises 365

9 The Supersymmetric Algebra 367
 9.1 Extension of the Poincaré Algebra 367
 9.2 The $N = 1$ Supersymmetry Algebra 368
 9.3 Representations of the $N = 1$ Supersymmetry Algebra 371
 9.4 Consequences of Super-Poincaré Invariance 380
 9.5 Extended Supersymmetry 385
 Exercises 391

10 Superfields 398
 10.1 Supercoordinates, Superspace and Superfields 398
 10.2 Supersymmetry Transformations the Superspace Way 402
 10.3 Chiral Covariant Derivatives 404
 10.4 Chiral Superfields 406
 10.5 Vector Superfields 408
 10.6 How to Make a Lagrangian in Superspace 410
 10.7 Superspace Lagrangians for Chiral Supermultiplets 411
 10.8 Superspace Lagrangians for Abelian Gauge Theory 414
 10.9 Superspace Lagrangians for Nonabelian Gauge Theories 417
 10.10 Nonrenormalizable Supersymmetric Lagrangians 421
 10.11 R-symmetries 425
 Exercises 427

11 Radiative Corrections in Supersymmetry 434
 11.1 Introduction 434
 11.2 Seiberg’s Proof of the Nonrenormalization Theorem 436
 11.3 Renormalization of the Wess–Zumino Model 437
 11.4 Regularization by Dimensional Reduction 445
 11.5 Renormalization Group Equations 459
 11.6 Effective Potentials 466
 Exercises 473

12 Spontaneous Supersymmetry Breaking 479
 12.1 General Considerations for Supersymmetry Breaking 479
 12.2 D-term SUSY Breaking: The Fayet–Iliopoulos Mechanism 482
 12.3 F-term SUSY Breaking: The O’Raifeartaigh Mechanism 484
Table of Contents

Part III Realistic Supersymmetric Models

13 The Minimal Supersymmetric Standard Model
13.1 A Warmup Exercise: SUSY-QED
13.2 MSSM Superpotential and Supersymmetric Interactions
13.3 R-Parity, Also Known As Matter Parity
13.4 Soft Supersymmetry Breaking in the MSSM
13.5 Parameter Count of the MSSM
13.6 Hints of an Organizing Principle
13.7 Renormalization Group Equations for the MSSM
13.8 Electroweak Symmetry Breaking and the Higgs Bosons
13.9 Neutralinos and Charginos
13.10 The Gluino
13.11 Squarks and Sleptons
13.12 Summary: The MSSM Sparticle Spectrum
Exercises

14 Realizations of Supersymmetry Breaking
14.1 Communication of Supersymmetry Breaking
14.2 The Goldstino and the Gravitino
14.3 Planck-Scale-Mediated SUSY Breaking
14.4 Gauge-Mediated SUSY Breaking
14.5 Extra-Dimensional and Anomaly-Mediated SUSY Breaking
14.6 Relating the μ-Term to the SUSY-Breaking Mechanism
Exercises

15 Supersymmetric Phenomenology
15.1 Superpartner Decays
15.2 Signals at Hadron Colliders
15.3 Signals at e^+e^- Colliders
15.4 The Lightest Supersymmetric Particle and Dark Matter
Exercises

16 Beyond the MSSM
16.1 The Next-to-Minimal Supersymmetric Standard Model
16.2 The Supersymmetric Seesaw
16.3 Supersymmetric Grand Unified Models
16.4 Discrete Gauge Symmetries in Supersymmetry
16.5 R-Parity Violation
Exercises
Part IV Sample Calculations in the Standard Model and Its Supersymmetric Extension

17 Practical Calculations Involving Two-Component Fermions

17.1 Conventions for Fermion and Antifermion Names and Fields
17.2 Z Vector Boson Decay: $Z \rightarrow ff$
17.3 Bhabha Scattering: $e^+e^- \rightarrow e^+e^-$
17.4 Polarized Muon Decay
17.5 Top-Quark Condensation in a Nambu–Jona–Lasinio Model
Exercises

18 Tree-Level Supersymmetric Processes

18.1 Sneutrino Decay: $\tilde{\nu}_e \rightarrow \tilde{C}_i^+e^-$
18.2 $\tilde{N}_i \rightarrow Z\tilde{N}_j$
18.3 $\tilde{N}_i \rightarrow \tilde{N}_j\tilde{N}_k\tilde{N}_l$
18.4 Three-Body Slepton Decays: $\tilde{\ell}_R \rightarrow \ell^-\tau^\pm\tilde{\tau}_1^\pm$
18.5 Neutralino Decay to Photon and Goldstino: $\tilde{N}_i \rightarrow \gamma\tilde{G}$
18.6 R-Parity-Violating Neutralino Decay: $\tilde{N}_i \rightarrow \mu^-ud$
18.7 $ee^- \rightarrow \tilde{\nu}_L\tilde{\nu}_R$
18.8 $e^+e^- \rightarrow \tilde{N}_i\tilde{N}_j$
18.9 $\tilde{N}_i\tilde{N}_j \rightarrow ff$
18.10 Gluino Pair Production from Gluon Fusion: $gg \rightarrow \tilde{g}\tilde{g}$
Exercises

19 One-Loop Calculations

19.1 Wave Function Renormalization in Softly Broken SUSY-QED
19.2 Electroweak Vector Boson Self-Energies from Fermion Loops
19.3 Self-Energy and Pole Mass of the Top Quark
19.4 Self-Energy and Pole Mass of the Gluino
19.5 The Anomalous Magnetic Moment of the Muon
19.6 Anapole Moment of the Muon
19.7 One-Loop MSSM Contributions to $g-2$ of the Muon
19.8 One-Loop Corrected MSSM Higgs Masses
19.9 The MSSM Wrong-Higgs Yukawa Couplings
Exercises

Part V The Appendices

Appendix A Notations and Conventions

A.1 Matrix Notation and the Summation Convention
A.2 Conjugation and the Flavor Index
A.3 Conventional Units for Particle Physics
A.4 Spacetime Notation
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.5 The Pauli Matrices</td>
<td>794</td>
</tr>
<tr>
<td>A.6 How to Translate between Metric Signature Conventions</td>
<td>795</td>
</tr>
<tr>
<td>A.7 Two-Component Spinor Notation</td>
<td>797</td>
</tr>
<tr>
<td>A.8 Group Indices and the ϵ Symbol</td>
<td>799</td>
</tr>
<tr>
<td>A.9 Lorentz Transformations</td>
<td>799</td>
</tr>
<tr>
<td>A.10 Relating Higher-Rank Spinors and Lorentz Tensors</td>
<td>802</td>
</tr>
<tr>
<td>A.11 Four-Component Spinors and the Dirac Matrices</td>
<td>803</td>
</tr>
<tr>
<td>Appendix B Compendium of Sigma Matrix and Fierz Identities</td>
<td>807</td>
</tr>
<tr>
<td>B.1 Sigma Matrix Identities</td>
<td>807</td>
</tr>
<tr>
<td>B.2 Two-Component Spinor Product Identities</td>
<td>809</td>
</tr>
<tr>
<td>B.3 Fierz Identities</td>
<td>811</td>
</tr>
<tr>
<td>B.4 Sigma Matrix Identities in $d \neq 4$ Dimensions</td>
<td>816</td>
</tr>
<tr>
<td>Exercises</td>
<td>818</td>
</tr>
<tr>
<td>Appendix C Behavior of Fermion Bilinears under P, T, C</td>
<td>819</td>
</tr>
<tr>
<td>C.1 Two-Component Fermion Field Bilinear Covariants</td>
<td>819</td>
</tr>
<tr>
<td>C.2 Four-Component Fermion Field Bilinear Covariants</td>
<td>822</td>
</tr>
<tr>
<td>Appendix D Kinematics and Phase Space</td>
<td>825</td>
</tr>
<tr>
<td>D.1 Relativistic Kinematics</td>
<td>825</td>
</tr>
<tr>
<td>D.2 Lorentz-Invariant Phase Space</td>
<td>829</td>
</tr>
<tr>
<td>D.3 Dimensionally Regularized Phase Space</td>
<td>832</td>
</tr>
<tr>
<td>D.4 Decay Rate</td>
<td>834</td>
</tr>
<tr>
<td>D.5 Cross Section</td>
<td>836</td>
</tr>
<tr>
<td>Exercises</td>
<td>839</td>
</tr>
<tr>
<td>Appendix E The Spin-1/2 and Spin-1 Wave Functions</td>
<td>842</td>
</tr>
<tr>
<td>E.1 Fixed-Axis Spinor Wave Functions</td>
<td>842</td>
</tr>
<tr>
<td>E.2 Fixed-Axis Spinors in the Nonrelativistic Limit</td>
<td>847</td>
</tr>
<tr>
<td>E.3 Helicity Spinor Wave Functions</td>
<td>850</td>
</tr>
<tr>
<td>E.4 Covariant Spin Operators for a Spin-1/2 Fermion</td>
<td>852</td>
</tr>
<tr>
<td>E.5 Two-Component Bouchiat–Michel formulae</td>
<td>855</td>
</tr>
<tr>
<td>E.6 Four-Component Spinor Wave Functions</td>
<td>858</td>
</tr>
<tr>
<td>E.7 Four-Component Bouchiat–Michel Formulae</td>
<td>861</td>
</tr>
<tr>
<td>E.8 Polarization Vectors for Spin-1 Bosons</td>
<td>863</td>
</tr>
<tr>
<td>Exercises</td>
<td>869</td>
</tr>
<tr>
<td>Appendix F The Spinor Helicity Method</td>
<td>873</td>
</tr>
<tr>
<td>F.1 Massless Spinors: the Bracket Notation</td>
<td>874</td>
</tr>
<tr>
<td>F.2 Including Massless Vector Bosons</td>
<td>877</td>
</tr>
<tr>
<td>F.3 Simple Application of the Spinor Helicity Method</td>
<td>879</td>
</tr>
<tr>
<td>Exercises</td>
<td>881</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Matrix Decompositions for Fermion Mass Diagonalization</td>
<td>883</td>
</tr>
<tr>
<td>G.1</td>
<td>Singular Value Decomposition (SVD)</td>
<td>884</td>
</tr>
<tr>
<td>G.2</td>
<td>Takagi Diagonalization</td>
<td>886</td>
</tr>
<tr>
<td>G.3</td>
<td>Relating Takagi Diagonalization and the SVD</td>
<td>888</td>
</tr>
<tr>
<td>G.4</td>
<td>Real Normal Form of a Complex Antisymmetric Matrix</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>893</td>
</tr>
<tr>
<td>H</td>
<td>Lie Group and Algebra Techniques for Gauge Theories</td>
<td>901</td>
</tr>
<tr>
<td>H.1</td>
<td>Lie Groups, Lie Algebras, and their Representations</td>
<td>901</td>
</tr>
<tr>
<td>H.2</td>
<td>Matrix Exponentials</td>
<td>903</td>
</tr>
<tr>
<td>H.3</td>
<td>Dynkin Index and Casimir Operator</td>
<td>906</td>
</tr>
<tr>
<td>H.4</td>
<td>The Techniques of Cartan and Dynkin</td>
<td>909</td>
</tr>
<tr>
<td>H.5</td>
<td>Tables of Dimensions, Indices, and Branching Rules</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>938</td>
</tr>
<tr>
<td>I</td>
<td>Interaction Vertices of the SM and Its Seesaw Extension</td>
<td>947</td>
</tr>
<tr>
<td>I.1</td>
<td>Standard Model Fermion Interaction Vertices</td>
<td>947</td>
</tr>
<tr>
<td>I.2</td>
<td>Interaction Vertices of the Seesaw-Extended Standard Model</td>
<td>949</td>
</tr>
<tr>
<td>J</td>
<td>MSSM and RPV Fermion Interaction Vertices</td>
<td>952</td>
</tr>
<tr>
<td>J.1</td>
<td>MSSM Higgs–Fermion Couplings</td>
<td>952</td>
</tr>
<tr>
<td>J.2</td>
<td>Gauge Boson Couplings to Neutralinos and Charginos</td>
<td>956</td>
</tr>
<tr>
<td>J.3</td>
<td>Higgs Couplings to Charginos and Neutralinos</td>
<td>958</td>
</tr>
<tr>
<td>J.4</td>
<td>Chargino and Neutralino Couplings to Fermions and Sfermions</td>
<td>960</td>
</tr>
<tr>
<td>J.5</td>
<td>SUSY-QCD Feynman Rules</td>
<td>965</td>
</tr>
<tr>
<td>J.6</td>
<td>Trilinear R-Parity-Violating Yukawa Couplings</td>
<td>967</td>
</tr>
<tr>
<td>K</td>
<td>Integrals Arising in One-Loop Calculations</td>
<td>968</td>
</tr>
<tr>
<td>K.1</td>
<td>The Formulae of Dimensional Regularization</td>
<td>968</td>
</tr>
<tr>
<td>K.2</td>
<td>The Passarino–Veltman Loop Functions</td>
<td>969</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>979</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>985</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>992</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>999</td>
</tr>
</tbody>
</table>