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1
Two-Component Formalism for

Spin-1/2 Fermions

In this chapter, we examine the incorporation of spin-1/2 fermions into quantum

field theory. Underlying the relativistic theory of quantized fields is special relativity

and the invariance of the Lagrangian under the Poincaré group, which comprise

Lorentz transformations and spacetime translations (e.g., see [B130–B132]).

1.1 The Lorentz Group and Its Lie Algebra

Under an active Lorentz transformation, Λμ
ν , the spacetime coordinates, xμ, trans-

form as x′μ = Λμ
νx

ν , where there is an implicit sum over the repeated index ν (see

Appendix A.4 for our conventions for spacetime notation). One can regard Λμ
ν as

the matrix element located in row μ and column ν of the 4 × 4 matrix Λ. The

condition that gμνx
μxν is invariant under Lorentz transformations implies that

Λμ
νgμρΛ

ρ
λ = gλν . (1.1)

The set of all Λ that satisfy eq. (1.1) forms a Lie group O(1,3).

Equation (1.1) implies that Λ has the following two properties: (i) det Λ = ±1

and (ii) |Λ0
0| ≥ 1. Thus, Lorentz transformations fall into four disconnected classes,

which can be denoted by a pair of signs:
(

sgn(det Λ) , sgn(Λ0
0)
)

. The proper or-

thochronous Lorentz transformations correspond to (+,+) and are continuously

connected to the identity. The group of such transformations forms a subgroup

of O(1,3), which we shall denote by SO+(1,3).
1 If Λ ∈ SO+(1, 3), we can gen-

erate all elements of the other classes of Lorentz transformations by introducing

the space-inversion matrix, ΛP = diag(1,−1,−1,−1), the time-inversion matrix

ΛT = diag(−1, 1, 1, 1) and the spacetime-inversion matrix ΛPΛT = −14×4. Then,

{Λ , ΛPΛ , ΛTΛ , ΛPΛTΛ} spans the full Lorentz group.

Infinitesimal Lorentz transformations must be proper and orthochronous, since

these are continuously connected to the identity. These transformations are best

studied by exploring the properties of the SO(1,3) Lie algebra, denoted henceforth

by so(1, 3). Later (see Section 1.7), we shall examine the implications of the im-

proper Lorentz transformations: space inversion and time inversion.

The most general proper orthochronous Lorentz transformation matrix Λ is char-

acterized by a rotation angle θ about an axis n̂ [�θ ≡ θn̂] and a boost vector

1 In this notation, the S (which stands for “special”) corresponds to the condition det Λ = 1 and

the subscript + corresponds to Λ0
0 ≥ +1.
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4 Two-Component Formalism for Spin-1/2 Fermions

�ζ ≡ v̂ tanh−1 β [where v̂ ≡ �v/|�v| is the unit velocity vector and β ≡ |�v|/c].2 The

4× 4 matrix Λ is given by3

Λ = exp
(

− 1

2
iθρσs

ρσ
)

= exp
(

−i�θ·�s− i�ζ ·�k
)

= exp

⎛

⎜

⎜

⎝

0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0

⎞

⎟

⎟

⎠

,

(1.2)

where θρσ = −θσρ, and the sρσ = −sσρ are six independent 4×4 antisymmetric ma-

trices that satisfy the commutation relations of the Lie algebra so(1, 3) ≃ sl(2,C)R,
4

[sαβ , sρσ] = i(gβρ sασ − gαρ sβσ − gβσ sαρ + gασ sβρ). (1.3)

The matrix elements of sρσ are given explicitly as follows (e.g., see [B133]):

(sρσ)μν = i(δσν gμρ − δρν g
μσ) . (1.4)

In eq. (1.2), we have also defined θi ≡ 1

2
ǫijkθjk, ζi ≡ θi0 = −θ0i, si ≡ 1

2
ǫijksjk,

and ki ≡ s0i = −si0, after noting that θij = θij and θ0i = −θ0i. Here, the indices

i, j, k ∈ {1, 2, 3} and ǫ123 = +1.

In light of eqs. (1.2) and (1.4), an infinitesimal orthochronous Lorentz transfor-

mation is given by

Λμ
ν ≃ δμν − 1

2
iθρσ(s

ρσ)μν = δμν + 1

2
θρσ(δ

σ
ν gμρ − δρν g

μσ) = δμν + 1

2
(θμν − θν

μ) . (1.5)

Since θμν = gμρθρν = −gμρθνρ = −θν
μ, it follows that

Λμ
ν ≃ δμν + θμν ≃ (14×4 − i�θ·�s− i�ζ ·�k)μν , (1.6)

where 14×4 is the 4× 4 identity matrix. That is, the si generate infinitesimal three-

dimensional rotations in space and the ki generate infinitesimal Lorentz boosts.

The spin-0 and (massive) spin-1 fields transform under a general proper or-

thochronous Lorentz transformation as5

φ′(x′) = φ(x) , spin 0 , (1.7)

A′μ(x′) = Λμ
νA

ν(x) , spin 1 . (1.8)

For a field of spin s, the general transformation law reads

ψ′
α(x

′) = exp
(

− 1

2
iθμνS

μν
)

α

β
ψβ(x) , (1.9)

2 Henceforth, we work in units where � = c = 1 (see Appendix A.3).
3 All symmetry transformations in this chapter are defined from the active point of view. For a

passive Lorentz transformation, where the coordinate frame is transformed and the four-vectors
are held fixed, simply replace {�θ, �ζ} with {−�θ,−�ζ}.

4 If {t1, t2, t3} is a basis for the complex Lie algebra sl(2,C), then the notation sl(2,C)R corre-
sponds to the realification of sl(2,C), which yields a real Lie algebra consisting of real linear
combinations of the six generators, {t1, it1, t2, it2, t3, it3}.

5 Equations (1.7) and (1.8) can also be written as φ′(x) = φ(Λ−1x) and A′µ(x) = Λµ
νA

ν(Λ−1x).
The transformation law for a massless spin-1 gauge field is more complicated and has the form
A′µ(x)+∂µΩ(x,Λ) = Λµ

νA
ν(Λ−1x), as indicated in eq. (5.9.31) of [B72], since A′µ(x) and the

gauge-transformed A′µ(x) + ∂µΩ(x,Λ) are physically equivalent.
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5 The Lorentz Group and Its Lie Algebra

where the Sμν are (finite-dimensional) irreducible matrix representations of the Lie

algebra of the Lorentz group, and α and β label the components of the matrix

representation space. The dimension of this space is related to the spin of the par-

ticle. In particular, Sμν is an antisymmetric tensor, Sμν = −Sνμ, that satisfies the

commutation relations of so(1, 3) [eq. (1.3)]. Different irreducible finite-dimensional

representations of so(1, 3) correspond to particles of different spin. In analogy with

si and ki defined below eq. (1.4), we identify the following pieces of Sμν :

Si ≡ 1

2
ǫijkSjk , Ki ≡ S0i , (1.10)

where i, j, k ∈ {1, 2, 3}. Using eq. (1.3), it follows that Si and Ki satisfy the com-

mutation relations

[Si, Sj ] = iǫijkSk , (1.11)

[Si,Kj] = iǫijkKk , (1.12)

[Ki,Kj] = −iǫijkSk . (1.13)

It is convenient to define the following linear combinations of the generators:

�S+ ≡ 1

2
(�S + i �K) , (1.14)

�S
−

≡ 1

2
(�S − i �K) . (1.15)

Then, eqs. (1.11)–(1.13) decouple and yield two independent su(2) Lie algebras:

[Si
+, S

j
+] = iǫijkSk

+ , (1.16)

[Si
−, S

j
−] = iǫijkSk

− , (1.17)

[Si
+, S

j
−] = 0 . (1.18)

The finite-dimensional irreducible representations of su(2) are well known: these

are the (2s+ 1)× (2s+ 1) representation matrices corresponding to spin s, where

s = 0, 1

2
, 1, 3

2
, . . . (whose matrix elements appear in most textbooks on quantum

mechanics; e.g., see [B134]). Hence, the irreducible representations of the Lorentz

group can be characterized by two numbers (s+, s−), where s± is nonnegative and

either an integer or a half-integer. The eigenvalues of �S 2
± are given by s±(s± + 1).

The dimension of the representation corresponding to (s+, s−) is (2s++1)(2s−+1).

Using eqs. (1.9) and (1.10), an infinitesimal Lorentz transformation is given by

M ≡ exp
(

− 1

2
iθμνS

μν
)

≃ 1− i�θ·�S − i�ζ · �K , (1.19)

where θi and ζi are defined following eq. (1.2) and 1 is the identity. The simplest

(trivial) representation is the one-dimensional (0, 0) representation, which corre-

sponds to a spin-0 scalar field. In this representation, �S = �K = 0 and we recover

from eq. (1.9) the transformation law given in eq. (1.7). The spin-1 transformation

law [see eq. (1.8)] corresponds to the four-dimensional (1
2
, 1
2
) representation. How-

ever, in a quantum field theory of massive spin-1 fields, only three of the four degrees

of freedom are physical. Moreover, in gauge theories of massless spin-1 fields, gauge

invariance introduces an additional constraint and only two degrees of freedom are

physical. This is described in detail in [B72], to which we refer the reader.
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6 Two-Component Formalism for Spin-1/2 Fermions

1.2 The Poincaré Group and Its Lie Algebra

The Poincaré group is a semidirect product of the group of spacetime translations

and the Lorentz group (e.g., see [B112, B132]). In particular, under a Poincaré

transformation, the spacetime coordinates transform as x′μ = Λμ
νx

ν +aμ, where Λ

satisfies eq. (1.1) and aμ is a constant four-vector. In examining the behavior of

the fields under a Poincaré transformation, we shall assume that Λ is a proper

orthochronous Lorentz transformation [see eq. (1.2)].

Under a Poincaré transformation, a field of spin s transforms according to eq. (1.9)

after identifying x′ with the Poincaré transformed spacetime coordinate. It is con-

venient to rewrite this transformation law as follows:

ψ′
α(x) = exp

(

− 1

2
iθμνS

μν
)

α

β
ψβ

(

Λ−1(x− a)
)

, (1.20)

where we have used x = Λ−1(x′ − a) and redefined the dummy variable x′ by

removing the prime. Under an infinitesimal Poincaré transformation, we expand

eq. (1.20) about Λ = 14×4 and a = 0 to obtain6

ψ′
α(x) ≃

[

1+ iaμP
μ − 1

2
iθμν(L

μν + Sμν)
]

α

β ψβ(x) , (1.21)

where Pμ and Lμν are the differential operators7

Pμ ≡ i∂μ , Lμν ≡ i(xμ∂ν − xν∂μ) , (1.22)

and the total angular momentum tensor is Jμν ≡ Lμν + Sμν . The four generators

of spacetime translations (Pμ) and the six generators of Lorentz transformations

(Jμν , μ < ν) satisfy the following commutation relations of the Poincaré algebra:8

[Pμ, P ν ] = 0 , (1.23)

[Jμν , P ρ] = i(gνρPμ − gμρP ν) , (1.24)

[Jμν , Jρσ] = i(gνρ Jμσ − gμρ Jνσ − gνσ Jμρ + gμσ Jνρ) . (1.25)

It is convenient to introduce the Pauli–Lubański vector wμ:

wμ ≡ − 1

2
ǫμνρσJνρPσ = ( �J · �P ; P 0 �J + �K× �P ) , (1.26)

in a convention where ǫ0123 = 1, where J i ≡ 1

2
ǫijkJjk and Ki ≡ J0i. It follows

that wμP
μ = 0. The Poincaré algebra possesses two independent Casimir operators

P 2 ≡ PμP
μ and w2 ≡ wμw

μ, which commute with the generators Pμ and Jμν .

The representations of the Poincaré group, which correspond to particle states

of nonnegative energy P 0 with definite mass and spin, can be labeled by the eigen-

values of the Casimir operators, P 2 and w2, when acting on the physical states.

6 The operators 1, Pµ, and Lµν include an implicit factor of δαβ , whereas the spin operator Sµν

depends nontrivially on α and β (except for the case of spin 0, where S = 0).
7 We recognize Pµ and Lµν as the quantum mechanical four-vector momentum operator and

tensor orbital angular momentum operator, respectively, in the coordinate representation.
8 As demonstrated in Exercise 1.2, eq. (1.24) is a consequence of the transformation law of the

four-vector Pµ under Lorentz transformations.
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7 Spin-1/2 Representation of the Lorentz Group

The eigenvalue of P 2 is m2, where m is the mass. To see the physical interpretation

of w2, we first consider the case of m �= 0. In this case, we are free to evaluate w2 in

the particle rest frame (since w2 is a Lorentz scalar). In this frame, wμ = (0 ; m�S),

where Si is defined in eq. (1.10). Hence, w2 = −m2�S 2, with eigenvalues−m2s(s+1)

[where s = 0, 1
2
, 1, . . .]. We conclude that massive (positive-energy) states can be

labeled by (m, s), where m is the mass and s is the spin of the state.

If m = 0, the previous analysis is not valid, since we cannot evaluate w2 in the

rest frame. Nevertheless, if we take the m → 0 limit, it follows from the results

above that either w2 = 0 or the corresponding states have infinite spin. We reject

the second possibility (which does not appear to be realized in Nature) and assume

that w2 = 0. Thus, we must solve the equations w2 = P 2 = wμP
μ = 0. It is

simplest to choose a frame in which P = (P 0; 0, 0, P 0) where P 0 > 0. In this frame,

it is easy to show that w = (w0; 0, 0, w0). That is, in any Lorentz frame,

wμ = hPμ , (1.27)

where h is called the helicity operator. In particular,

[h , Pμ] = [h , Jμν ] = 0 , (1.28)

which means that the eigenvalues of h can be used to label states of the irreducible

massless representations of the Poincaré algebra. From eq. (1.27), we derive9

h =
w0

P 0
=

�J · �P

P 0
=

�S · �P

P 0
. (1.29)

Eigenvalues of h are called the helicity (and are denoted by λ). In particular, note

that for massless states, the eigenvalue of �S · �P /P 0 is equal to that of �S ·P̂ (where

P̂ ≡ �P /|�P |). Moreover, �S ·P̂ corresponds to the projection of the spin along its

direction of motion with a spectrum consisting of λ = 0,± 1

2
,±1, . . . , where λ → −λ

under a CPT transformation. Thus, in any quantum field theory realization of

massless particles, both ±|λ| helicity states must appear in the theory. It is common

to refer to a massless (positive-energy) state of helicity |λ| as having spin-|λ|.

1.3 Spin-1/2 Representation of the Lorentz Group

We first focus on the simplest nontrivial irreducible representations of the Lorentz

algebra: the two-dimensional representations (1
2
, 0) and (0, 1

2
). The corresponding

two-dimensional representations of the Lorentz generators are explicitly given by

(1
2
, 0) : �S+ = 1

2
(�S + i �K) = 1

2
�σ , �S

−
= 1

2
(�S − i �K) = 0 , (1.30)

which corresponds to �S = �σ/2 and �K = −i�σ/2, and

(0, 1

2
) : �S+ = 1

2
(�S + i �K) = 0 , �S

−
= 1

2
(�S − i �K) = 1

2
�σ . (1.31)

9 The three-vector orbital angular momentum operator is given by Li ≡ 1

2
ǫijkLjk [see eq. (1.22)].

Hence, �L = �x × �P and it follows that �J · �P = (�L+ �S)· �P = (�x × �P + �S)· �P = �S · �P .
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8 Two-Component Formalism for Spin-1/2 Fermions

Hence, we can identify �S = �σ/2 and �K = i�σ/2. Here, �σ = (σ1, σ2, σ3) are the

usual Pauli spin matrices,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (1.32)

It is convenient to define a fourth Pauli matrix,

σ0 = 12×2 , (1.33)

where 12×2 is the 2× 2 identity matrix. We can then define the four Pauli matrices

in a unified notation, σμ = (12×2 ; �σ).
10

Consider the infinitesimal Lorentz transformation in the (1
2
, 0) representation.

Inserting the (1
2
, 0) generators [eq. (1.30)] into eq. (1.19) yields

M = exp
(

− 1

2
i�θ·�σ − 1

2
�ζ ·�σ

)

≃ 12×2 −
1

2
i�θ·�σ − 1

2
�ζ ·�σ . (1.34)

A two-component (1
2
, 0) spinor field is denoted by χα(x), and transforms as

χ ′
α(x

′) = Mα
βχβ(x), α, β ∈ {1, 2}. (1.35)

By definition, M carries undotted spinor indices, as indicated by Mα
β . In our

conventions for the location of the spinor indices, we sum implicitly over a repeated

index pair in which one index is lowered and one index is raised.

IfM is a matrix representation of SL(n,C), thenM∗, (M−1)T and (M−1)† are also

matrix representations of the same dimension. For n > 2, all four representations

are inequivalent. For SL(2,C), there are at most two distinct matrix representations

corresponding to a given dimension: (j1, j2) and (j2, j1). Using eq. (1.34) and the

following property of Pauli matrices,

σ2�σ(σ2)T = �σ
T , (1.36)

where the transpose of the σ-matrices are �σT = (σ1,−σ2, σ3), it follows that M

and (M−1)T are related by

(M−1)T = iσ2M(iσ2)T . (1.37)

Since (iσ2)T = (iσ2)−1, the matrices M and (M−1)T are related by a similarity

transformation, corresponding to a unitary change in basis. Hence, M and (M−1)T

are equivalent representations.11

It is convenient to introduce the two-component spinor field χα(x), which under

the contragredient representation (M−1)T transforms as

χ′α(x′) = [(M−1)T]αβ χ
β(x) = [iσ2M(iσ2)T]αβ χ

β(x) . (1.38)

10 The beginning student often misinterprets the symbol σ2 to mean the square of σ. In the
notation of eqs. (1.32) and (1.33), the superscripts are analogous to contravariant indices.
Although the σµ do not transform under Lorentz transformations, we will see shortly that one
can create contravariant four-vectors by suitably employing σµ [see eq. (1.102)].

11 This corresponds to the well-known result that the 2 and 2 representations of SU(2) are equiv-

alent.
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9 Spin-1/2 Representation of the Lorentz Group

This motivates the definitions

ǫαβ ≡ iσ2 =

(

0 1

−1 0

)

, ǫαβ ≡ (iσ2)−1 =

(

0 −1

1 0

)

. (1.39)

In particular, the nonzero components of the epsilon symbols are

ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1. (1.40)

We also introduce the two-index symmetric Kronecker delta symbol,

δ11 = δ22 = 1 , δ12 = δ12 = 0 . (1.41)

The epsilon symbols satisfy

ǫαβǫ
ρτ = −δα

ρδβ
τ + δα

τ δβ
ρ , (1.42)

from which it follows that12

ǫαβǫ
βγ = δα

γ , ǫγβǫβα = δγα . (1.43)

Finally, the following equation, often called the Schouten identity, is noteworthy:

ǫαβǫγδ + ǫαγǫδβ + ǫαδǫβγ = 0 . (1.44)

Equations (1.35) and (1.38) imply that

χα = ǫαβχβ , χα = ǫαβχ
β . (1.45)

That is, the epsilon symbols can be used to raise or lower a spinor index. In par-

ticular, in raising or lowering an index of a spinor quantity, adjacent spinor indices

are summed over when multiplied on the left by the appropriate epsilon symbol.

As noted below eq. (1.37), M and (M−1)T are equivalent representations. Hence,

χα and χα are equally good candidates for the (1
2
, 0) representation.

Consider next the infinitesimal Lorentz transformation in the (0, 1
2
) representa-

tion [eqs. (1.19) and (1.31)]:

(M−1)† = exp
(

− 1

2
i�θ·�σ + 1

2
�ζ ·�σ

)

≃ 12×2 −
1

2
i�θ·�σ + 1

2
�ζ ·�σ , (1.46)

after taking the inverse of the hermitian conjugate of eq. (1.34). A two-component

(0, 1

2
) spinor field is denoted by η† α̇(x), and transforms as

η′ † α̇(x′) = (M−1)† α̇
β̇ η

† β̇(x) , α̇, β̇ ∈ {1̇, 2̇}. (1.47)

By definition, (M−1)† carries dotted spinor indices, as indicated by (M−1)† α̇
β̇ .

Here, the “dotted” indices have been introduced to distinguish the (0, 1

2
) represen-

tation from the ( 1
2
, 0) representation.

The equivalent description of this representation is obtained via the conjugate

representation M∗. Taking the complex conjugate of eq. (1.37), it follows that M∗

12 In light of eq. (1.41), the distinction between δα
γ and δγα is somewhat pedantic. Nevertheless,

it is useful to keep track of this distinction when reinterpreting such equations in terms of

matrix multiplication.
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10 Two-Component Formalism for Spin-1/2 Fermions

is related by a similarity transformation to (M−1)†. The two-component spinor field

η†α̇(x) under the conjugate representation transforms as

η′ †α̇ (x′) = (M∗)α̇
β̇
η†
β̇
(x), (1.48)

where

η†α̇ = ǫα̇β̇η
† β̇ , η† α̇ = ǫα̇β̇η†

β̇
, (1.49)

and

ǫα̇β̇ ≡ (ǫαβ)∗ =

(

0 1

−1 0

)

, ǫα̇β̇ ≡ (ǫαβ)
∗ =

(

0 −1

1 0

)

. (1.50)

Hence, ǫα̇β̇ and ǫαβ are numerically equal, but the dotted and undotted indices

transform differently under Lorentz transformations [see eqs. (1.35) and (1.47)] and

must always be kept distinct. Likewise, we define the Kronecker delta symbol with

dotted indices, δβ̇α̇ ≡ (δβα)
∗.

The dotted epsilon tensor satisfies

ǫα̇β̇ǫ
ρ̇τ̇ = −δα̇

ρ̇δβ̇
τ̇ + δα̇

τ̇δβ̇
ρ̇ , (1.51)

from which it follows that

ǫα̇β̇ǫ
β̇γ̇ = δα̇

γ̇ , ǫγ̇β̇ǫβ̇α̇ = δγ̇ α̇ . (1.52)

Likewise, the Schouten identity analogous to that of eq. (1.44) also holds:

ǫα̇β̇ǫγ̇δ̇ + ǫα̇γ̇ǫδ̇β̇ + ǫα̇δ̇ǫβ̇γ̇ = 0 . (1.53)

Note that the (1
2
, 0) and (0, 1

2
) representations are related by conjugation. That

is, if ψα is a (1
2
, 0) fermion, then (ψα)

† transforms as a (0, 1
2
) fermion. In this con-

text, the conjugation symbol (†) denotes complex conjugation for classical fields or

hermitian conjugation for quantum field operators. In particular, we shall identify13

ψ†
α̇ ≡ (ψα)

†. (1.54)

This means that we can, and will, describe all fermion degrees of freedom using only

fields defined as left-handed ( 1
2
, 0) fermions ψα, and their conjugates. In combining

spinors to make Lorentz tensors (as in Section 1.4), it is useful to regard ψ†
α̇ as

a row vector, and ψα as a column vector. Likewise, it follows that ψα = (ψ†
α̇)

†.

The Lorentz transformation property of η†α̇ then follows from eq. (1.48), which can

be rewritten as [ηα(x)]
† → [ηβ(x)]

†(M †)β̇ α̇, where (M †)β̇ α̇ = (M∗)α̇
β̇ reflects the

definition of the hermitian adjoint matrix as the complex conjugate transpose of

the matrix.

Spinors labeled with one undotted or one dotted index are sometimes called

spinors of rank one [or more precisely, spinors of rank (1, 0) or (0, 1), respectively].

13 In this book, the dotted-index notation is used in association with the dagger to denote conju-
gation, as specified in eq. (1.54). In contrast, many references in the supersymmetry literature

employ the bar notation made popular by Wess and Bagger [B40], where ψα̇ ≡ ψ
†
α̇ ≡ (ψα)†.

www.cambridge.org/9780521800884
www.cambridge.org

