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Preliminaries

Algebraic K-theory can be understood as a natural outgrowth of the attempt
to generalize certain theorems in the linear algebra of vector spaces over a
field to the wider context of modules over a ring. We assume the reader has
been exposed to the fundamentals of module theory, including submodules,
quotient modules, and the basic isomorphism theorems. To establish notation
and terminology, we review some definitions in module theory. Then we present
an introduction to the language of categories and functors.

By an additive abelian group we mean an abelian group A with operation
denoted by “+,” identity denoted by “04,” and the inverse of an element z € A
by “—z.” By a ring we mean an associative ring with identity — that is,
an additive abelian group R with a multiplication R X R — R, (r,s) — s,
satisfying

r(s+t) = rs+rt,
(r+s)t = rt+st,
(rs)t = r(st),
for all r,s,t € R and having an element 1 = 1 € R with
Ir=r=rl

forall r € R.
Suppose R is a ring. A left R-module is an additive abelian group M
together with a function R x M — M, (r,m) — rm, satisfying

r(m+n)
(r+s)m

(rs)m = r(sm)

TMm4+Trn

™m+ sm

Im =m

for all r,s € R and all m,n € M. An R-linear map f: M — N, between left
R-modules M and N, is a homomorphism of additive groups that also satisfies

frm) = rf(m)
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2 Preliminaries

for each r € R and m € M.
A right R-module is an additive abelian group M together with a function
M x R — M, (m,r) — mr, satisfying

(m+n)r = mr+nr
m(r+s) = mr+ms
m(sr) = (ms)r
ml = m

for all r,s € R and m,n € M. An R-linear map f: M — N, between right
R-modules M and N, is a homomorphism of additive groups satisfying

flmr) = f(m)r

foreach f€ Rand m € M.

In either left or right modules we refer to elements of R as scalars, elements
of M as vectors, and the maps Rx M — M or M x R — M as scalar
multiplication. The set of all R-linear maps from M to N is denoted by
Homp(M,N). An R-linear map f : M — M, from a module M to itself, is
called an endomorphism of M, and Hompg(M, M) is denoted by Endp(M).
Our preference will be to work with left R-modules — that is, to write scalars
on the left side of vectors. So when we refer to an R-module with no mention
of left or right, we mean a left R-module.

Sometimes a vector multiplication is defined from M x M to M. If R is
a commutative ring, an R-algebra A is an R-module that is also a ring and
satisfies r(ab) = (ra)b = a(rb), whenever r € R and a,b € A. For example,
if R is a subring of a ring A, and ra = ar for al » € R and a € A, then
A is an R-algebra with scalar multiplication R x A — A restricting the ring
multiplication A x A — A.

Whether we study groups, rings, modules, or any other type of mathemat-
ical structure, it is often useful to consider the functions which preserve that
structure. For instance, the study of groups includes an examination of group
homomorphisms. For a comprehensive view of groups, one might consider the
class of all groups, together with all group homomorphisms. Imagine a vast
diagram of dots connected by arrows, with each group represented by a dot
and each group homomorphism by an arrow. What you are picturing is the
“category of groups.”

(0.1) Definition. A category € consists of a class Obj C of objects, and
for each pair of objects A, B a set Hom(A, B) of arrows from A to B, and for
each triple of objects A, B, C a function:

Hom(A, B) x Hom(B,C) — Hom(A,C)

called the composite. The composite of a pair (f,g) is denoted by g f. For
€ to be a category, the following three axioms must hold:
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(i) Hom(A, ByNnHom(C,D) =0 unless A=C and B=D.

1
ii) For each object A, there is an arrow i4 € Hom(A, A) for which
J
jeia = jF and ig°k =k

whenever j € Hom(4, B) and k € Hom(C, A) for objects B, C.
(iii) If f € Hom(A4, B),g € Hom(B, C), and h € Hom(C, D), then

(heg)ef = he(g-f).

In a category €, an arrow f € Hom(A, B) is said to have domain A and
codomain B, and this is implied by the expressions:

fj:A—>B o ALB.

Axiom (i) just says the domain and codomain of f are uniquely determined by
f- The arrow i, in axiom (ii) is called the identity arrow on A; it is uniquely
determined by the composition in €, since if ¢ and i’ are two arrows from A to
A with the property described in (ii), then i =i+ ¢ =7'.

The set of arrows Hom(A, B) is sometimes denoted by Home (A4, B) to em-
phasize that they are arrows in the category €. We shall often write End(A)
or Ende(A4) to denote the set Home(4, A) of arrows from A to itself.

(0.2) Examples. Here are the names, objects, and arrows of some of the
categories considered in this book:

Set: sets; functions.

Sroup: groups; group homomorphisms.

Ab: abelian groups; group homomorphisms between them.

Ring: rings (associative with 1); ring homomorphisms (preserving 1).

CRing: commutative rings (associative with 1); ring homomorphisms
(preserving 1) between them.

Top: topological spaces; continuous maps.

Metric: metric spaces; isometries.

Poroer(S): subsets of the particular set S; inclusion maps (i : A — B,
i(a) = a) between them.

For each ring R we have the categories:

R-Mod: left R-modules; R-linear maps between them.
Mo0-R: right R-modules; R-linear maps between them.

For each commutative ring R we have the category:
R-Alg: R-algebras; R-linear ring homomorphisms between them.

For the advantage of brevity, when € is a category, we shall sometimes write
A € € instead of A € Obj € to indicate that A is an object of €. For instance,
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4 Preliminaries

A € CRing means A is a commutative ring, and A € R-Mo0 means A is a left
R-module. This is really an abuse of notation, since the category C is not the
same as the class Obj €; and we will use this shortcut only where it does not
suggest any ambiguity.

Each of the preceding examples are concrete categories, meaning that the
objects are sets (possibly with additional structure), the arrows are (structure-
preserving) functions between those sets, the identity arrows are identity func-
tions (i(z) = z), and the composition is the composition of functions ((g- f)(z) =
g(f(z))). But many useful categories do not fit this description. Here are some
non-concrete categories:

(0.3) Examples.

(i) The objects and arrows of a category need not represent anything. For
example, we can construct a category with two objects A and B, and four
arrows ¢, j, f, and g:

; CA——%—:BD i

Since the codomain of f equals the domain of g, there must be a composite
g e f from the domain A of f to the codomain A of g. Since ¢ is the only arrow
from A to A, we must have g f = i. In this way, the scarcity of arrows forces
the composites to be defined by the table:

Each of the sets Hom(A4, A), Hom(A, B), Hom(B, A4), and Hom(B, B) has only
one element. So the category axioms (ii) and (iii) hold automatically, since
both sides of each equation belong to the same set Hom(X,Y).

More generally, any diagram with the following properties has exactly one
law of composition making it into a category:

(a) For each object X there is an arrow from X to X.

(b) If there is an arrow from X to Y and an arrow from Y to Z, there is
an arrow from X to Z.

(¢) For each pair of objects X and Y (possibly equal) there is at most
one arrow from X to Y.
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(ii) Suppose A is a set with a partial order <. That is, A has a binary
relation < that is reflexive (for all x € A, z < z), antisymmetric (z < y and
y < z imply x = y), and transitive (z < y and y < z imply = < z). View the
elements of A as objects, and draw one arrow from z to y if £ < ¥, and no
arrow from 2 to y if 4 y. Then properties (a), (b), and (c) of the preceding
example hold; so this diagram is a category. We use the term poset to refer to
a partially ordered set, or to its associated category.

(iii) If M is a set with a binary operation o that is associative with an
identity element e € M, then M is called a monoid. For each object A in any
category C, the set Ende(A) is a monoid under composition of arrows. Every
monoid (M, o) can be obtained in this way: Just create a category with one
object, called A, and with the elements of M regarded as the arrows from A to
A; and define the composition of these arrows by using the operation o in M.

(iv) Suppose R is a ring. There is a category Mat{R) whose objects are the
positive integers 1,2,3,..., and in which Hom(m,n) is the set of m x n matrices

an a2 ... Qi

a21 aso SN aon
A= (aij) = . . .

Aml Am2 ... Qmn

with entries a;; in R. The composition is matrix multiplication: B « A = AB.
Explicitly, if A = (a;;) is an m x n matrix and B = (b;;) is an n X p matrix,
their product AB = (c;;) is the m x p matrix with ij-entry

n
cij = E @ikbrj -
k=1

From this formula one can show that the multiplication of matrices is associa-
tive, and there is an identity I, = (6;;) € Hom(n,n) for each n, where:

5 _{1ifi=j
Tl o i#j.

For details, see (1.26) below.

(0.4) Definition. A category D is called a subcategory of a category € if ev-
ery object of D is an object of €, and for each pair A, B € Obj D, Homqp (4, B)
C Home(A4, B), and composites and identities in D agree with those in €. In
case Homyp (4, B) = Home (A4, B), for each pair A, B € Obj D , the subcategory
D is called full.

Note that if C is a category, every subclass D C Obj € is the class of objects
of a full subcategory D of €. In particular, Ab is a full subcategory of Group,
and CRing is a full subcategory of Ring. However, if a set S has at least two
elements, the subcategory Potver(S) of Set is not full.
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6 Preliminaries

Is Ring a subcategory of Ab? After all, every ring (R,+,-) is an additive
abelian group (R, +) if we forget its multiplication, and every ring homomor-
phism is a homomorphism between additive groups. The answer is no: Ring
is not a subcategory of Ab! For the condition in the definition of subcategory,
“every object of D is an object of €,” is to be taken quite literally: A ring has
two operations and an abelian group has only one. So (R, +,) is not the same
as (R,+).

(0.5) Definition. In each category € an arrow f € Hom(A, B) is called an
isomorphism if there is an arrow g € Hom(B, A) with

feg = ip and gof = i4.

Such an arrow g is called an inverse to the arrow f. An isomorphism in End(A)
is called an automorphism of A, and the set of automorphisms of A is denoted
by Aut(A) or Aute(A).

In the categories Set, Group, Ab, Ring, CRing, R-Mod, Mov-R, and Metric,
an arrow is an isomorphism if and only if it is bijective. In Top, an isomorphism
is the same as a homeomorphism; but not every bijective continuous map is
a homeomorphism. (Consider the identity function on X with two different
topologies, the first finer than the second.)

In Mat(R), an isomorphism in Hom(n,n) is the same as an invertible n x n
matrix over R. There exist rings R for which Mat{R) includes an isomorphism
in Hom(m, n) even though m # n. Such an isomorphism would be an m x n
matrix X over R for which there is an n x m matrix Y over R with

XY =4, and YX = i,,

where i, and i,, are identity matrices of different sizes. But such rings R are a
little hard to come by. For an example, see (1.37).

(0.6) Definition. An object X in a category € is called initial if, for each
object A € Obj €, there is one and only one arrow in Hom(X, A). An object
Y in € is called terminal if, for each object A € Obj €, there is one and only
one arrow in Hom(A4,Y).

(0.7) Proposition. If objects X and Y of a category C are both initial or
both terminal, then there is one and only one arrow f : X - Y, and f is an
isomorphism in C.

Proof. The existence and uniqueness of f is immediate since X is initial or
Y is terminal. Likewise there is a unique arrow g:Y — X, and the identity
arrows are the only arrows in End(X) and End(Y). So, for lack of options,
gef=ix and feog=1iy. |
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(0.8) Examples.

(i) In Set the empty set @ is initial: Hom(, A) has one member f: § — A

with empty graph. Each set {x} with only one member is terminal.

(ii) In Group, any trivial group {e} is both an initial and a terminal object.

(ifi) In Ring, Z is an initial object, and the trivial ring {0} is a terminal
object. The same is true in CRing.

(iv) For each scalar ring R, the trivial R-module {0} is both initial and
terminal in' R-Mod.

(v) If Ris aring with at least two elements, Mat(R) has no initial object
and no terminal object, since each set Hom(m,n) has more than one
element.

Once categories are viewed as algebraic entities, it is natural to ask what
might be meant by a “homomorphism” from one category to another. A func-
tion is an arrow in Set; its domain and codomain are sets. As a generalization,
define a metafunction from a class A to a class B to be a procedure that
assigns to each member a € A a unique member f(a) € B. Then a homo-
morphism between categories should be a metafunction that takes objects to
objects, arrows to arrows, and respects domains, codomains, composites, and
identities.

(0.9) Definition. A covariant functor F: € — D from a category € to a
category D is a metafunction that assigns to each object A of € an object F'(A)
of D, and to each arrow f: A — B in € an arrow F(f) : F(A) — F(B) in D,
so that

(i) F(ia) =ipa), and
(i) F(gof)="F(g)F(f),

whenever A € Obj € and (f, g) are composable arrows in C.
There is also an arrow-reversing version:

(0.10) Definition. A contravariant functor F': € — D is a metafunction
that assigns to each object A in € an object F(A4) in D, and to each arrow
f+A— Bin € an arrow F(f): F(B) — F(A) in D, so that

(i) F(ia) =ipca), and
(i) F(g-f)=F(f)-F(g),

whenever A € Obj € and (f, g) are composable arrows in C.

For both covariant and contravariant functors F', the condition (ii) amounts
to saying that if F' is applied to every object and arrow in a commutative
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8 Preliminaries

triangle in €, one obtains a commutative triangle in D (but with its arrows
reversed in the contravariant case).

(0.11) Examples.

(i) If Cis a subcategory of D, the inclusion functor F : C — D is defined
by F(A) = A and F(f) = f for each object A and arrow f in €. The inclusion
functor F': € — € is called the identity functor ie.

(i) If € is a concrete category, such as Group or Ring, the forgetful functor
F : € — Set is defined by taking F(A) to be the underlying set of elements
of A and F(f) to be f as a function. There are also functors involving a
partial loss of memory, such as the functor F : Ring — Ab that forgets
multiplication: F(R) = R as an additive group and F(f) = f as an additive
group homomorphism.

(iif) If n is a positive integer, there is a functor

M, : Ring — Ring

where M, (R) is the ring of n X n matrices with entries in R; and if f : R — §
is a ring homomorphism, M, (f) : Mp(R) — M,(S) is the ring homomorphism
defined by

a] ... Qin f(all) ce f(aln)
Mn(f) : : = : :
Gp1 ... GOnn flany) ... flann)

(iv) If R is a ring, the elements of R with (two-sided) multiplicative inverses
in R are called units. The set R* of units in R is a group under multiplication.
There is a functor

U : Ring — SGroup

defined by U(R) = R* and U(f) = f restricted to units. This works because
every ring homomorphism f takes units to units.

(v) HF:C — Dand G:D — & are functors, there is a composite functor
G o F: € — & defined by

G- F(A) = G(F(4)), G-F(f) = G(F(f)) ,

for objects A and arrows f in C. If F and G are both covariant or both con-
travariant, then G o F' is covariant; if one of G, F' is covariant and the other is
contravariant, then G o F is contravariant.
(vi) The composite of M, : Ring — Ring, followed by U : Ring — Group, is
the functor
GL,=U- M, :Ring — Group
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which takes each ring R to the group GL,(R) of n x n invertible matrices with
entries in R, and takes each ring homomorphism f to the group homomorphism
that applies f to each entry. The GL stands for “general linear” group.

(vii) In the functor definitions (0.9) and (0.10), axioms (i) and (ii) hold
automatically if D is a poset category, for in a poset category an arrow is
uniquely determined by its domain and codomain. Also, the class of objects in
a poset category is a set. So a functor from a poset (A4, <) to a poset (B, <)
is just a function F': A — B that preserves order:

z=<y = F(z) < F(y)
if F'is covariant, or reverses order:
z<y = F(y) < F(z)
if F' is contravariant.
If F: € — D is a functor and there is a functor G : D — € for which
FoG = 1ip and G- F = ie,

then G is called an inverse to F, and F is called an isomorphism of categories
if F is covariant and an anti-isomorphism of categories if F' is contravariant.
If there is an isomorphism (respectively, anti-isomorphism) of categories from
C to D, we say € and D are isomorphic (respectively, anti-isomorphic).

The correspondence theorems of algebra provide either isomorphisms or anti-
isomorphisms of poset categories: For instance, if A is a group with a normal
subgroup NV, the poset of subgroups of A containing N is isomorphic to the poset
of subgroups of A/N; the isomorphism takes each H to H/N, and its inverse
takes each subgroup K of A/N to its union UK. As a contravariant example, if
F C E is a finite-degree Galois field extension, the poset of intermediate fields is
anti-isomorphic to the poset of subgroups of Aut(E/F); the anti-isomorphism
takes each K to Aut(F/K), and its inverse takes each subgroup H of Aut(E/F)
to the fixed field EX.

For each ring R, right R-modules are, in a sense, mirror images of left R-
modules. Their definitions are parallel, and so are the theorems that apply to
them. But it is also possible to pass through the looking glass: If R is a ring,
define its opposite ring R°P to have the same elements as R and the same
addition as in R, but to have a multiplication - defined by r - s = sr (the right
side multiplied in R).

(0.12) Proposition. There are isomorphisms of categories:

R-Mod Mod-R°? |
R’ Mod =2 Mod-R .

IR
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Proof. If M is a left R-module with scalar multiplication Rx M — M, (r,m) —
rxm, then the additive group of M can also be made into a right R°P-module via
a scalar multiplication M X R°? — M, (m,r) — m#r, defined by m#r = r+m:

(m+m)ftr = rx(m+n) = (rxm)+(ren) = (m#tr) + (n#r) ,
mi(r+s) = (r+s)xm = (rxm)+(sxm) = (mftr) + (ms)

m#(s-r) (rs)*m = rx(s*m) = (m#s)#r,
m#l = 1xm = m.

Each R-linear map f : M — N between left R-modules is also an R°P-linear
map between right R°P-modules:

fm#try = frxm) = rxf(m) = f(m)#r.

So there is a functor F from R-Mod to Mod-R°? with F((M,*)) = (M, #) and
F(f) = f.

Similarly, there is a functor G from Mod-R°P to R-Mod with G((M,#)) =
(M, %), where r * m is defined to be m#tr, and G(f) = f. Since F and G are
inverses, F' is an isomorphism. Since (R°P)°? = R, the second isomorphism
follows from the first. ]

So, for the study of properties held in common by all module categories, it
suffices to consider only a category R-Mod of left R-modules. Of course, if R
is commutative (R°? = R), then we can regard R-Mod and Mod-R as the same
category. Every additive abelian group is a Z-module in exactly one way, and
every homomorphism between abelian groups is Z-linear. So Z-Mod = Mod-
Z = Ab, and Z-Alg = Ring.

Sometimes the values of two functors from € to D are closely related in D.
For instance, GL, and U are functors from CRing to Group, and the deter-
minant connects them: For each commutative ring R, the determinant is a
group homomorphism det : GL,(R) — U(R). And if f : R — S is a ring
homomorphism, the square

GL.(R) %> U(R)
anml lum
GLn(S) — > U(S)

commutes in Group; so det is compatible with a change of rings.

(0.13) Definition. If F and G are covariant functors from € to D, a natural
transformation 7 : F — G is a metafunction that assigns to each object X of

C an arrow
7x : F(X) — G(X)
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