Primary Succession and Ecosystem Rehabilitation

Natural disturbances such as lava flows, landslides and glacial moraines, and human-damaged sites such as pavements, road edges and mine wastes, often leave little or no soil or biological legacy. This book provides the first comprehensive summary of how plant, animal and microbial communities develop under the harsh conditions following such dramatic disturbances. The authors examine the basic principles that determine ecosystem development and apply the general rules to the urgent practical need for promoting the reclamation of damaged lands. Written for those concerned with disturbance, landscape dynamics, restoration, life histories, invasions, modeling, soil formation and community or population dynamics, this book will also serve as an authoritative text for graduate students and a valuable reference for professionals involved in land management.

Lawrence R. Walker is Professor of Biological Sciences at the University of Nevada, Las Vegas. His research focuses on the mechanisms that drive primary succession and the applications of succession to restoration.

Roger del Moral is Professor of Botany at the University of Washington. His research relates observed patterns of vegetation recovery to ecological theory.

Primary Succession and Ecosystem Rehabilitation

LAWRENCE R. WALKER University of Nevada, Las Vegas

and

ROGER DEL MORAL University of Washington, Seattle

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Lawrence R. Walker and Roger del Moral 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Bembo 11/13 pt System LATEX 2_E [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication data

Walker, Lawrence R.
Primary succession and ecosystem rehabilitation / Lawrence R. Walker and Roger del Moral. p. cm.
Includes bibliographical references (p.).
ISBN 0 521 80076 5 - ISBN 0 521 52954 9 (pb.)
1. Ecological succession. 2. Ecosystem management. I. Moral, Roger del, 1943- II. Title.
QH541 .W25 2003
577'.18-dc21 2002073586

ISBN 0 521 80076 5 hardback ISBN 0 521 52954 9 paperback

Contents

	Preface and acknowledgements	<i>page</i> xi
1	Introduction	1
	1.1 Why learn about primary succession?	1
	1.1.1 Humans and disturbance	2
	1.1.2 Human interest in ecosystem recovery	5
	1.2 Definitions	5
	1.3 Methods	9
	1.4 Questions that still remain	12
2	Denudation: the creation of a barren substrate	14
	2.1 Concepts	14
	2.1.1 Physical environment and disturbance	14
	2.1.2 Definitions	15
	2.1.3 Plants and animals as agents of disturbance	17
	2.1.4 Patch dynamics	17
	2.2 Types of disturbance that initiate primary successio	n 19
	2.2.1 Earth	19
	2.2.2 Air	33
	2.2.3 Water	36
	2.2.4 Fire	41
	2.2.5 Humans	42
	2.2.6 Disturbance interactions	48
	2.2.7 Summary of disturbance types	50
3	Successional theory	52
	3.1 Introduction	52
	3.2 Early observations	54
	3.3 Holism	55
	3.4 Neo-holism	60
	3.5 Phytosociology	62

vi · Contents

3.6 Reductionism	63
3.7 Neo-reductionism	65
3.8 Ecosystem assembly	68
3.9 Models	70
3.9.1 Verbal models	72
3.9.2 Mathematical models	83
3.10 New directions	86
4 Soil development	88
4.1 Background	88
4.2 Environmental controls	89
4.2.1 Climate	90
4.2.2 Parent material	91
4.2.3 Topography	92
4.2.4 Erosion	93
4.3 Physical and chemical properties	95
4.3.1 Texture	95
4.3.2 Compaction	98
4.3.3 Water content	100
4.3.4 pH and cations	102
4.3.5 Nitrogen	105
4.3.6 Phosphorus	108
4.4 Soil biota	112
4.4.1 Plants	112
4.4.2 Soil microbes	113
4.4.3 Mycorrhizae	115
4.4.4 Animals	117
4.5 Soil processes	118
4.5.1 Nitrogen fixation	118
4.5.2 Organic matter	123
4.6 Spatial patterns	127
4.7 Summary	129
5 Life histories of early colonists	133
5.1 Introduction	133
5.2 Pre-dispersal considerations	133
5.2.1 Pollination and seed set	134
5.2.2 Seed banks	136
5.2.3 Vegetative reproduction	139

	Contents ·	vii
	5.3 Dispersal	141
	5.3.1 Dispersal parameters	142
	5.3.2 Dispersal mechanisms and their consequences	145
	5.3.3 Barriers	156
	5.3.4 Predictability	160
	5.3.5 Dispersal conclusions	163
	5.4 Establishment	164
	5.4.1 Germination	164
	5.4.2 Growth	170
	5.5 Persistence and longevity	177
	5.5.1 Persistence	177
	5.5.2 Longevity	179
	5.6 Successional consequences of dispersal	
	and establishment	181
	5.6.1 Under-saturated early successional	
	communities	181
	5.6.2 Under-saturated late successional	
	communities	181
	5.6.3 Novel species assemblages	183
	5.6.4 Priority effects	184
	5.6.5 Disharmonic communities	184
	5.6.6 Biogeographical effects	186
	5.6.7 Establishment conclusions	187
6	Species interactions	189
Ū	6.1 Introduction	189
	6.2 Plant–soil and animal–soil interactions	191
	6.2.1 Plant impacts on soils	191
	6.2.2 Animal disturbances	198
	6.3 Interactions among plants	198
	6.3.1 Facilitation	199
	6.3.2 Inhibition	209
	6.4 Interactions between plants and other organisms	217
	6.4.1 Mutualisms	217
	6.4.2 Herbivores	218
	6.4.3 Parasitism	223
	6.5 Interactions between animals	224
	6.6 Net effects of interactions	226

viii · Contents

7	Successional patterns	232
	7.1 Types of trajectory	232
	7.1.1 Converging trajectories	235
	7.1.2 Diverging trajectories	240
	7.1.3 Trajectory networks	243
	7.1.4 Parallel trajectories	245
	7.1.5 Deflected trajectories	246
	7.1.6 Cyclic patterns and fluctuations	249
	7.1.7 Retrogressive trajectories	249
	7.1.8 Arrested trajectories	250
	7.1.9 Trajectory summary	251
	7.2 Temporal dynamics	252
	7.2.1 Definitions	253
	7.2.2 Methods of measuring rates	254
	7.3 Changes in biodiversity and biomass	258
	7.3.1 Biodiversity	258
	7.3.2 Stability	259
	7.3.3 Biomass and allocation	259
	7.4 Environmental feedback	261
	7.4.1 Moisture	262
	7.4.2 Temperature	264
	7.4.3 Nutrients	266
	7.4.4 Salinity	270
	7.4.5 Landscape factors	273
	7.4.6 Chronic disturbance	273
	7.4.7 Pollution	275
	7.5 Summary	276
0		292
8	Applications of theory for rehabilitation 8.1 Theory of rehabilitation ecology	282 282
	8.1.1 Introduction and definitions	282 282
		282
	8.1.2 Interdependency between rehabilitation	204
	and ecological theory	284
	8.2 Rehabilitation processes	287
	8.2.1 Conceptual framework	287
	8.2.2 Planning	292
	8.3 Implementation	295
	8.3.1 Dispersal	296
	8.3.2 Establishment	297

	Contents	· ix
	8.3.3 Monitoring	300
	8.3.4 Maintenance	301
	8.4 Overcoming adverse conditions	301
	8.4.1 Drought	302
	8.4.2 Hydric conditions	303
	8.4.3 Infertility and toxicity	306
	8.4.4 Salinity	311
	8.4.5 Extreme pH values	312
	8.4.6 Low temperatures	313
	8.4.7 Unstable substrates	314
	8.4.8 Alien plants	315
	8.4.9 Grazing	317
	8.4.10 Air pollution	318
	8.4.11 Overcoming adversity: a summary	319
	8.5 Feedback between theory and practice	322
	8.5.1 Increasing restoration rates	322
	8.5.2 Improving the aim	323
	8.5.3 Enlarging the target	325
	8.5.4 Summary of feedback between theory	
	and practice	326
	8.6 Politics	327
9	Future directions	328
	9.1 Paradigm shifts	328
	9.2 Development of standard protocols	331
	9.2.1 Permanent plots	331
	9.2.2 Removal experiments	332
	9.2.3 Chronosequence studies	332
	9.3 Questions for the future	333
	9.3.1 The end of succession	333
	9.3.2 Trajectories	335
	9.3.3 Predictions	336
	9.4 Missing data and poorly studied habitats	337
	9.5 Conclusions	340
	Glossary	343
	Illustration credits	355
	References	357
	Index	429

Preface and acknowledgements

We wrote this book for many reasons. First, we wanted to share our excitement about some of the wild places on this planet. The wilds we consider are places where new land is being formed, whether by dramatic natural forces (volcanoes, glaciers, landslides) or by the steady, unobtrusive forces of wind and water (dunes, beaches, soil erosion). We are equally intrigued by successional processes following abandonment of human artifacts (pavement, mines, waste dumps). Our careers started with our entrancement about natural disasters and how natural processes or regeneration follow. The next logical step was to extend our studies to disturbances of human origin, applying the same curiosity and scientific methodology. Now we summarize what we have learned and what we believe still needs study.

Our second reason for writing this book was because we feel the urgency of understanding the natural and human-assisted processes involved in ecosystem rehabilitation. With the spiraling challenges of overpopulation and resource depletion, including a startling loss in arable land, rehabilitation of severely damaged terrestrial and aquatic systems is just as essential as recycling of waste products into useful resources. We maintain that the best approach to rehabilitation is the merger of science and management. This book aims to forge links between successional theory and potential applications of that knowledge. Communication between scientists and land managers, theorists and practitioners of rehabilitation must improve. Theory can be helpful, but hands-on practical experience, particularly when combined with appropriate field experiments, is essential to addressing local problems. It is the theorist's challenge to develop a general framework from the accumulated local experience.

We also wrote this book in order to provide the first summary of a global and growing literature on primary succession. We hope our readership will include professional scientists and students of ecology looking for synthesis of ideas from research on succession, competition, facilitation, ecosystem assembly, conservation and rehabilitation. This book will easily

xii · Preface and acknowledgements

serve as a textbook and summary of a complex yet interrelated collection of ideas. We also hope that land managers from government, corporate and non-profit organizations dedicated to the repair of degraded habitats will find this book of practical significance.

We are both terrestrial plant ecologists biased toward easily visible, sedentary green things that do not flee when we study them. Yet we have included research on aquatic systems, soil microbes and other fauna whenever it elucidates principles of primary succession. Fascinating examples include succession of tubeworms around thermal vents on the ocean floor, algae growing inside rocks in Antarctica, or the sequence of decomposers on rotting carcasses. There is also a rich body of research on land–water interfaces such as dunes and shorelines that we evaluate in terms of primary succession. However, the vast majority of studies on primary succession deal with terrestrial plants, although more emphasis is beginning to be placed on the sum of the interactions of plants, animals and microbes.

We gratefully acknowledge the support of our wives, Elizabeth Powell and Beth Brosseau, our home institutions and the editorial staff of Cambridge University Press. We both thank our mentors for inspiration and our many colleagues and students for stimulating discussions. Lawrence Walker particularly recognizes the positive influences of Terry Chapin and Peter Vitousek. Roger del Moral became an ecologist because C. H. Muller showed him how compelling were the problems of biotic interactions, and was subsequently influenced by Robert H. Whittaker, Joe Connell and Eddy van der Maarel. Several books have also served as models for us to emulate, especially Pickett & White (1985), which clarified the importance of disturbance, and Matthews (1992), which provided an impressively thorough compendium of one type of primary succession. We are also indebted to McIntosh (1985) for his insightful summaries of the history of ecological thought, to Luken (1990) for providing the first successful bridge between theory and practice and to Glenn-Lewin et al. (1992) for their cogent summaries of successional ideas.

Lawrence Walker was supported in part by grants BSR-8811902 and DEB-9411973 from the National Science Foundation to the Institute for Tropical Ecosystem Studies, University of Puerto Rico and the International Institute for Tropical Forestry, as part of the Long Term Ecological Research Program in the Luquillo Experimental Forest. The Forest Service (U.S. Department of Agriculture), the University of Puerto Rico, the University of Nevada, and Landcare Research of New Zealand provided substantial additional support.

Preface and acknowledgements · xiii

Roger del Moral was supported by Grants DEB 94-06987 and DEB 00-87040 from the National Science Foundation for long-term studies of Mount St. Helens. Support while writing this book was provided by the University of Washington and by the Instituto di Biologia ed Ecologia Vegetale, Università di Catania. Prof. Emilia Poli Marchese contributed greatly to facilitating Roger's study of Mount Etna and was an excellent guide to Sicilian ecology.

We appreciate the assistance of Paula Jacoby-Garrett with the figures and M. Kay Suiter with the references and figures. We are indebted to several critical readers whose comments helped us improve all or parts of the book. In addition to one anonymous reviewer, these readers included Peter Bellingham, John Bishop, Nicholas Brokaw, Ray Callaway, Charles Cogbill, Charlie Crisafulli, Chris Fastie, Tara Fletcher, Charles Halpern, Richard Hobbs, Chad Jones, Craig Palmer, Duane Peltzer, Mohan Wali, Alan Walker, Margery Walker and David Wardle.

The publisher has used its best endeavors to ensure that URLs for external websites referred to in this book are correct at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain active or that the content is or will remain appropriate.