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Chapter 1

SEQUENCES OF LOW
COMPLEXITY: AUTOMATIC
AND STURMIAN
SEQUENCES

Valérie BERTHE

Institut de Mathématiques de Luminy
CNRS-UPR 9016

Case 907, 163 avenue de Luminy
F-13288 Marseille Cedez 9

France

The complexity function is a classical measure of disorder for sequences
with values in a finite alphabet: this function counts the number of factors
of given length. We introduce here two characteristic families of sequences of
low complexity function: automatic sequences and Sturmian sequences. We
discuss their topological and measure-theoretic properties, by introducing
some classical tools in combinatorics on words and in the study of symbolic
dynamical systems.

1.1 Introduction

The aim of this course is to introduce two characteristic families of sequences
of low “complexity”: automatic sequences and Sturmian sequences (complex-
ity is defined here as the combinatorial function which counts the number of
factors of given length of a sequence over a finite alphabet). These sequences
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2 V. Berthé

not only occur in many mathematical fields but also in various domains as
theoretical computer science, biology, physics, crystallography...

We first define some classical tools in combinatorics on words and in the s-
tudy of symbolic dynamical systems: the complexity function and frequencies
of factors in connection with the notions of topological and measure-theoretic
entropy (Sections 1.2 and 1.3), the graphs of words (Section 1.4), special and
bispecial factors (Section 1.5). Then we study Sturmian sequences in Sec-
tion 1.6: these sequences are defined as the sequences of minimal complexity
among non-ultimately periodic sequences. This combinatorial definition has
the particularity of being equivalent to the following simple geometrical rep-
resentation: a Sturmian sequence codes the orbit of a point of the unit circle
under a rotation by irrational angle o with respect to a partition of the unit
circle into two intervals of lengths a and 1 — a. Sturmian sequences have
thus remarkable combinatorial and arithmetical properties. Then we intro-
duce automatic sequences in Section 1.7: an automatic sequence is defined
as the image by a letter-to-letter projection of a fixed point of a substitution
of constant length or equivalently as a finite-state function of the represen-
tation of the index in a given basis. We emphasize on the connections with
transcendence of formal power series with coefficients in a finite field. In
particular, we will try to answer the following question: how to recognize if
a sequence is automatic or not? We conclude this course by discussing the
connections between sequences with a linear growth order for the complexity
function, and substitutions.

1.2 Complexity Function
1.2.1 Definition

Let us introduce a combinatorial measure of disorder for sequences over a
finite alphabet: this notion is called (symbolic) complezity. For more infor-
mation on the subject, we refer the reader to the surveys [8, 43] and to the
course [59)].

In all that follows we restrict ourselves to sequences over a finite alpha-
bet indexed by the set N of non-negative integers. A factor of the infinite
sequence u = (up)nen is a finite block w of consecutive letters of u, say
W = Upy1 - Unyy; U is called the length of w, denoted by |w|. Let p(n) de-
note the complezity function of sequence u with values in a finite alphabet:
it counts the number of distinct factors of length n of the sequence u. The
complexity function is obviously non-decreasing and for any integer n, one
has 1 < p(n) < d*, where d denotes the cardinality of the alphabet.

This function can be considered to measure the predictability of a se-
quence. The first difference of the complexity function counts the number
of possible extensions in the sequence of factors of given length. We call
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Sequences of low complexity: automatic and Sturmian sequences 3

right extension (respectively left extension) of a factor w a letter x such that
wz (respectively zw) is a factor of the sequence. Let w™ (respectively w™)
denotes the number of right (respectively left) extensions of w. (One may
have w™ = 0 but always w* > 1.) We have

p(n+1) = Zw"’: Zw‘,

[wl=n [w|=n

and thus

pln+1)—pn)= Y (wr-1) =3 (w -1).

jw|=n lwl=n

Exercise 1.2.1 (see [31, 54]) Prove that a sequence is ultimately periodic
(i-e., periodic from a certain index on) if and only if its complexity function

satisfies )
dn, p(n) <n<=3C, ¥n p(n) <C.

What happens in the case of a sequence defined over Z ?

The complexity function is a measure of disorder connected to the topological
entropy: the topological entropy [1] is defined as the exponential growth rate
of the complexity as the length increases

lo n
Hunts) = i “EAEL

It is easy to check that this limit exists because of the subadditivity of the
function n +— logy(p(n)). Note that the word entropy is used here as a measure
of randomness or disorder. For a survey on the connections between entropy
and sequences, see [13].

The study of the complexity is mainly concerned with the following three
questions.

e How to compute the complexity of a sequence?

e Which functions can be obtained as the complexity function of some
sequence?

e Can one deduce from the complexity a geometrical representation of
sequences?

We will see how to answer the first question by introducing special and
bispecial factors, in some particular cases of substitutive sequences (Section
1.5). The second question is still very much in progress and far from being
solved (in particular in the case of positive entropy): for a survey on the
question, see [24, 43]. Although the complexity function is in general not
sufficient to describe a sequence, we will see in Section 1.6 that much can be
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4 V. Berthé

said on the geometrical properties in the case of lowest complexity, i.e., in
the case of Sturmian sequences: these sequences are defined to have exactly
n+ 1 factors of length n, for any integer n. By Exercise 1.2.1 a sequence with
complexity satisfying p(n) < n for some n is ultimately periodic. Sturmian
sequences have thus the minimal complexity among all sequences that are
not ultimately periodic.

Exercise 1.2.2 Deduce from Exercise 1.2.1 that every prefix of a Sturmian
sequence appears at least two times in the sequence. Deduce that the factors
of every Sturmian sequence appear infinitely often (such a sequence is called
recurrent).

1.2.2 Frequencies and Measure-Theoretic Entropy

The purpose of this section is to introduce a more “precise” (in a sense that
we will see in Section 1.2.3) measure of disorder of sequences, connected with
frequencies of factors. The frequency f(B) of a factor B of a sequence (called
density in Host’s course) is defined as the limit, if it exists, of the number of
occurrences of this block in the first k£ terms of the sequence divided by k.

Exercise 1.2.3 Construct a sequence for which the frequencies of letters do
not exist.

Let us first introduce the block entropies for sequences with values in a finite
alphabet in order to define the notion of measure-theoretic entropy. These
sequences of block entropies were first introduced by Shannon in information
theory, to measure the entropy of the English language (see [65]).

Let u be a sequence with values in the alphabet A = {1,---,d}. We
suppose that all the block frequencies exist for u. Let

_ f(.’l:1 . ..xnz)

flzr--za)’

where ;- - -z, is a block of non-zero frequency and z a letter. Intuitively
P(z|z; - - - z,) is the conditional probability that the letter z follows the block
I .-+, in the sequence u. We are going to associate with the sequence u
two sequences of block entropies (Hy)nen and (Vy)nen-

For all n > 1, let

P(z|zy---xz,)

Vo= L(f(z1--2a)),

where the sum is over all the factors of length n and L(z) = —z logy(z), for
all z # 0 and L(0) = 0. We put V5 = 0. '
For all n > 1, let

Ho=Y f(z1-+-20)H(z1 -~ a), (1.1)
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Sequences of low complexity: automatic and Sturmian sequences 5

where the sum is over all the blocks of length n of non-zero frequency and

S Zy) = ZL (/z1 -+ - z)).

z€A

We put Hy = V;. The sequence (H,)necn measures in some way the properties
of predictability of the initial sequence u.

Exercise 1.2.4 Prove that: Vn € N, H,, = V,;; — V,. (This classical prop-
erty in information theory is called the chain-rule.)

Thus, (H,)nen is the discrete derivative of (V},)zen. Note that (V,),en is a
non-decreasing sequence, since H,, > 0 for all n.

It can be shown that (Hy,)nen is a monotonic non-increasing sequence of n
(see, for instance [16]). The intuitive meaning of this is that the uncertainty
about the choice of the next symbol decreases when the number of known
preceding symbols increases. From the non-increasing behaviour of the pos-
itive sequence (Hy)nen, we deduce the existence of the limit n&r_{lw H,. We

n—1
have: Vn, H, = V41 — V,, and ZHk = V,. By taking Cesaro means, we
obtain: =

. L
lim H, = lim -=.
n—+o0 n—+00 N

This limit is called the measure-theoretic entropy of the sequence u, it is the
limit of the entropy per symbol of the choice of a block of length n, when n
tends to infinity.

1.2.3 Variational Principle

What is the relation between the sequences (Hy)nen and (Vy)nen? We have:

n—-1
vn, nH, <Y Hy=V, =Y L(P(z;-- ).
k=0

By concavity of the function L we get: Vn > 1, V,, < logyp(n). Hence the
following proposition:

Proposition 1.2.5 We have H, < 125.:5'{1(211’ foralln > 1.

We hence get:

lim H, = lim Ya = H(u) < Hipp(u) = lim lOgd(P(”)).

n—+00 n—+o0o N n—+-+00 n
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6 V. Berthé

This inequality is a particular case of a basic relationship between topological
entropy and measure-theoretic entropy called the variational principle (for a
proof see [53]).

_logd(:(n)) are distinct in general and

The two limits lim H, and lim
n—+00 n—+o0o

the notion of measure-theoretic entropy for a sequence is more precise. But
the sequences we are mostly dealing with here are deterministic, i.e., se-
quences with zero entropy. Therefore neither the metrical nor the topological
entropy can distinguish between these sequences.

1.3 Symbolic Dynamical Systems

Recall some basic notions on symbolic dynamical systems. For a detailed
introduction to the subject, see [57]. Let A denote a finite alphabet; here we
work with the space AN, whereas in Host’s course it is AZ.

Endow the set AN of all sequences with values in the finite set .A with the
product of discrete topologies on .A. This set is thus a compact space. The
topology defined on AN is equivalent to the topology defined by the following
metrics: for z,y € AV

d(z,y) = (1 +inf{k > 0; z; # ye}) "

Two sequences are thus close to each other if their first terms coincide. The
cylinder [w], where w = w; ... w, belongs to A", is the set of sequences of
the form

[w] = {z € AN 20 = w1, 1 = ws,... ,Tn-1 = Wa}.

Cylinders are closed and open sets and span the topology.

The space AN is complete as a metric compact space. Let us deduce from
this the existence of fixed points of substitutions. A substitution defined
on the finite alphabet A is a map from A to the set of words defined on
A, denoted by A*, extended to A* by concatenation, or in other words, a
homomorphism of the free monoid A* (see also [49] for a precise study of
substitution dynamical systems).

Exercise 1.3.1 Let o be a substitution and a be a letter such that o(a)
begins by a and |o(a)| > 2. Prove that there exists a unique sequence begin-
ning with a satisfying o(u) = u. This sequence is called a fized point of the
substitution.

For instance, the Fibonacci sequence is defined as the fixed point begin-
ning with 1 of the following substitution

o(1) = 10, o(0) = 1.
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Sequences of low complexity: automatic and Sturmian sequences 7

Let T denote the following map defined on AN, called the one-sided shift:

T((un)nen) = (Un+1)nen-

The map T is uniformly continuous, onto but not necessarily one-to-one on
AN
Exercise 1.3.2 Recall that a sequence is said to be recurrent if every factor
appears at least two times, or equivalently if every factor appears an infinite
number of times in this sequence.

Prove that a sequence u is recurrent if and only if there exists a strictly
increasing sequence (n)ren such that

u= lim T™u.
k—+o00

Let u be a sequence with values in A. Define O(u) as the positive orbit
closure of the sequence u under the action of the shift T, i.e., the closure of
the set O(u) = {T™(u), n > 0}. The set O(u) is a compact metric space,
and thus complete. It is also T-invariant: T(O(u)) C O(u). In other words
T may be considered as acting on O(u).

Exercise 1.3.3
1. Prove that _
O(u) = {z € A, L(z) C L(u)},
where L(z) denotes the set of factors of the sequence z.

2. Prove that u is recurrent if and only if T is onto on O(u).

Let X be a non-empty compact metric space and T be a continuous map
from X to X. The system (X,T) is called a topological dynamical system.
For instance, (O(u),T) is a topological dynamical system. A topological
dynamical system is called minimal if every closed T-invariant set E is either
equal to the full set X or to the empty set.

Exercise 1.3.4

e Prove that (X, T) is minimal if and only if X = O(z), for every element
z of X.

e A sequence is said to be uniformly recurrent if every factor appears
infinitely often and with bounded gaps (or, equivalently, if for every
integer n, there exists an integer m such that every factor of u of
length m contains every factor of length n). Prove that a sequence u
is uniformly recurrent if and only if (O(u),T) is minimal. (If w is a

factor of u, write
O(u) = |J T7(w],
neN
and conclude by a compactness argument.)
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8 V. Berthé

The following special case of the Daniell-Kolmogorov consistency theo-
rem (see for instance [73]) establishes the existence of a certain probability

measure on (O(u),T). A Borel probability measure p defined on (O(u), T)
is called T-invariant if u(T~!(B)) = p(B), for any Borel set B.

Theorem 1.3.5 Let u be a sequence on A= {1,...,d}. Consider a family
of maps (pn)n>1, where p, is a map from A" to R, such that

e for any word w in A®, p,(w) > 0,

d
o Zpl(i) =1,

d
o for any word w = wy ... w, in A", py(w) = an+1(w1 .o Wpt).
=1
Then there erists a unique probability measure yu on AN defined on the cylin-

ders by p([w; ... w,)) = pa(w ... wy).
Furthermore, if for any n and for any word w = w; ... w, in A",

d
pn(w) = an+1(iw1 e 'wn),
=1

then this measure is T-invariant.

In particular, if all frequencies exist, then there exists a unique 7T-invariant
probability measure which assigns to each cylinder the frequency of the corre-
sponding factor. Moreover suppose the symbolic dynamical system (O(u), T)
is uniquely ergodic, i.e., there exists a unique T-invariant probability measure
u on this dynamical system. Thus a precise knowledge of the frequencies
allows a complete description of the measure u. For instance, a symbolic
dynamical system obtained via the fixed point of a primitive substitution
[49, 57], or via a Sturmian sequence is uniquely ergodic.

1.4 The Graph of Words

The Rauzy graph I';, of words of length n of a sequence on a finite alphabet
A (of cardinality d) is an oriented graph (see, for instance, [58]), which is
a subgraph of the de Bruijn graph of words® (see [32]). Its vertices are the

1The de Bruijn graph of words corresponds to the graph of words of a sequence of
maximal complexity (Yn, p(n) = d*) and was introduced by de Bruijn in order to construct
circular finite sequences of length d” with values in {0,1,... ,d—1} such that every factor
of length n appears once and only once: such a sequence corresponds to a Hamiltonian
closed path in de Bruijn graph.
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Sequences of low complexity: automatic and Sturmian sequences 9

factors of length n of the sequence and the edges are defined as follows: there
is an edge from U to V if V follows U in the sequence, i.e., if there exists a
word W and two letters  and y such that U = zW, V = Wy and zWy is
a factor of the sequence. There are p(n + 1) edges and p(n) vertices, where
p(n) denotes the complexity function.

Exercise 1.4.1 Prove that the graphs of words of a sequence are always
connected. Prove the following equivalence (see [61]):

e the sequence u is recurrent,
e every factor of u appears at least twice,

o the graphs of words are strongly connected.

Let U be a vertex of the graph. Denote by U* the number of edges of T',,
with origin U and by U~ the number of edges of I',, with end vertex U. In
other words, U* (respectively U~) counts the number of right (respectively
left) extensions of U. Recall that

p(n+1)= Z Ut = ZU“,

[U|]=n Ul=n

and thus

pln+1)—pn)= Y (Ut -1)= > (U -1).

[Ul=n |Ul=n

Exercise 1.4.2 Recall that a Sturmian sequence is defined as a sequence of
complexity function p(n) = n + 1, for every positive integer n, and that it is
recurrent (Exercise 1.2.2).

e For any positive integer n, prove that there exists a unique factor of
length n having two right (respectively left) extensions: such a factor is
called a right (respectively left) special factor (or also ezpansive factor)
and is denoted from now on by R, (respectively L,).

e Prove that the graph of words I';, of a Sturmian sequence has the two
possible forms given in figure 1.1.
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N C )

R, L, =R,

S

Figure 1.1:

=
\

e Deduce from the morphology of the graph of words I',, that every Stur-
mian sequence is uniformly recurrent. One can first prove that every
factor of a Sturmian sequence is a subfactor of a factor of the form R,
and then deduce from the morphology of the graph I, that R, appears
with bounded gaps.

Exercise 1.4.3

e Prove that if the sequence u is uniformly recurrent and non-constant,
then the graph I';, has not edge of the form U — U, for n large enough.

e Suppose that the sequence u is uniformly recurrent. Prove that if the
graph of words T4, is Hamiltonian (i.e., there exists a closed oriented
path passing exactly once through every vertex), then the graph Iy, is
Eulerian (there exists a closed path passing exactly once through every
edge) and that Ut = U~, for every vertex of I';,. Is the converse true?

1.4.1 The Line Graph

The line graph D(T';) of the graph of words I, is defined as follows: its
vertices are the edges of T', (i.e., the factors of length n + 1); given two
vertices u and v in D(T,), there is an edge from u to v if the end point of
the edge labelled u in T',, is the origin of the edge labelled v. It is easily seen
that the edges of the line graph correspond to words of length n + 2 such
that their prefix and their suffix of length n + 1 are factors of the sequence
u. The line graph of T',, is thus a subgraph of ['4;.

Exercise 1.4.4 Study the evolution of the graph of words from I',, to I';4,
for a Sturmian sequence by using the line graph (Distinguish between the
two possible forms of the graph).

Remark 1.4.5 In [61] Rote uses the graph of words and the line graph for
the study of sequences of complexity p(n) = 2n, for every n (see also [41]).
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