
1

Factorials and Binomial Coefficients

1.1. Introduction

In this chapter we discuss several properties of factorials and binomial coef-
ficients. These functions will often appear as results of evaluations of definite
integrals.

Definition 1.1.1. A function f : N → N is said to satisfy a recurrence if
the value f (n) is determined by the values { f (1), f (2), . . . , f (n − 1)}. The
recurrence is of order k if f (n) is determined by the values { f (n − 1), f (n −
2), . . . , f (n − k)}, where k is a fixed positive integer. The notation fn is
sometimes used for f (n).

For example, the Fibonacci numbers Fn satisfy the second-order recur-
rence

Fn = Fn−1 + Fn−2. (1.1.1)

Therefore, in order to compute Fn , one needs to know only F1 and F2. In this
case F1 = 1 and F2 = 1. These values are called the initial conditions of the
recurrence. The Mathematica command

F[n_]:= If[n==0,1, If[n==1,1, F[n-1]+F[n-2]]]

gives the value of Fn . The modified command

F[n_]:= F[n]= If[n==0,1, If[n==1,1, F[n-1]+F[n-2]]]

saves the previously computed values, so at every step there is a single sum
to perform.

Exercise 1.1.1. Compare the times that it takes to evaluate

F30 = 832040 (1.1.2)

using both versions of the function F .
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2 Factorials and Binomial Coefficients

A recurrence can also be used to define a sequence of numbers. For instance

Dn+1 = n(Dn + Dn−1), n ≥ 2 (1.1.3)

with D1 = 0, D2 = 1 defines the derangement numbers. See Rosen (2003)
for properties of this interesting sequence.

We now give a recursive definition of the factorials.

Definition 1.1.2. The factorial of n ∈ N is defined by

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1. (1.1.4)

A recursive definition is given by

1! = 1 (1.1.5)
n! = n × (n − 1)!.

The first exercise shows that the recursive definition characterizes n!. This
technique will be used throughout the book: in order to prove some iden-
tity, you check that both sides satisfy the same recursion and that the initial
conditions match.

Exercise 1.1.2. Prove that the factorial is the unique solution of the recursion

xn = n × xn−1 (1.1.6)

satisfying the initial condition x1 = 1. Hint. Let yn = xn/n! and use (1.1.5)
to produce a trivial recurrence for yn .

Exercise 1.1.3. Establish the formula

Dn = n! ×
n∑

k=0

(−1)k

k!
. (1.1.7)

Hint. Check that the right-hand side satisfies the same recurrence as Dn and
then check the initial conditions.

The first values of the sequence n! are

1! = 1, 2! = 2, 3! = 6, 4! = 24, (1.1.8)

and these grow very fast. For instance

50! = 30414093201713378043612608166064768844377641568960512000000000000

and 1000! has 2568 digits.
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1.2. Prime Numbers and the Factorization of n! 3

Mathematica 1.1.1. The Mathematica command for n! is Factorial
[n]. The reader should check the value 1000! stated above. The number
of digits of an integer can be obtained with the Mathematica command
Length[IntegerDigits[n]].

The next exercise illustrates the fact that the extension of a function from
N to R sometimes produces unexpected results.

Exercise 1.1.4. Use Mathematica to check that
(

1

2

)
! =

√
π

2
.

The exercise is one of the instances in which the factorial is connected
to π , the fundamental constant of trigonometry. Later we will see that the
growth of n! as n → ∞ is related to e: the base of natural logarithms. These
issues will be discussed in Chapters 5 and 6, respectively. To get a complete
explanation for the appearance of π , the reader will have to wait until Chapter
10 where we introduce the gamma function.

1.2. Prime Numbers and the Factorization of n!

In this section we discuss the factorization of n! into prime factors.

Definition 1.2.1. An integer n ∈ N is prime if its only divisors are 1 and
itself.

The reader is refered to Hardy and Wright (1979) and Ribenboim (1989)
for more information about prime numbers. In particular, Ribenboim’s first
chapter contains many proofs of the fact that there are infinitely many primes.
Much more information about primes can be found at the site

http://www.utm.edu/research/primes/

The set of prime numbers can be used as building blocks for all integers.
This is the content of the Fundamental Theorem of Arithmetic stated below.

Theorem 1.2.1. Every positive integer can be written as a product of prime
numbers. This factorization is unique up to the order of the prime factors.

The proof of this result appears in every introductory book in num-
ber theory. For example, see Andrews (1994), page 26, for the standard
argument.
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4 Factorials and Binomial Coefficients

Mathematica 1.2.1. The Mathematica command FactorInteger[n]
gives the complete factorization of the integer n. For example
FactorInteger[1001] gives the prime factorization 1001 = 7 · 11 · 13.
The concept of prime factorization can now be extended to rational numbers
by allowing negative exponents. For example

1001

1003
= 7 · 11 · 13 · 17−1 · 59−1. (1.2.1)

The efficient complete factorization of a large integer n is one of the ba-
sic questions in computational number theory. The reader should be careful
with requesting such a factorization from a symbolic language like Mathe-
matica: the amount of time required can become very large. A safeguard is
the command

FactorInteger[n, FactorComplete -> False]

which computes the small factors of n and leaves a part unfactored. The
reader will find in Bressoud and Wagon (2000) more information about these
issues.

Definition 1.2.2. Let p be prime and r ∈ Q
+. Then there are unique integers

a, b, not divisible by p, and m ∈ Z such that

r = a

b
× pm . (1.2.2)

The p-adic valuation of r is defined by

νp(r ) = p−m . (1.2.3)

The integer m in (1.2.2) will be called the exponent of p in m and will be
denoted by µp(r ), that is,

νp(r ) = p−µp(r ). (1.2.4)

Extra 1.2.1. The p-adic valuation of a rational number gives a new way of
measuring its size. In this context, a number is small if it is divisible by a large
power of p. This is the basic idea behind p-adic Analysis. Nice introductions
to this topic can be found in Gouvea (1997) and Hardy and Wright (1979).

Exercise 1.2.1. Prove that the valuation νp satisfies

νp(r1r2) = νp(r1) × νp(r2),

νp(r1/r2) = νp(r1)/νp(r2),
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1.2. Prime Numbers and the Factorization of n! 5

and

νp(r1 + r2) ≤ Max
(
νp(r1), νp(r2)

)
,

with equality unless νp(r1) = νp(r2).

Extra 1.2.2. The p-adic numbers have many surprising properties. For in-
stance, a series converges p-adically if and only if the general term converges
to 0.

Definition 1.2.3. The floor of x ∈ R, denoted by �x�, is the smallest integer
less or equal than x . The Mathematica command is Floor[x].

We now show that the factorization of n! can be obtained without actually
computing its value. This is useful considering that n! grows very fast—for
instance 10000! has 35660 digits.

Theorem 1.2.2. Let p be prime and n ∈ N. The exponent of p in n! is given
by

µp(n!) =
∞∑

k=1

⌊
n

pk

⌋
. (1.2.5)

Proof. In the product defining n! one can divide out every multiple of p, and
there are �n/p� such numbers. The remaining factor might still be divisible
by p and there are

⌊
n/p2

⌋
such terms. Now continue with higher powers of

p. �

Note that the sum in (1.2.5) is finite, ending as soon as pk > n. Also, this
sum allows the fast factorization of n!. The next exercise illustrates how to
do it.

Exercise 1.2.2. Count the number of divisions required to obtain

50! = 247 · 322 · 512 · 78 · 114 · 133 · 172 · 192 · 232 · 29 · 31 · 37 · 41 · 43 · 47,

using (1.2.5).

Exercise 1.2.3. Prove that every prime p ≤ n appears in the prime factoriza-
tion of n! and that every prime p > n/2 appears to the first power.
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6 Factorials and Binomial Coefficients

There are many expressions for the function µp(n). We present a proof
of one due to Legendre (1830). The result depends on the expansion of an
integer in base p. The next exercise describes how to obtain such expansion.

Exercise 1.2.4. Let n, p ∈ N. Prove that there are integers n0, n1, . . . , nr

such that

n = n0 + n1 p + n2 p2 + · · · + nr pr (1.2.6)

where 0 ≤ ni < p for 0 ≤ i ≤ r . Hint. Recall the division algorithm: given
a, b ∈ N there are integers q, r , with 0 ≤ r < b such that a = qb + r . To
obtain the coefficients ni first divide n by p.

Theorem 1.2.3. The exponent of p in n! is given by

µp(n!) = n − sp(n)

p − 1
, (1.2.7)

where sp(n) = n0 + n1 + · · · + nr is the sum of the base-p digits of n. In
particular,

µ2(n!) = n − s2(n). (1.2.8)

Proof. Write n in base p as in (1.2.6). Then

µp(n!) =
∞∑

k=1

⌊
n

pk

⌋

= (n1 + n2 p + · · · + nr pr−1) + (n2 + n3 p + · · · + nr pr−2)
+ · · · + nr ,

so that

µp(n!) = n1 + n2(1 + p) + n3(1 + p + p2) + · · · + nr (1 + p + · · · + pr−1)

= 1

p − 1

(
n1(p − 1) + n2(p2 − 1) + · · · + nr (pr − 1)

)
= n − sp(n)

p − 1
. �

Corollary 1.2.1. The exponent of p in n! satisfies

µp(n!) ≤ n − 1

p − 1
, (1.2.9)

with equality if and only if n is a power of p.
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1.3. The Role of Symbolic Languages 7

Mathematica 1.2.2. The command IntegerDigits[n,p] gives the
list of numbers ni in Exercise 1.2.4.

Exercise 1.2.5. Define

A1(m) = (2m + 1)
m∏

k=1

(4k − 1) −
m∏

k=1

(4k + 1). (1.2.10)

Prove that, for any prime p 	= 2,

µp(A1(m)) ≥ µp(m!). (1.2.11)

Hint. Let am = ∏m
k=1(4k − 1) and bm = ∏m

k=1(4k + 1) so that am is the prod-
uct of the least m positive integers congruent to 1 modulo 4. Observe that for
p ≥ 3 prime and k ∈ N, exactly one of the first pk positive integers congruent
to 3 modulo 4 is divisible by pk and the same is true for integers congruent
to 1 modulo 4. Conclude that A1(m) is divisible by the odd part of m!. For
instance,

A1(30)

30!
= 359937762656357407018337533

224
. (1.2.12)

The products in (1.2.10) will be considered in detail in Section 10.9.

1.3. The Role of Symbolic Languages

In this section we discuss how to use Mathematica to conjecture general
closed form formulas. A simple example will illustrate the point.

Exercise 1.2.3 shows that n! is divisible by a large number of consecutive
prime numbers. We now turn this information around to empirically suggest
closed-form formulas. Assume that in the middle of a calculation we have
obtained the numbers

x1 = 5356234211328000

x2 = 102793666719744000

x3 = 2074369080655872000

x4 = 43913881247588352000

x5 = 973160803270656000000,

and one hopes that these numbers obey a simple rule. The goal is to obtain a
function x : N → N that interpolates the given values, that is, x(i) = xi for
1 ≤ i ≤ 5. Naturally this question admits more than one solution, and we will
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8 Factorials and Binomial Coefficients

use Mathematica to find one. The prime factorization of the data is

x1 = 223 · 36 · 53 · 72 · 11 · 13

x2 = 215 · 36 · 53 · 72 · 11 · 13 · 172

x3 = 218 · 312 · 53 · 72 · 11 · 13 · 17

x4 = 216 · 38 · 53 · 72 · 11 · 13 · 17 · 193

x5 = 222 · 38 · 56 · 72 · 11 · 13 · 17 · 19

and a moment of reflection reveals that xi contains all primes less than i + 15.
This is also true for (i + 15)!, leading to the consideration of yi = xi/

(i + 15)!. We find that

y1 = 256

y2 = 289

y3 = 324

y4 = 361

y5 = 400,

so that yi = (i + 15)2. Thus xi = (i + 15)2 × (i + 15)! is one of the possible
rules for xi . This can be then tested against more data, and if the rule still
holds, we have produced the conjecture

zi = i2 × i!, (1.3.1)

where zi = xi+15.

Definition 1.3.1. Given a sequence of numbers {ak : k ∈ N}, the function

T (x) =
∞∑

k=0

ak xk (1.3.2)

is the generating function of the sequence. If the sequence is finite, then we
obtain a generating polynomial

Tn(x) =
n∑

k=0

ak xk . (1.3.3)

The generating function is one of the forms in which the sequence {ak :
0 ≤ k ≤ n} can be incorporated into an analytic object. Usually this makes it
easier to perform calculations with them. Mathematica knows a large number
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1.3. The Role of Symbolic Languages 9

of polynomials, so if {ak} is part of a known family, then a symbolic search
will produce an expression for Tn .

Exercise 1.3.1. Obtain a closed-form for the generating function of the
Fibonacci numbers. Hint. Let f (x) = ∑∞

n=0 Fn xn be the generating func-
tion. Multiply the recurrence (1.1.1) by xn and sum from n = 1 to ∞. In
order to manipulate the resulting series observe that

∞∑
n=1

Fn+1xn =
∞∑

n=2

Fn xn−1

= 1

x
( f (x) − F0 − F1x) .

The answer is f (x) = x/(1 − x − x2). The Mathematica command to gen-
erate the first n terms of this is

list[n_]:= CoefficientList
[Normal[Series[ x/(1-x-x^{2}), {x,0,n-1}]],x]

For example, list[10] gives {0, 1, 1, 2, 3, 5, 8, 13, 21, 34}.

It is often the case that the answer is expressed in terms of more complicated
functions. For example, Mathematica evaluates the polynomial

Gn(x) =
n∑

k=0

k!xk (1.3.4)

as

Gn(x) = −e−1/x

x

{
�(0, − 1

x ) + (−1)n�(n + 2)�(−1 − n, − 1
x )

}
, (1.3.5)

where eu is the usual exponential function,

�(x) =
∫ ∞

0
t x−1e−t dt (1.3.6)

is the gamma function, and

�(a, x) =
∫ ∞

x
ta−1e−t dt (1.3.7)

is the incomplete gamma function. The exponential function will be dis-
cussed in Chapter 5, the gamma function in Chapter 10, and the study of
�(a, x) is postponed until Volume 2.
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10 Factorials and Binomial Coefficients

1.4. The Binomial Theorem

The goal of this section is to recall the binomial theorem and use it to find
closed-form expressions for a class of sums involving binomial coeffici-
ents.

Definition 1.4.1. The binomial coefficient is(
n

k

)
:= n!

k! (n − k)!
, 0 ≤ k ≤ n. (1.4.1)

Theorem 1.4.1. Let a, b ∈ R and n ∈ N. Then

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk . (1.4.2)

Proof. We use induction. The identity (a + b)n = (a + b) × (a + b)n−1 and
the induction hypothesis yield

(a + b)n =
n−1∑
k=0

(
n − 1

k

)
an−kbk +

n−1∑
k=0

(
n − 1

k

)
an−k−1bk+1

= an +
n−1∑
k=1

[(
n − 1

k

)
+

(
n − 1

k − 1

)]
an−kbk + bn.

The result now follows from the identity(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
, (1.4.3)

that admits a direct proof using (1.4.1). �

Exercise 1.4.1. Check the details.

Note 1.4.1. The binomial theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk (1.4.4)

shows that (1 + x)n is the generating function of the binomial coefficients{(
n

k

)
: 0 ≤ k ≤ n

}
.
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