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1.1 Introduction

Independent Component Analysis (ICA) has recently become an im-
portant tool for modelling and understanding empirical datasets as it
offers an elegant and practical methodology for blind source separation
and deconvolution. It is seldom possible to observe a pure unadulter-
ated signal. Instead most observations consist of a mixture of signals
usually corrupted by noise, and frequently filtered. The signal process-
ing community has devoted much attention to the problem of recov-
ering the constituent sources from the convolutive mixture; ICA may
be applied to this Blind Source Separation (BSS) problem to recover
the sources. As the appellation independent suggests, recovery relies
on the assumption that the constituent sources are mutually indepen-
dent.

Finding a natural coordinate system is an essential first step in the
analysis of empirical data. Principal component analysis (PCA) has, for
many years, been used to find a set of basis vectors which are determined
by the dataset itself. The principal components are orthogonal and pro-
jections of the data onto them are linearly decorrelated, properties which
can be ensured by considering only the second order statistical charac-
teristics of the data. ICA aims at a loftier goal: it seeks a transformation
to coordinates in which the data are maximally statistically independent,
not merely decorrelated.

Perhaps the most famous illustration of ICA is the ‘cocktail party
problem’, in which a listener is faced with the problem of separating the
independent voices chattering at a cocktail party. Humans employ many
different strategies, often concentrating on just one voice, more or less
successfully [Bregman, 1990]. The computational problem of separating
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Figure 1.1. Mixing and separation of music and noise. Top row: 150 samples of
the original sources, Su(t) (fsump = 11.3kHz). Middle row: mixtures of the sources,
x(t). Bottom row: the estimated sources, ay(t). To facilitate comparison both the
sources and the recovered sources have been normalised to unit variance.

the speakers from audio mixtures recorded by microphones is challenging,
especially when echoes and time delays are taken into account.

To make the ideas and notation concrete we consider a simple example
with three sources. The sources were two fragments of music (a Beethoven
string quartet and an old recording of a Bessic Smith blues ballad) and
uniform noise. Writing the source signals at the instant ¢ in vector
form, s(t) = [51(2), s2(1), s3(1)]", observations x(t) € R® were generated by
mixing the sources by a mixing matrix, A, whose elements were chosen
at random:}

x(t) = As(1). (LD
The top and middle rows of figure 1.1 show 150 samples from original
sources, s(t), and the mixture x(t). The aim of BSS is to recover the

0.2519 0.0513 0.0771
t A= [0.5174 0.6309 0.4572]
0.1225 0.6074 0.4971
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original sources from the observations alone, without any additional
knowledge of the sources or their characteristics. Independent component
analysis accomplishes the separation relying on the assumption that the
sources are independent. It seeks a separating matrix (or filter matrix)
W which, when applied to the observations, recovers estimated sources,
a(t); thus

a(t) = Wx(1).

Optimising W to maximise the statistical independence between the
components of a(t) finds estimated sources which are shown in the
bottom row of figure 1.1. It is clear that the algorithm has done a good
job in separating the sources: the noisy blues recording is estimated
together with its noise (plots (a) and (g)), while the string quartet is
uncontaminated (plots (b) and (h)). To the ear the recovered sources are
indistinguishable from the originals, and in particular there is no trace
of music in the unmixed noise.}

Blind source separation has been a practical possibility since the early
work of Herault & Jutten [1986] which was analysed from a statistical
point of view in [Comon et al., 1991] and further developed by Jutten
& Herault [1991], where the phrase ‘independent component analysis’
first appeared. In a seminal paper Comon [1994] proposed the use of
mutual information to measure independence and advanced separation
algorithms based on approximations to mutual information.

Work by Linsker [1989, 1992] and Nadal & Parga [1994] on map-
pings which maximise transmitted information showed that the optimal
mappings are those which lead to factorised source probability density
functions (p.d.f.s). Bell & Sejnowski [1995] and Roth & Barum [1996]
each derived stochastic gradient algorithms to find the optimal mapping,
and a similar algorithm was suggested by Cardoso & Laheld [1996].

Generative models and maximum likelihood approaches to ICA were
proposed and developed by Gaeta & Lacoume [1990] and Pham et
al. [1992]. However, MacKay [1996], Pearlmutter & Parra [1996] and
Cardoso [1997] established that the infomax objective function of Bell &
Sejnowski was indeed a likelihood (in the zero noise limit).

Since the mid-nineties there has been an explosion of work on ICA and
BSS. Maximum likelihood methods have been extended to incorporate
observational noise [Attias, 1999a] and schemes have been developed

+ Files with the sources, mixtures and estimated sources may be retrieved from http:
//wuw.dcs.ex.ac.uk/ica
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to permit the separation of sub-Gaussian as well as super-Gaussiant
sources (see, for example, [Pham, 1996, Lee et al, 1999b, Everson &
Roberts, 1999a]). Pearlmutter & Parra [1996] exploited the temporal
structure of sources to improve the separation of timeseries data; exten-
sions of this work appear in Chapter 12 of the present book. Girolami
& Fyfe [1997a, 1997b] elucidated the connection between projection pur-
suit and non-Gaussian sources, and have applied ICA to data mining
problems; in Chapter 10 of the present book Girolami gives details
of recent work on data classification and visualisation. ICA for non-
linear mappings was considered along with early work on linear ICA
[Karhunen & Joutsensalo, 1994]. Karhunen describes recent advances in
nonlinear ICA in Chapter 4. The generative model formulation of ICA
permits Bayesian methods for incorporating prior knowledge, assessing
the number of sources and evaluating errors. Early work was done on
Bayesian approaches by Roberts [1998] and Knuth [1998a] and more
recently by Mohammad-Djafari [1999]. The application of ensemble
learning (or variational) methods has greatly simplified the computation
required for Bayesian estimates; see Chapter 8 of the present book and
[Lappalainen, 1999]. Recent theoretical work (dealt with in the present
book) has also examined non-stationary sources (Chapters 5 and 6) and
non-stationary mixing (Chapter 11).

Chapter overview This book concentrates mainly on the generative model
formulation of ICA as it permits principled extensions. In this introduc-
tory chapter we examine ICA from a number of perspectives. Starting
from a fairly general point of view, noisy and noiseless models for mixing
and the hierarchy of ICA models are discussed first. In subsection 1.2.2
we discuss mutual information as a measure of independence, after which
the more general framework of ‘contrast functions’ is introduced. The
introduction of generative models permits maximum likelihood separat-
ing matrices to be found; the advantages of a Bayesian approach to ICA
are discussed in subsection 1.2.5. ICA has strong links with principal
component analysis. PCA and related methodologies are obtained if the
sources are Gaussian distributed, as is discussed in section 1.3.
Abandoning Gaussian source distributions permits richer notions of
independence to be employed, but also complicates learning the separat-

t A random variable is called sub-Gaussian if its kurtosis is negative and super-Gaussian
if its kurtosis is positive. Loosely, the tails of a super-Gaussian p.d.f. decay more slowly
than a Gaussian density, while the tails of a sub-Gaussian density decay more rapidly
than a Gaussian. See pages 27 and 76.
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ing matrix, which can no longer be achieved purely by linear algebra. We
attempt to distinguish between the ICA objective or contrast function
which is to be extremised and the precise optimisation algorithm. This
and the relations between various approaches to noiseless ICA are the
subjects of sections 1.4 and 1.6.

Extensions to the basic ICA model are introduced in section 1.8, and
finally we briefly describe some applications of ICA.

1.2 Linear mixing

We begin by considering a general model of mixing, which will subse-
quently be simplified and approximated to permit tractable calculations
to be made. The basic model is a discrete time model in which M sources
sm(t) are instantaneously mixed and the resulting mixture, possibly cor-
rupted by noise, is observed. Writing the source signals at the instant
tt in vector form, s(t) = [s1(t),52(t),... , sy ()], the N-dimensional ob-
servations, x(t) = [x;(£),x2(t),... ,xn(t)]", are generated by a, possibly
nonlinear, mixture corrupted by additive observational or sensor noise
n(t) as follows:

x(t) = £(s(r)) + n(z), (1.2)

where f : R — R" is an unknown function.

The goal of blind source separation is to invert the mixing function f
and recover the sources. The qualifier blind signifies that little is known
about the quantities on the right hand side of equation (1.2); the mixing
function and the noise and, of course, the sources themselves are unknown
and must be estimated. Even with infinite data the unmixing problem is
very ill-posed without some additional a priori knowledge or assumptions
about the sources s, the nature of the mixing f and the observational
noise n. In Chapter 4 Karhunen examines recent approaches to blind
source separation with nonlinear mixing. Traditional treatments of ICA,
however, make the assumption that the sources are linearly mixed by a

mixing matrix A € RYV*M_ Thus observations are assumed to be generated
by

x(t) = As(t) + n(1). (1.3)

1 Although we call ¢ ‘time’, for most ICA models t is really an index. Most models do
not assume any causal dependence of sy,(t;) on sy(t;) when t; > t;. See section 1.5 and
Chapters 12 and 11.
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For simplicity it is usually assumed that s and n have mean zero, and
consequently x has zero mean.

Although the nonlinear mixing function has been replaced with an
(unknown) matrix the problem of identifying s is still under-determined,
because there are N + M unknown signals (the noises and the sources)
and N known signals (the observations). Progress is only possible with
additional assumptions about the nature of the sources and noise.

The principal assumption which permits progress is that the sources
arc independent, which incorporates the idea that each source signal is
generated by a process unrelated to the other sources. For example, the
voices at a cocktail party might be regarded as independent. Independent
Component Analysis is therefore a method for blind source separation,
and if independent components can be found they are identified with the
(hidden) sources.

1.2.1 Hierarchy of ICA models

Although all ICA models assume the sources to be independent, as-
sumptions about the characteristics of the noise and the source densities
lead to a range of ICA models, whose relationships are summarised in
figure 1.2.

An important class of models is obtained by assuming that both the
sources and noise are Gaussian distributed. Factor Analysis describes the
linear model with Gaussian sources and a diagonal noise covariance ma-
trix; restricting the covariance matrix to be isotropic yields Probabilistic
Principal Component Analysis (PPCA), and Principal Component Anal-
ysis emerges in the absence of noise. These models are described in
section 1.3.

Gaussian source models, although historically important and compu-
tationally attractive, are, however, seriously limited in their ability to
separate sources and recent work on source separation depends crucially
on the assumption that the sources are non-Gaussian.

Attias [1999a] has developed an ICA model with linear mixing and
observational noise; see Chapter 3 of the present book. The majority
of classical ICA models, however, are noiseless so that observations are
generated according to

X = As. (1.4)

Variations of these models depend upon the probabilistic model used
for the sources: flexible source models, which depend continuously upon
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Nonlinear mixing
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Linear mixing o | Non-stationary
P
x=As +n sources
Non-Gaussian No Gaussian
sources noise sources
Independent Classical ICA Factor Analysis
Factor Analysis x=As R diagonal
Approximations to Isotropic
mutual information noise
Cumulant based Flexible Switching Probabilistic
methods
JADE etc. source model source model PCA
Kurtosis Fixed No
minimisation source model noise
Fast ICA Infomax PCA

Orthogonal mixing

Figure 1.2. Hierarchy of ICA Models

their parameters, and schemes which switch between two source models
dependent upon the moments of the recovered sources are discussed
in section 1.4. If the source model is fixed to be a single function
with no explicit parameters, the Bell & Sejnowski Infomax algorithm
[Bell & Sejnowski, 1995] is recovered (subsection 1.5). These models all
recover sources which are maximally independent. The degree of inde-
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pendence is measured by the mutual information (subsection 1.2.2) be-
tween the recovered sources. Independence between the recovered sources
may be approximated by cumulant based expansions. Cumulant based
methods are briefly described in section 1.4. An elegant and fast fixed-
point technique, FastICA, which maximises the kurtosis of the recovered
sources 1s described by Hyvirinen in Chapter 2.

1.2.2 Independent sources

The assumption underlying all ICA models is that the sources are inde-
pendent. The M sources together generate an M-dimensional probability
density function (p.d.f.} p(s). Statistical independence between the sources
means that the joint source density factorises as

M
p(s) = [ ] plsm(1)). (1.5)
m=1

We denote by a(t) = [a;(t),ax(t),...,an(t)]" the estimates of the true
sources s(t) that are recovered by blind source separation. If the p.d.f. of
the estimated sources also factorises then the recovered sources are inde-
pendent and the separation has been successful. Independence between
the recovered sources is measured by their mutual information, which is
defined in terms of entropies.

The (differential) entropy of an M-dimensional random variable x with
p.d.f. p(x) is

HIx] = H[p(x)] £ — / p(x)log p(x) dx. (L6)

(Square brackets are used to emphasise that the entropy is a statistical
quantity that depends on the p.d.f. of x, rather than directly on x itself.)
The entropy measures the average amount of information that x encodes,
or, alternatively, the average amount of information that observation of x
yields [Cover & Thomas, 1991]. If base 2 logarithms are used the entropy
is measured in bits.

The joint entropy H[x,y] of two random variables x and y is defined
as

Hlxy] = — / p(x, y)log p(x, y) dx dy. (1.7)
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The conditional entropy of x given y is

HIxIy) = - [ px.y)logp(x]y) dxdy. (18)

from which it follows that
H[x,y] = H[x] + H[y|x] (1.9)
= H[y] + H[x|y]. (1.10)

Equation (1.9) may be interpreted to mean that the (average) information
that x and y jointly encode is the sum of the information encoded by x
alone and the information encoded by y given a knowledge of x.

The mutual information between two random variates x and y is
defined in terms of their entropies.

def

I[x;y] = H[x] + H[y] — H[x,y] (1.11)
= H[x] — H[x|y] (1.12)
= H[y] — Hly|x]. (1.13)

The mutual information is thus the difference in the information that
is obtained by observing x and y separately or jointly. Alternatively, as
(1.13) shows, the information H[x] encoded by x that cannot be obtained
by observing y is I[x;y]. The mutual information is zero if and only if x
and y are independent (i.e., p(X,y) = p(x)p(y)). The mutual information is
non-negative [Cover & Thomas, 1991] which follows from the fact that
more information may be obtained by observing x and y separately than
jointly.

With a slight abuse of notation, the mutual information between the
components of a (sometimes called the redundancy of a) is written as

I[a) = 1[a;{ay}] (1.14)
= ZH[am] — Ha] (1.15)
/ p(a)log T o) da. (1.16)

The first term of (1.15) is the sum of the information carried by the
recovered sources individually, and H[a] is the information carried jointly.
Ia] 1s therefore the information common to the variables and thus
measures their independence. It is again non-negative and equal to zero
if and only if the components of a are mutually independent, so that
there is no common information and the joint density factorises: p(a) =
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Hf:;] play,). If the estimated sources carry no common information then
nothing can be inferred about a recovered source from a knowledge of
the others and the recovered sources are independent, I[a] = 0. In this
case the blind source separation has been successful.

The Kullback-Leibler (KL) divergence between two p.d.fis p(x) and
q(x) is defined as

KL[p | q] £ /p(x)logs% dx. (1.17)

Note that KL[p | q] # KL[g | p]. Comparison of equations (1.16) and
(1.17) shows that the mutual information between the recovered sources is
identical to the Kullback-Leibler divergence between the joint density p(a)
and the factorised density Hff:] pla,). Independent component analysis
attempts therefore to find a separating transform (a matrix when the
mixing is linear) that minimises this KL divergence.

Scaling and permutation ambiguities The linear generative model (1.3)
introduces a fundamental ambiguity in the scale of the recovered sources.
The ambiguity arises because scaling a source by a factor A (s,(t) —
Asy(t)) is exactly compensated by dividing the corresponding column of
the mixing matrix by A. In terms of the mutual information, we see
that mutual information is independent of the scale of the recovered
sources: the degree of independence between variables does not depend
upon the units in which they are measured.t Therefore I[a] = I[Da]
for any diagonal matrix D (D; # 0). Furthermore, the order in which
the components of a are listed is immaterial to their independence, so
I[a] = I[Pa] for any permutation matrix P. Putting these together,
ITa] = I[P Da] which shows that the sources can only be recovered up to
an arbitrary permutation and scaling,.

In the zero noise limit a separating matrix W, which inverts the mixing,
is sought so that a = Wx. In this case, rather than WA = I, the best that
may be achieved is

WA = PD, (1.18)

because I[s} = I[Ws] = I[PDWs]. In the presence of isotropic observa-
tional noise the scaling and permutation ambiguities remain. Anisotropic
noise destroys the permutation ambiguity, though the scaling ambiguity
remains.

1 More generally, mutual information is invariant under component-wise invertible trans-
formations [Cover & Thomas, 1991].
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