Surveying Instruments of Greece and Rome

The Greeks and, especially, the Romans are famous for the heroic engineering of their aqueducts, tunnels and roads. They also measured the circumference of the earth and the heights of mountains with fair precision. This book presents new translations (from Greek, Latin, Arabic, Hebrew and Syriac) of all the ancient texts concerning surveying instruments, including major sources hitherto untapped. It explores the history of surveying instruments, notably the Greek dioptra and the Roman libra, and with the help of tests with reconstructions explains how they were used in practice. This is a subject which has never been tackled before in anything like this depth. The Greeks emerge as the pioneers of instrumental surveying and, though their equipment and methods were simple by modern standards, they and the Romans can be credited with a level of technical sophistication which must count as one of the greatest achievements of the ancient world.

M. J. T. Lewis is Senior Lecturer in Industrial Archaeology at the University of Hull. His publications include *Temples in Roman Britain* (1966), *Early Wooden Railways* (1970) and *Millstone and Hammer: the Origins of Water Power* (1997), and many articles in such journals as *History of Technology, Technology and Culture* and *Papers of the British School at Rome.*

Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Frontmatter More information

SURVEYING Instruments of Greece and rome

M. J. T. LEWIS

CAMBRIDGE UNIVERSITY PRESS Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Frontmatter More information

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > > http://www.cambridge.org

© M. J. T. Lewis 2001

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Monotype Bembo 10/13 *System* QuarkXPress[™] [SE]

A catalogue record for this book is available from the British Library

IS BN 0 521 79297 5 hardback

Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Frontmatter More information

To Hywel

CONTENTS

	Lis	t of figures	page x
	Lis	X111	
	Pre	XV 	
	Ex	XV11	
	Int	roduction	Ι
		PART I: INSTRUMENTS AND METHODS	
I	Th	e basic elements	13
	А.	Precursors of the Greeks	13
	В.	Measuring distances	19
	C.	Orientation and right angles	22
	D.	Measuring heights	23
	E.	Levelling	27
2	Ba	ckground to the dioptra	
	А.	The sighting tube	36
	В.	Astronomical instruments	38
	C.	The Hipparchan dioptra	41
	D.	The measuring rod	42
	E.	Gamaliel's tube	46
	F.	Philo's level and staff	48
3	Th	e dioptra	51
	A.	The treatises	53
	В.	The sources of the treatises	62
	C.	The minor sources	66
	D.	The plane astrolabe	67
	E.	The standard dioptra	71
	F.	Hero's dioptra	82
	G.	Levelling	89
	Н.	Other surveys	97

CAMBRIDGE

Cambridge University Press
0521792975 - Surveying Instruments of Greece and Rome
M. J. T. Lewis
Frontmatter
More information

CONTENTS

	I. Chronological conclusions	101		
	J. Testing a reconstructed dioptra	105		
4	The libra			
'	A. The evidence	109		
	B. Testing a reconstructed libra	116		
5	The groma			
5	A. Grids	120		
	B. The groma and its use	124		
6	The hodometer	134		
	PART II: PRACTICAL APPLICATIONS			
7	Measurement of the earth	143		
8	Mountain heights	157		
0	a Canals and aqueducts			
9	A. Early canal schemes	167		
	B. Aqueduct surveying	I 70		
	C. The Nîmes aqueduct and others	181		
	D. The challenges of surveying	191		
10	Tunnels			
	A. Categories	197		
	B. Alignment	200		
	C. Level	204		
	D. Meeting	206		
	E. Instruments	213		
II	Roman roads			
	A. Basic principles	217		
	B. Interpolation and extrapolation	218		
	C. Successive approximation	220		
	D. Dead reckoning	224		
	E. Geometrical construction	232		
	F. Examples	233		
12	Epilogue	246		

CAMBRIDGE

Cambridge University Press	
0521792975 - Surveying Instruments of Greece and Ror	ne
M. J. T. Lewis	
Frontmatter	
Moreinformation	

CONTENTS

PART III: THE SOURCES

The treatises	
Hero of Alexandria: Dioptra	259
Julius Africanus: Cesti I I 5	286
Anonymus Byzantinus: Geodesy	289
Al-Karaji: The Search for Hidden Waters XXIII	298
Other sources	
The basic elements (Chapter 1)	303
Background to the dioptra (Chapter 2)	305
The dioptra (Chapter 3)	308
The libra (Chapter 4)	318
The groma (Chapter 5)	323
The hodometer (Chapter 6)	329
Measurement of the earth (Chapter 7)	332
Mountain heights (Chapter 8)	335
Canals and aqueducts (Chapter 9)	340
Tunnels (Chapter 10)	345
Roman roads (Chapter 11)	347
Appendix: Uncertain devices	
A. The U -tube level	349
B. The dioptra on a coin	350
C. Dodecahedrons	350
D. The 'cross-staff'	351
E. Sagui's instruments	352
Bibliography	355
Index	369
Index of ancient authors cited	378

FIGURES

I.I	The <i>merkhet</i> in use	page 16		
I.2	Similar triangles	25		
1.3	Thales' demonstration of the distance of a ship			
I.4	. Height triangles of Vitruvius Rufus and the Mappae			
	Clavicula	27		
1.5	Egyptian A-frame level for horizontals and plumb-line			
	for verticals	28		
1.6	The chorobates	31		
2.1	Hipparchan dioptra	43		
3.1	Dioptra reconstruction in vertical mode	52		
3.2	Dioptra reconstruction in horizontal mode	53		
3.3	Types of sight	74		
3.4	Foresight and object seen through out-of-focus slit			
	backsight	76		
3.5	The karchesion for catapult and for assault bridge	77		
3.6	Hero's dioptra: Schöne's reconstruction	83		
3.7	Hero's dioptra: Drachmann's reconstruction	84		
3.8	Hero's water level: Mynas Codex drawing and			
	Drachmann's reconstruction	85		
3.9	Hero's water level: Schöne's reconstruction	86		
3.10	Sketches of Hero's dioptra, after Mynas Codex	87		
3.11	Diagram apparently explaining how water finds its			
	own level in a U -tube, after Mynas Codex	88		
3.12	Methods of levelling	90		
3.13	Hero's staff: Schöne's reconstruction	94		
3.14	Back and fore sights with dioptra inaccurately set	95		
3.15	Measuring the height of a wall	108		
4.I	Egyptian balance, c.1400 BC	III		
4.2	Libra reconstruction with shield	117		
4.3	Libra reconstruction without shield	117		
4.4	Detail of suspension	118		
4.5	Detail of sight	118		

CAMBRIDGE

Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Frontmatter More information

LIST OF FIGURES

5 T	Schulten's reconstruction of the groma	127
5.2	The Pompeii groma as reconstructed by Della Corte	127
5.2	Gromas on tombstones from Ivrea and Pompeii	120
5.4	Reconstruction of supposed groma from Pfijnz	130
5.5	Supposed groma from the Favum	131
5.6	Supposed groma and stand as control marks on denarius	132
бт	Reconstruction of Vitruvius' hodometer	125
8 T	Transects of Olympus	164
0.1	Nile–R ed Sea canal	168
0.2	Map of Nîmes aqueduct	182
0.3	Nîmes aqueduct, simplified gradient profile	184
0.4	Nîmes aqueduct, map of valleys section	186
0.5	Map of Poitiers aqueducts	100
0.6	Poitiers, Eleury aqueduct gradient profile	102
10.1	Samos tunnels, plan	201
10.2	Sections of Samos tunnel. Lake Albano and Nemi	201
10.2	emissaries	203
10.3	Samos tunnel, strategies for meeting	208
10.4	Briord tunnel, plan	200
10.5	Bologna tunnel, lateral mismatch of headings	210
10.5 La Perrotte tunnel. Sernhac plan and section of south		
	end	211
10.7	Al-Karaii's procedure for recording deviations	212
10.8	Chagnon tunnel. Gier aqueduct, geometry of setting	
	out	213
10.0	Al-Karaji's sighting tube for ganats	214
II.I	Simple alignment by interpolation and extrapolation	210
11.2	Successive approximation	223
11.3	Surveying alignments by traverse and offset	225
II.4	Surveying alignments by angle	230
11.5	Surveying alignment by offset	231
11.6	Surveying alignment by geometrical construction	233
II.7	The Portway	235
11.8	Ermine Street	235
11.0	Watling Street	235
11.10	Stane Street	239
II.II	Stane Street aligned by geometrical construction	230
11.12	The outermost German limes	244

Cambridge University Press	
0521792975 - Surveying Instruments of Greece and	Rome
M. J. T. Lewis	
Frontmatter	
Moreinformation	

LIST OF FIGURES

12.1	Surveyor's staff and water level with floating sights, 1044	247	
12.2	Finding the height and distance of an island	248	
12.3	The plumb-line <i>mizan</i> and variant	252	
Арр.1	Control marks on denarius	350	
App.2	App.2 Roman cross-staff (?) from Koblenz and a nineteenth-		
	century example	352	
App.3	Carving at Little Metropolis, Athens, and Sagui's		
	surveying table	353	
App.4	Sagui's mine inclinometer	354	

TABLES

3.1	Terminology of the dioptra	pages 80–1
7.I	Circumference of the earth	156
8.1	Measurements of mountain heights	160–1
9.1	Gradients of Greek aqueducts	173
9.2	Roman aqueducts with the shallowest gradients	175

PREFACE

First, a few definitions. *Surveying* is the science based on mathematics which involves measuring any part of the earth's surface and any artificial features on it, and plotting the result on a map or plan drawn to a suitable scale. Often, though by no means always, it also involves *levelling* or some similar process to record relative heights. *Setting out* is effectively the converse process, namely locating intended boundaries, structures or engineering works on the ground, in the correct position in all three dimensions. The surveyor will often have to carry out both procedures, especially when linear features such as aqueducts or railways are to be built: first to record the existing shape of the terrain and then, in the light of this information, to decide the best route and to mark it on the ground.

Almost without exception, surveying with instruments that rose above the level of low technology began with the Greeks and Romans, and a proper understanding of their achievements entails straddling two very different disciplines. The present-day surveyor who is curious about the origins of his profession may not be deeply informed on ancient history or engineering, while the classical historian may not have a detailed command of the principles of surveying. The resulting challenge, constantly encountered by historians of technology, is to try to put across the background, the material and the arguments at such a level that no reader feels neglected or patronised. I have done my best to strike a happy mean. My credentials, such as they are, for accepting this challenge are an upbringing as a classicist and classical archaeologist and a lifetime spent on the history of technology. I am not a trained surveyor, but through fieldwork I have acquired a working knowledge of surveying techniques. Since the techniques and instruments of ancient surveying were essentially similar to, if simpler than, those that I have experienced, I hope that this is qualification enough.

I am indebted to Denis Hopkin for constructing a dioptra for me, to David Palmer for making a libra, to Dr Guy Stiebel of the Hebrew University, Jerusalem, for help over Talmudic references, and particu-

xv

Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Frontmatter <u>More information</u>

PREFACE

larly to Dr Youcef Bouandel for translating al-Karaji's Arabic. I am grateful too to Pauline Hire of Cambridge University Press for suggesting improvements to the layout of this book and for seeing it through the press with such care. But I owe most to my family. The staffman's job is, at the best of times, tedious. To act as staffman for a surveyor who is struggling with the idiosyncrasies of totally strange instruments is more tedious still. This is what my son Hywel did for me, with exemplary patience, over the many days when I was testing the reconstructed dioptra and libra. His understanding of the principles and his sound common sense, moreover, helped me through many a difficulty. My debt to him is very great. So it is too to my wife, who has also held the staff on occasion and who has commented on my drafts with her usual perception.

CROSS-REFERENCES

Part III contains translations both of the four major treatises and of extracts from other sources arranged in the same order and under the same headings as the chapters and sections of Parts I and II. References to these translations are in bold type: in the form *Dioptra* 22, Africanus 4, Anonymus 10, Al-Karaji 2 to the treatises, in the form Source 33 to the other sources. Thus the cross-reference Source 33 in Chapter 3.D on the astrolabe should guide the reader to the extract in Part III from Severus Sebokht. Occasionally a source deals with more than one instrument, in which case a note at the end of one section in Part III draws attention to relevant material in another section.

TRANSLATION

Few of the sources have hitherto been translated into English. Where they have been, the results vary from the excellent to the downright misleading. All the translations from Greek and Latin used here are therefore my own, done for the purpose of this book. The major treatises are written in a bewildering jumble of tenses and persons, sometimes in the same sentence: *I turn the alidade*, for example, *one will turn the alidade, the alidade was turned*, and *let the alidade be turned*. All these, and comparable phrases, have generally (but not always) been standardised into the imperative, *turn the alidade*. Greek reference letters are retained. Otherwise all Greek, Latin, Hebrew, Syriac and Arabic is translated, except for occasional words which, because of their untranslatable connotations, are simply transliterated. Semitic words are transliterated without diacritical signs (may purists forgive me), except that Arabic H and Ț are differentiated from H and T when used as reference letters.

TERMINOLOGY

To avoid potential confusion, although the context normally makes the distinction clear, two sets of terms need explaining. In levelling, *back*

xvii

sight and *fore sight*, each in two words, denote the sightings taken through the instrument looking backwards and forwards at the staff. *Backsight* and *foresight*, each in one word, are terms borrowed from the rifle to denote the actual parts of the instrument (holes or slits) through which sightings are taken.

GRADIENTS

Gradients can be given in different ways:

The vertical reduced to unity relative to the horizontal, e.g.	1 in 200 or 1:200
The vertical as a percentage of the horizontal,	0.5%
The vertical as so much per thousand horizontal	5‰
Metres per kilometre	5m per km
Vertical divided by horizontal	0.005

All of the above figures mean exactly the same thing. The form most widely used in engineering circles is 0.5%. But (at least in Britain) the most common form found in histories of engineering is 1 in 200; and I feel that by this system the non-engineer can most easily visualise a given gradient: in this case a rise or fall of one unit of length for every 200 units of distance. I have therefore adopted this form throughout, and engineers will have no difficulty in converting it to their own preferred version.

MEASURES

Ancient measures are a minefield for the unwary. For our purposes the precise value of a particular unit is normally of no great importance; as a rule of thumb it is often sufficient to take the cubit as rather under half a metre and the stade as rather under 200 metres. Exactitude is desirable only when comparing ancient estimates of length and height with known modern equivalents; the problem is that it is often impossible to tell which of several different values was in fact being used. The units encountered in this book are listed below.

Greek

The relationships are constant, regardless of the actual length of each unit:

xviii

4 dactyls	=	1 palm		
12 dactyls	=	1 span		
16 dactyls	=	1 foot		
24 dactyls	=	1 cubit	=	1½ feet
4 cubits	=	1 fathom ¹	=	6 feet
100 feet	=	1 plethron		
100 cubits	=	1 schoinion	=	150 feet
400 cubits	=	1 stade	=	600 feet

The value of Greek measures, however, varied from place to place and from time to time. Four values of feet and stades which were widely used in Hellenistic and Roman times deserve mention here.²

	Attic–Roman	'standard'	Olympic	Philetaeran
1 foot	29.6 cm	30.8 cm	32.0 cm	32.9c m
1 stade	177.6 m	185 m	192 m	197.3 m
stades to Roman mile	8.33	8.00	7.71	7.50

Roman

16 digits=I foot=I 2 inches24 digits=I cubit5 feet=I pace1,000 paces=I mile

The values are well established: I foot = 29.6 cm, I mile = 1480 m.

Islamic

4 fingers	=	1 palm		
12 fingers	=	1 span		
24 fingers	=	1 legal cubit		
32 fingers	=	1 Hasimi cubit		
60 Hasimi cubits	=	1 cord (<i>asl</i>)	=	80 legal cubits
4,000 legal cubits	=	1 mil	=	50 cords
3 mil	=	1 farsakh		

¹ But $9\frac{1}{4}$ spans = 1 fathom for measuring cultivated land.

 $^2\,$ Based on Hultsch 1882. There are useful summaries in KP v 336–7 and OCD 942–3. The calculations of Lehmann-Haupt 1929, though seemingly authoritative, need to be treated with caution. See also Dicks 1960, 42–6.

The value of Islamic measures was widely variable. The legal cubit was usually 49.875 cm and the Hasimi cubit 66.5 cm.³

³ See Hinz 1955 and 1965. For corresponding Babylonian measures see Powell 1987–90.