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Control of Intermittency in Near-wall
Turbulent Flow

Peter N. Blossey and John L. Lumley

1 Introduction

The boundary layer exhibits intermittency at the interface between the tur-
bulent fluid inside the boundary layer and the irrotational flow outside the
boundary layer as well as internal intermittency. However, one finds in the
boundary layer a third type of intermittency as well: the intermittent pro-
duction of turbulence in the wall region of the turbulent boundary layer. The
production of turbulence near the wall is dominated by a few, large-scale
coherent structures which break down intermittently, resulting in peaks in
turbulent production and the generation of small-scale turbulence — seen in
experiments and simulations as bursts of Reynolds stress. Experimental work
focusing on the breakdown of the coherent structures has led to the identifi-
cation of a characteristic time scale, the mean inter-burst period. Lumley &
Kubo (1985) coilected the available data on the inter-burst period and found
that the product of the bursting period with the turbulent skin friction at the
wall was approximately constant. Thus, the shorter the bursting period be-
comes, the more active the coherent structures near the wall, and the higher
the skin friction. If the bursting period is prolonged, the coherent structures
are less active, and the skin friction will decrease. In this paper, we construct
a control algorithm which identifies when the coherent structures are tending
towards bursting and intervenes to suppress the burst, thereby increasing the
inter-burst duration and decreasing the drag at the wall. Our control relies on
the identification of the coherent structures in the boundary layer and on the
prediction of their strength based on available information, namely the shear
stress at the wall. However, some insight into the dynamics of the large scales
of the turbulence in the wall layer — along with an estimate of their strength
— is necessary to recognize the signs of bursting in the coherent structures.

Since the wall region is dominated energetically by just a few coherent
structures, it is tempting to model the dynamics there including only these
large-scale structures, while parameterizing the smaller scales of the turbu-
lence. Many different techniques have been used to identify coherent struc-
tures in turbulent shear flows, from visualization and pattern matching to
conditional sampling. Each of these techniques requires some degree of sub-
jectivity in the identification of coherent structures, for example, in the choice
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2 Blossey & Lumley

of an initial pattern in pattern matching or in the selection of a threshold when
using conditional sampling. However, Lumley (1967) proposed an objective
technique for the identification of coherent structures in turbulent flows, the
Proper Orthogonal Decomposition (POD). The POD, also referred to as the
Karhunen-Loéve decomposition, selects the most energetic feature from an
ensemble of (random) turbulent velocity fields. In the wall region, the first
and most energetic eigenfunction of the POD captures 60% of the turbulent
kinetic energy there. The eigenfunctions of the POD are referred to as em-
pirical eigenfunctions because they are derived from data (obtained either
experimentally or through simulations) rather than from the governing equa-
tions. The empirical eigenfunctions form a basis for the turbulent velocity
which possesses optimal convergence: when the velocity field is expanded in
terms of the eigenfunctions, any truncation of the expansion will contain the
most energy among all truncations of that order.

Using the empirical eigenfunctions as a basis, a model for the dynamics
of the large-scales may be constructed from the Navier-Stokes equations by
means of Galerkin projection. The projection yields a coupled system of non-
linear ordinary differential equations. When the equations are truncated —
including only a few modes — the effect of the unresolved modes and the
mean velocity profile must be accounted for. The unresolved modes exert a
Reynolds stress on the large, resolved scales through the nonlinear terms. The
Reynolds stress may be approximated using a gradient diffusion model with
an eddy viscosity that may be varied parametrically. The mean velocity pro-
file may be expressed as an integral of the Reynolds stress from the resolved
modes. This introduces cubic terms into the model equations which globally
stabilize the dynamical system which results from the low-dimensional model.
These models may be studied through simulations and by use of the tools of
dynamical systems theory.

The coherent structures observed in the boundary layer — the streaks
and rolls — appear as fixed points in the models, and for certain values of
the eddy viscosity parameter the models display intermittent dynamics with
the trajectories in the phase space of the model following heteroclinic orbits
connecting fixed points which correspond to the structures. The jumps in
the phase space of the model correspond roughly to the bursts observed in
simulations and experiments in the boundary layer. The updraft between the
rolls strengthens into an ejection as energy is transferred from/to the smaller
scales represented in the model. (The severe truncation in the models limits
their ability to capture the energy transfer fully.) The energy transfer leads to
the weakening and breakdown of the structures. Following their breakdown,
the structures re-form, and the process repeats.
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2 Motivation for Control

Our success in applying open-loop control to turbulent channel flow gave us
confidence to take the same approach to closed-loop, feedback control with
the aim of sustained drag reduction. The open-loop control (described in
Lumley & Blossey (1998a)) interfered with the coherent structures near the
wall, draining energy from the rolls and weakening momentum transport away
from the wall. As a result, the drag was substantially reduced. Although the
reduction in drag lasted much longer than the application of the control, the
drag eventually rose again as the coherent structures strengthened and burst.
The success of the open loop control led to two conclusions: that channel
flow may be successfully controlled by focusing the control on only the large-
scale structures, and that the effect of the control may last much longer
than the duration of the control. This suggests an approach for applying
control in a closed-loop, feedback control framework. The control may be
applied as relatively short pulses whose purpose is to weaken the cross-stream
coherent structures, or rolls. These pulses may be repeated when the coherent
structures strengthen to prevent the bursting of these coherent structures. To
be a realistic approach, the control must rely only on information available
in a practical implementation. This information includes pressure and shear
stress measurements at the wall, but not any information about the velocity
field above the wall. Thus, our heuristic procedure of choosing the position of
the forcing in the open-loop control — from observations of the high-speed
streak — must be replaced by an objective method which relies, most likely,
on the shear stress at the wall.

This control strategy is descended from work originating from our extended
group at Cornell. A low-dimensional model was constructed for the wall region
of the turbulent boundary layer by Aubry et al. (1988). Their model success-
fully mimicked the bursting process observed in experiments and simulations
of near-wall turbulence, and was found to possess heteroclinic connections
between fixed points in the phase space of the model. The fixed points —
which were saddle points for realistic parameter values — represented rolls in
the fluids systems. The jumps along the heteroclinic connections resembled
the bursting process with a strengthening of the updraft between the rolls
and a transfer of energy to the higher-wavenumber modes. If we accept the
dynamical system as a reasonable model for the bursting process, the problem
of control may be approached from this point of view. The first method to
explore is stabilizing the fixed point: setting up linear feedback control with
the aim of turning the saddle point into a stable fixed point. The stabilization
of these saddle points would require sustained and substantial control input.
This is not realistic in a practical setting. The difficulty of estimating the state
of the coherent structures based on partial information available at the wall
and the susceptibility of such a strategy to the dynamics of unmodeled modes
would further complicate such an approach. In designing a control strategy
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4 Blossey & Lumley

for near-wall turbulence, our hope is that limited but intelligent application
of our control effort would lead to efficient techniques for the reduction of
drag.

Bloch & Marsden (1989) suggested another strategy for controlling the
heteroclinic orbits that was more in line with the thinking outlined above.
Their strategy relies on the identification of a controllable region around the
stable manifold of a given saddle point. Once a trajectory enters the control-
lable region, the control is applied to prevent the escape of the trajectory
along the unstable direction. In the absence of noise, the trajectory can be
directed right to the fixed point and will sit in the neighborhood of the fixed
point for all time. For a more realistic setting which includes noise, the tra-
jectory will fall in towards the fixed point along the stable direction — with
the control keeping the trajectory close to the stable manifold — until the
controllable region becomes small enough that the noise may bump the tra-
jectory out of the controllable region, leading to the escape of the trajectory
along the unstable manifold. The controllable region usually takes the form
of a cone which encloses the stable manifold and has its vertex at the fixed
point. Therefore, the control can be expected to be most susceptible to noise
near the fixed point. However, the goal of a practical control strategy is not
to delay the heteroclinic jumps or bursts indefinitely, but only to increase the
period between bursting events (the inter-burst time, T’s). By increasing the
time between jumps/bursts, fewer turbulence-generating events will occur,
less turbulence will be generated and the momentum transport away from
the wall by the turbulence (skin friction drag) will be weakened.

Our strategy for control in the minimal flow unit, which contains a single
set of coherent structures, is to apply the control directly to the coherent
structures. Earlier control work (Coller et al. 1994a, Coller et al. 1994b) relied
on an adjacent pair of vortices as an actuator for control, but the minimal
flow unit is not large enough to permit the introduction of another set of
structures without directly interfering with the naturally occurring coherent
structures. The form of the control in the minimal flow unit will be similar to
that used in our experiments with open-loop control and will be applied with
a body force whose form is a Gaussian in the wall-normal direction which
is largest near the wall (at y* = 10). The body force is applied to the first
two spanwise Fourier modes, and its position is determined by our estimation
technique which predicts the location of the rolls. The strength of the control
is determined by our control algorithm which is outlined in section 4. The
control is chosen to be invariant in the streamwise direction. Although the
structures themselves are not uniform in the streamwise direction, streamwise
invariance is a reasonable assumption in a small box like the minimal flow unit
except when the structures break down. The control focuses on the prevention
of the instability and bursting of the near-wall coherent structures. To this
end, we will attempt to suppress the rolls when they grow strong. Weakening
the rolls reduces the Reynolds stress generated by the near-wall structures and
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prevents the ejections which lead to instabilities and bursts. However, before
we can describe the control strategy in detail, the problem of estimating the
state of the flow based on measurements at the wall must be addressed.

3 Estimation

In our attempt to move from open-loop control to some form of feedback
control, one key input to the control — an estimate of the state of the flow — is
necessary. Our control strategy must incorporate information from the flow so
that the control may adapt. The control will be applied to the flow selectively,
i.e. only when the structures are tending towards bursting, in an attempt to
maximize the effectiveness of the control. To this end, our estimate of the
state of the flow will focus on the strength of the coherent structures. Our
strategy for estimation draws from the work of Podvin & Lumley (1998), who
applied the Proper Orthogonal, or Karhunen-Loéve, Decomposition (POD) to
velocity fields from the minimal flow unit and used the eigenfunctions of the
POD to construct a low-dimensional model for the large-scale flow structures
in the minimal flow unit. (For background on low-dimensional models and
the POD, see Holmes et al. (1996) or Lumley & Blossey (19985).)

The POD provides a complete expansion of the velocity field in terms of
orthogonal eigenfunctions. The convergence of this expansion is optimal in
the sense that any truncation contains, on average, the most kinetic energy
of any truncation of that order. {The POD yields Fourier modes when ap-
plied to homogeneous directions — in this case, the streamwise and spanwise
directions — so that the velocity field is expanded in Fourier modes in the
homogeneous directions and eigenfunctions in the inhomogeneous directions.)

(b= bar
w2, 2, t) zas,mt)e?“ T ¢, (1) (3.1)

The wall shear stress can be expanded in terms of the wall-normal derivatives
of the eigenfunctions.

(n)

3“‘(z,y 0,2,8) = zaﬁ’:ia(t) ami( 2+ ) "5‘“*3( =0) (3.2)

We are interested in tracking the strength of the first two spanwise Fourier
modes of the most energetic eigenfunction. These two modes combine to form
the streaks and rolls that we have been talking about in our picture of tur-
bulence generation in near-wall turbulent flow. The coefficients of these two
modes, denoted by a(t) and a{(t), can be estimated from the wall shear
stress very simply if we assume that the wall shear stress in those two Fourier
modes comes only from those two modes. Remember that the first eigenfunc-
tion carries the most energy among all eigenfunctions. Furthermore, the first
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6 Blossey & Lumley

eigenfunction in the wall region of the turbulent boundary layer carries more
than half of the kinetic energy there. We truncate our eigenfunction expan-
sion, including only the first eigenfunction, to determine the coefficients of the
eigenfunctions from the shear stress. This truncation is a good approximation
when the flow is dominated by the coherent structures. When the structures
break down, we can expect higher eigenfunctions to play a larger role and
perhaps degrade the accuracy of our estimate.

a“. N
ki k. kik
Sy =0,1) & ag,(t) yl 2y =0) (3:3)
Dul 3
a0 - o(Z) saon(Z) oo
¢1k1'¢3 wall ¢3k1k3 wall
Here, D = 6/8y and a}%%® refers to our instantaneous estimate (“measure-

ment”) of ak ka We drop the superscript in aj%.* since we only estimate
the strength of a single eigenfunction for a given Fourier mode (ky, k3). The
scalar 8 determines the relative weight of the spanwise and streamwise shear
stress in determining the coefficients. The two modes that we want to esti-
mate have wavenumbers k) = 0 and k3 = 1, 2. The streamwise and spanwise
shear stress for modes of this form (with no streamwise variation) come from
the streaks and rolls, respectively. The rolls are disturbances of the form
u(z,y, 2) = (0,us(y, 2), us(y, z)) which do not directly affect the streamwise
shear stress, except indirectly through their nonlinear interaction with the
mean velocity which supplies energy to the streaks. Similarly, the streaks do
not affect the spanwise shear stress. For the purposes of control, we are more
interested in the rolls and choose a value of # close to zero. In fact, Podvin
& Lumley (1998) found that their estimation was more successful for such
values of 3. The importance of spanwise shear stress in the prediction of ejec-
tions was also highlighted by Lee et al. (1997), who employed neural networks
to optimize the prediction of strong ejections and sweeps in the wall region
based on wall shear stress measurements.

The procedure outlined above will give us instantaneous “measurements”
of the coefficients, which will likely be aliased and noisy. Our estimate comes
from the application of a simple filter to the time series of instantaneous
measurements. The filter takes the form of a dynamic equation:

meas __
d ast = Gk ks a’kxks

@t *hk = 7T

Here, T is a timescale. We find that values of T' on the order of 40 wall time
units are effective. The choice of T" involves a balance between the smoothing
of non-physical oscillations in measurements from aliased higher frequencies
and the time lag inherent in choosing a large T". The performance of the
estimation using an array of six rows of eight sensors each in the minimal

(3.5)
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Figure 1: A comparison of our estimate of a(()ll)(t) with its actual
value, computed by taking an inner product between the velocity
field and the eigenfunction ¢f;,) .

flow unit is displayed in Figure 1. The spacing of the sensors is approximately
22 wall units in the spanwise direction and 60 wall units in the streamwise
direction. This array of sensors covers the entire wall in our minimal flow unit
(L. =184, L, = 368).

For the purposes of our control, we are interested in the strength of the
rolls in particular. However, in the interest of a robust estimation scheme, it is
useful to include both streamwise and spanwise shear stress in the estimation
routine. In fact, a value of § = 0.1 was most successful in providing an
effective control for drag reduction. The inclusion of the streamwise shear
stress can be seen as “contaminating” our measurement of the strength of
the rolls, but the streaks (through the streamwise shear stress) do provide
an indication of the past strength of the rolls, since the rolls give rise to the
streaks through interaction with the mean flow. Nevertheless, the quality of
our estimate suffers when the control is turned on, as can be seen in Figure 2.
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Figure 2: The estimation technique is sensitive to the control and
is not as successful in predicting the strength of the first mode
when the control is switched on. The horizontal lines correspond
to the levels at which the control is switched on and off.

The estimate is much more sensitive to the control than the actual value of
the coefficient: the control has the effect of driving the value of the estimate
towards zero. After the control is switched off, the estimate increases and
approaches the actual value of the coefficient until the control switches on
again and drives the estimate back towards zero. The effect of the control on
the estimate — driving it towards zero — apparently results from a decoupling
of the shear stress at the wall, which provides the input for our estimate, from
the coherent structures when the control is switched on. The causes of this will
be explored in section 6, when we take a look at the effect of the control on the
eigenfunctions of the POD. While the estimate is increasing and decreasing
with the pulses of control in Figure 2, the shear stress and the actual value
of the coefficient rise slowly but steadily. This seems to call into question
the effectiveness of our control. However, if the control were switched off, the
increases in shear stress and in the strength of the rolls would be much larger.
In fact, turning off our control leads to a quick return of the shear stress to
the levels of the uncontrolled flow. The motivation for our control strategy,
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which is based on a discrete switching algorithm, is described in the next
section.

4 Control Algorithm

Our approach to control is simply to limit the strength of the rolls in the
minimal flow unit. The rolls supply energy to the streaks through nonlinear
interaction with the mean velocity profile. In this way, the rolls cause an
increase in momentum transport away from the wall and drag at the wall. In
addition, by strengthening the streaks, the rolls promote instability and the
generation of smaller-scale turbulence which gives rise to a further increase
in momentum transport and shear stress at the wall. By acting to control
the rolls, we attempt to intervene and prevent the production of turbulence
and an increase in shear stress at the wall. This strategy is an attempt to
mimic the success of a passive technique for turbulence control, polymer drag
reduction. The polymers act only at the smallest scales of the turbulence
by expanding in the fluctuating strain rate field just outside of the viscous
sublayer and damping out the smallest eddies there. However, their action
at the smallest scales has a significant effect on the large scales: the rolls
are significantly weakened in polymer drag reduced flow, while the streaks
grow stronger. We take this configuration of the coherent structures as a cue
and focus on using the control to weaken the rolls when they grow strong
while simply ignoring the strength of the streaks. Although the streaks are
likely to burst sometimes while we focus on the rolls, our control effort will be
most efficiently applied to the rolls which are less energetic than the streaks.
Both in the polymer drag reduced case and with our control, the flow will
sometimes burst — this is nearly unavoidable — but our goal is not the
complete suppression of the turbulence. The rolls and streaks are part of the
turbulence, and completely suppressing them would be nearly impossible in
a practical situation. Rather, our control attempts to suppress the instability
of the rolls and streaks, so that this instability is triggered less often, less
small-scale turbulence is generated, and momentum transport away from the
wall is weakened.

The full fluid system does not exactly possess the heteroclinic jumps of the
low-dimensional models. The heteroclinic connections in the phase space of
the model are partly a result of the combination of the roll and streak modes
into a single mode in the dynamical system of Aubry et al. (1988). The be-
havior of the full fluid system does not seem to possess the simple geometry of
a saddle point as the rolls and streaks give rise to a burst. It appears that the
streaks do not change in strength very substantially during a burst. The rolls
do strengthen in the time leading up to a burst, but the substantial signal of a
burst lies in the streamwise-varying (k; # 0) modes which grow significantly
in strength as the burst develops. (Hamilton et al. (1995) provide a nice de-
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scription of the breakdown and regeneration of these structures in turbulent
Couette flow.) However, for the purposes of our control, these streamwise-
varying modes would be very difficult to track and become strong only when
the structures have started to break down. Our control aims to prevent the
breakdown of the structures and, as a result, focuses on the rolls. We attempt
to limit the strength of the rolls when they appear to be growing and tending
towards a burst. This control strategy draws from the work of Guckenheimer
(1995) who constructed a class of hybrid (discrete switching plus linear feed-
back) controllers for problems with two unstable eigendirections. The linear
feedback controllers have a limited domain of attraction and may be suscep-
tible to disturbances and unmodeled dynamics. Guckenheimer proposed that
the domain of attraction of these linear controllers might be increased sub-
stantially by applying discrete switching control to trajectories which escaped
from the domain of attraction of the linear controllers. The amplitude and
direction of this control would be piecewise constant over stretches of phase
space, presumably increasing in amplitude as the trajectories moved farther
away from the fixed point. The discrete control does not attempt to direct
the trajectory gracefully and efficiently back to the fixed point, rather the
control switches on and drives the system directly towards the linear con-
troller’s domain of attraction. When the domain of attraction is reached, the
discrete control switches off and the linear feedback controller takes over. As a
demonstration of his concept, Guckenheimer (1995) constructs a hybrid con-
trol strategy for the inverted double pendulum whose domain of attraction is
considerably larger than that of a linear feedback controller alone.

For our fluid system, we wish to borrow from the hybrid control strategy
outlined above. However, we do not have a clear-cut, low-dimensional dy-
namical system underlying our fluid simulations. The rolls have a stable fixed
point at zero strength when the flow is laminar (since our simulations are
subcritical), but the domain of attraction is apparently small and would be
difficult to attain. We will not attempt to apply linear feedback control when
the strength of the rolls is small.! However, we will apply discrete switching
control to the rolls when they grow strong. Our “hybrid” strategy relies solely
on the discrete switching control to limit the strength of the rolls. One point
must be addressed here before describing the control explicitly: the control
reacts in response to our estimate of the strength of the rolls, not to the rolls
themselves. The estimate is susceptible to aliasing, a finite response time,
and other difficulties, and should not be accepted without skepticism. If the
estimate is varying wildly, the estimate should probably not be used to guide
the control. Either the estimate is responding to higher modes which have
been aliased down to the wavenumber of the coherent structures — or the
coherent structures are drifting quickly and will not respond well to the ap-

1Some groups apply linear feedback control to channel flow, with feedback laws based on
suboptimal control theory (Lee et al. 1998}, neural networks (Lee et al. 1997), or arguments
about the suppression of vorticity flux (Koumoutsakos 1997).
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