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Basic notions in classical data analysis

The goal of data analysis is to discover relations in a dataset. The basic ideas of
probability distributions, and the mean and variance of a random variable are intro-
duced first. The relations between two variables are then explored with correlation
and regression analysis. Other basic notions introduced in this chapter include
Bayes theorem, discriminant functions, classification and clustering.

1.1 Expectation and mean

Let x be a random variable which takes on discrete values. For example, x can be
the outcome of a die cast, where the possible values are xi = i , with i = 1, . . . , 6.

The expectation or expected value of x from a population is given by

E[x] =
∑

i

xi Pi , (1.1)

where Pi is the probability of xi occurring. If the die is fair, Pi = 1/6 for all i , so
E[x] is 3.5. We also write

E[x] = µx , (1.2)

with µx denoting the mean of x for the population.
The expectation of a sum of random variables satisfies

E[ax + by + c] = a E[x] + b E[y] + c, (1.3)

where x and y are random variables, and a, b and c are constants.
For a random variable x which takes on continuous values over a domain �, the

expection is given by an integral,

E[x] =
∫

�

xp(x) dx, (1.4)
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2 Basic notions in classical data analysis

where p(x) is the probability density function. For any function f (x), the
expectation is

E[ f (x)] =
∫

�

f (x)p(x) dx (continuous case)

=
∑

i

f (xi )Pi (discrete case). (1.5)

In practice, one can sample only N measurements of x (x1, . . . , xN ) from the
population. The sample mean x or 〈x〉 is calculated as

x ≡ 〈x〉 = 1

N

N∑
i=1

xi , (1.6)

which is in general different from the population mean µx . As the sample size
increases, the sample mean approaches the population mean.

1.2 Variance and covariance

Fluctuation about the mean value is commonly characterized by the variance of the
population,

var(x) ≡ E[(x − µx)
2] = E[x2 − 2xµx + µ2

x ] = E[x2] − µ2
x , (1.7)

where (1.3) and (1.2) have been invoked. The standard deviation s is the positive
square root of the population variance, i.e.

s2 = var(x). (1.8)

The sample standard deviation σ is the positive square root of the sample
variance, given by

σ 2 = 1

N − 1

N∑
i=1

(xi − x)2. (1.9)

As the sample size increases, the sample variance approaches the population vari-
ance. For large N , distinction is often not made between having N − 1 or N in the
denominator of (1.9).

Often one would like to compare two very different variables, e.g. sea surface
temperature and fish population. To avoid comparing apples with oranges, one usu-
ally standardizes the variables before making the comparison. The standardized
variable

xs = (x − x)/σ, (1.10)
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1.3 Correlation 3

is obtained from the original variable by subtracting the sample mean and dividing
by the sample standard deviation. The standardized variable is also called the nor-
malized variable or the standardized anomaly (where anomaly means the deviation
from the mean value).

For two random variables x and y, with mean µx and µy respectively, their
covariance is given by

cov(x, y) = E[(x − µx)(y − µy)]. (1.11)

The variance is simply a special case of the covariance, with

var(x) = cov(x, x). (1.12)

The sample covariance is computed as

cov(x, y) = 1

N − 1

N∑
i=1

(xi − x)(yi − y). (1.13)

1.3 Correlation

The (Pearson) correlation coefficient, widely used to represent the strength of the
linear relationship between two variables x and y, is defined as

ρ̂xy = cov(x, y)

sx sy
, (1.14)

where sx and sy are the population standard deviations for x and y, respectively.
For a sample containing N pairs of (x , y) measurements or observations, the

sample correlation is computed by

ρ ≡ ρxy =

N∑
i=1

(xi − x)(yi − y)

[
N∑

i=1

(xi − x)2

] 1
2
[

N∑
i=1

(yi − y)2

] 1
2

, (1.15)

which lies between −1 and +1. At the value +1, x and y will show a perfect straight-
line relation with a positive slope; whereas at −1, the perfect straight line will have
a negative slope. With increasing noise in the data, the sample correlation moves
towards 0.

An important question is whether the obtained sample correlation can be con-
sidered significantly different from 0 – this is also called a test of the null (i.e.
ρ̂xy = 0) hypothesis. A common approach involves transforming to the variable
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4 Basic notions in classical data analysis

t = ρ

√
N − 2

1 − ρ2
, (1.16)

which in the null case is distributed as the Student’s t distribution, with ν = N − 2
degrees of freedom.

For example, with N = 32 data pairs, ρ was found to be 0.36. Is this correlation
significant at the 5% level? In other words, if the true correlation is zero (ρ̂xy = 0),
is there less than 5% chance that we could obtain ρ ≥ 0.36 for our sample? To
answer this, we need to find the value t0.975 in the t-distribution, where t > t0.975

occur less than 2.5% of the time and t < −t0.975 occur less than 2.5% of the time
(as the t-distribution is symmetrical), so altogether |t | > t0.975 occur less than 5%
of the time. From t-distribution tables, we find that with ν = 32 − 2 = 30, t0.975 =
2.04.

From (1.16), we have

ρ2 = t2

N − 2 + t2
, (1.17)

so substituting in t0.975 = 2.04 yields ρ0.05 = 0.349, i.e. less than 5% of the sample
correlation values will indeed exceed ρ0.05 in magnitude if ρ̂xy = 0. Hence our
ρ = 0.36>ρ0.05 is significant at the 5% level based on a ‘2-tailed’ t test. For mod-
erately large N (N ≥10), an alternative test involves using Fisher’s z-transformation
(Bickel and Doksum, 1977).

Often the observations are measurements at regular time intervals, i.e. time
series, and there is autocorrelation in the time series – i.e. neighbouring data points
in the time series are correlated. Autocorrelation is well illustrated by persistence
in weather patterns, e.g. if it rains one day, it increases the probability of rain the
following day. With autocorrelation, the effective sample size may be far smaller
than the actual number of observations in the sample, and the value of N used in
the significance tests will have to be adjusted to represent the effective sample size.

A statistical measure is said to be robust if the measure gives reasonable results
even when the model assumptions (e.g. data obeying Gaussian distribution) are not
satisfied. A statistical measure is said to be resistant if the measure gives reason-
able results even when the dataset contains one or a few outliers (an outlier being
an extreme data value arising from a measurement or recording error, or from an
abnormal event).

Correlation assumes a linear relation between x and y; however, the sample
correlation is not robust to deviations from linearity in the relation, as illustrated
in Fig. 1.1a where ρ ≈ 0 even though there is a strong (nonlinear) relationship
between the two variables. Thus the correlation can be misleading when the under-
lying relation is nonlinear. Furthermore, the sample correlation is not resistant to
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1.3 Correlation 5
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Fig. 1.1 (a) An example showing that correlation is not robust to deviations from
linearity. Here the strong nonlinear relation between x and y is completely missed
by the near-zero correlation coefficient. (b) An example showing that correlation
is not resistant to outliers. Without the single outlier, the correlation coefficient
changes from positive to negative.

outliers, where in Fig. 1.1b if the outlier datum is removed, ρ changes from being
positive to negative.

1.3.1 Rank correlation

For the correlation to be more robust and resistant to outliers, the Spearman rank
correlation is often used instead. If the data {x1, . . . , xN } are rearranged in order
according to their size (starting with the smallest), and if x is the nth member, then
rank(x) ≡ rx = n. The correlation is then calculated for rx and ry instead, which
can be shown to simplify to

ρrank = ρrx ry = 1 −
6

N∑
i=1

(rxi − ryi )
2

N (N 2 − 1)
. (1.18)

For example, if six measurements of x yielded the values 1, 3, 0, 5, 3, 6 then
the corresponding rx values are 2, 3.5, 1, 5, 3.5, 6, (where the tied values were all
assigned an averaged rank). If measurements of y yielded 2, 3,−1, 5, 4,−99 (an
outlier), then the corresponding ry values are 3, 4, 2, 6, 5, 1. The Spearman rank
correlation is +0.12, whereas in contrast the Pearson correlation is −0.61, which
shows the strong influence exerted by an outlier.

An alternative robust and resistant correlation is the biweight midcorrelation (see
Section 11.2.1).
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6 Basic notions in classical data analysis

1.3.2 Autocorrelation

To determine the degree of autocorrelation in a time series, we use the autocorrela-
tion coefficient, where a copy of the time series is shifted in time by a lag of l time
intervals, and then correlated with the original time series. The lag-l autocorrelation
coefficient is given by

ρ(l) =

N−l∑
i=1

[(xi − x)(xi+l − x)]
N∑

i=1

(xi − x)2

, (1.19)

where x is the sample mean. There are other estimators of the autocorrelation
function, besides the non-parametric estimator given here (von Storch and Zwiers,
1999, p. 252). The function ρ(l), which has the value 1 at lag 0, begins to decrease
as the lag increases. The lag where ρ(l) first intersects the l-axis is l0, the first zero
crossing. A crude estimate for the effective sample size is Neff = N/ l0. From sym-
metry, one defines ρ(−l) = ρ(l). In practice, ρ(l) cannot be estimated reliably
when l approaches N , since the numerator of (1.19) would then involve summing
over very few terms.

The autocorrelation function can be integrated to yield a decorrelation time scale
or integral time scale

T =
∫ ∞

−∞
ρ(l) dl (continuous case)

=
(

1 + 2
L∑

l=1

ρ(l)

)
�t (discrete case), (1.20)

where �t is the time increment between adjacent data values, and the maximum lag
L used in the summation is usually not more than N/3, as ρ(l) cannot be estimated
reliably when l becomes large. The effective sample size is then

Neff = N�t/T, (1.21)

with N�t the data record length. When the decorrelation time scale is large,
Neff � N .

With two time series x and y, both with N samples, the effective sample size is
often estimated by

Neff = N∑L
l=−L

[
ρxx(l)ρyy(l) + ρxy(l)ρyx(l)

] , (1.22)
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1.4 Regression 7

(Emery and Thomson, 1997), though sometimes the ρxyρyx terms are ignored
(Pyper and Peterman, 1998).

1.3.3 Correlation matrix

If there are M variables, e.g. M stations reporting the air pressure, then correlations
between the variables lead to a correlation matrix

C =

⎡
⎢⎢⎣

ρ11 ρ12 · · · ρ1M

ρ21 ρ22 · · · ρ2M

· · · · · · · · · · · ·
ρM1 ρM2 · · · ρM M

⎤
⎥⎥⎦ , (1.23)

where ρi j is the correlation between the i th and the j th variables. The diagonal
elements of the matrix satisfy ρi i = 1, and the matrix is symmetric, i.e. ρi j = ρ j i .
The j th column of C gives the correlations between the variable j and all other
variables.

1.4 Regression

Regression, introduced originally by Galton (1885), is used to find a linear relation
between a dependent variable y and one or more independent variables x.

1.4.1 Linear regression

For now, consider simple linear regression where there is only one independent
variable x , and the dataset contains N pairs of (x, y) measurements. The relation is

yi = ỹi + ei = a0 + a1xi + ei , i = 1, . . . , N , (1.24)

where a0 and a1 are the regression parameters, ỹi is the yi predicted or described
by the linear regression relation, and ei is the error or the residual unaccounted
for by the regression (Fig. 1.2). As regression is commonly used as a prediction
tool (i.e. given x , use the regression relation to predict y), x is referred to as the
predictor or independent variable, and y, the predictand, response or dependent
variable. Curiously, the term ‘predictand’, widely used within the atmospheric–
oceanic community, is not well known outside.

The error

ei = yi − ỹi = yi − a0 − a1xi . (1.25)
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8 Basic notions in classical data analysis
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Fig. 1.2 Illustrating linear regression. A straight line ỹi = a0 + a1xi is fitted to
the data, where the parameters a0 and a1 are determined from minimizing the sum
of the square of the error ei , which is the vertical distance between the i th data
point and the line.

By finding the optimal values of the parameters a0 and a1, linear regression
minimizes the sum of squared errors (SSE) ,

SSE =
N∑

i=1

ei
2, (1.26)

yielding the best straight line relation between y and x . Because the SSE is
minimized, this method is also referred to as the least squares method.

Differentiation of (1.26) by a0 yields

N∑
i=1

(yi − a0 − a1xi ) = 0. (1.27)

Differentiation of (1.26) by a1 gives

N∑
i=1

(yi − a0 − a1xi )xi = 0. (1.28)

These two equations are called the normal equations, from which we will obtain
the optimal values of a0 and a1.

From (1.27), we have

a0 = 1

N

∑
yi − a1

N

∑
xi , i.e. a0 = y − a1x . (1.29)

Substituting (1.29) into (1.28) yields

a1 =
∑

xi yi − N x y∑
x2

i − N x x
. (1.30)
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1.4 Regression 9

Equations (1.29) and (1.30) provide the optimal values of a0 and a1 for minimizing
the SSE, thereby yielding the best straight line fit to the data in the x-y plane. The
parameter a1 gives the slope of the regression line, while a0 gives the y-intercept.

1.4.2 Relating regression to correlation

Since regression and correlation are two approaches to extract linear relations
between two variables, one would expect the two to be related. Equation (1.30)
can be rewritten as

a1 =
∑

(xi − x)(yi − y)∑
(xi − x)2

. (1.31)

Comparing with the expression for the sample correlation, (1.15), we see that

a1 = ρxy
σy

σx
, (1.32)

i.e. the slope of the regression line is the correlation coefficient times the ratio of
the standard deviation of y to that of x .

It can also be shown that

σ 2
e = σ 2

y (1 − ρ2
xy), (1.33)

where 1−ρ2
xy is the fraction of the variance of y not accounted for by the regression.

For example, if ρxy = 0.5, then 1 −ρ2
xy = 0.75, i.e. 75% of the variance of y is not

accounted for by the regression.

1.4.3 Partitioning the variance

It can be shown that the variance, i.e. the total sum of squares (SST), can be parti-
tioned into two: the first part is that accounted for by the regression relation, i.e. the
sum of squares due to regression (SSR), and the remainder is the sum of squared
errors (SSE):

SST = SSR + SSE, (1.34)

where

SST =
N∑

i=1

(yi − y)2, (1.35)

SSR =
N∑

i=1

(ỹi − y)2, (1.36)
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10 Basic notions in classical data analysis

SSE =
N∑

i=1

(yi − ỹi )
2. (1.37)

How well the regression fitted the data can be characterized by

R2 = SSR

SST
= 1 − SSE

SST
, (1.38)

where R2 approaches 1 when the fit is very good. Note that R is called the multiple
correlation coefficient, as it can be shown that it is the correlation between ỹ and y
(Draper and Smith, 1981, p. 46), and this holds even when there are multiple
predictors in the regression, a situation to be considered in the next subsection.

1.4.4 Multiple linear regression

Often one encounters situations where there are multiple predictors xl, (l =
1, . . . , k) for the response variable y. This type of multiple linear regression
(MLR) has the form

yi = a0 +
k∑

l=1

xilal + ei , i = 1, . . . , N . (1.39)

In vector form,

y = Xa + e, (1.40)

where

y =
⎡
⎢⎣

y1
...

yN

⎤
⎥⎦ , X =

⎡
⎢⎣

1 x11 · · · xk1
...

...
...

...

1 x1N · · · xk N

⎤
⎥⎦ , (1.41)

a =
⎡
⎢⎣

a0
...

ak

⎤
⎥⎦ , e =

⎡
⎢⎣

e1
...

eN

⎤
⎥⎦ . (1.42)

The SSE is then

SSE = eTe = (y − Xa)T(y − Xa), (1.43)

where the superscript T denotes the transpose. To minimize SSE with respect to a,
we differentiate the SSE by a and set the derivatives to zero, yielding the normal
equations,

XT(y − Xa) = 0. (1.44)
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