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Finite group theory

During the last 40 years the theory of finite groups has developed dramatically.
The finite simple groups have been classified and are becoming better under-
stood. Tools exist to reduce many questions about arbitrary finite groups to
similar questions about simple groups. Since the classification there have been
numerous applications of this theory in other branches of mathematics.

Finite Group Theory develops the foundations of the theory of finite groups.
It can serve as a text for a course on finite groups for students already exposed to
a first course in algebra. For the reader with some mathematical sophistication
but limited knowledge of finite group theory, the book supplies the basic back-
ground necessary to begin to read journal articles in the field. It also provides
the specialist in finite group theory with a reference in the foundations of the
subject.

The second edition of Finite Group Theory has been considerably improved,
with a completely rewritten chapter 15 considering the 2-Signalizer Functor
Theorem and the addition of an appendix containing solutions to exercises.

M. Aschbacher is Shaler Arthur Hanisch Professor of Mathematics at Caltech.
His books include Finite Group Theory (Cambridge University Press, 1986),
Sporadic Groups (Cambridge University Press, 1994), and 3-Transposition
Groups (Cambridge University Press, 1997).
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Preface

Finite Group Theory is intended to serve both as a text and as a basic reference
on finite groups. In neither role do I wish the book to be encyclopedic, so
I’ve included only the material I regard as most fundamental. While such
judgments are subjective, I've been guided by a few basic principles which I
feel are important and should be made explicit.

One unifying notion is that of a group representation. The term representa-
tion is used here in a much broader sense than usual. Namely in this book a
representation of a group G in a category & is a homomorphism of G into the
automorphism group of some object of €. Among these representations, the
permutation representations, the linear representations, and the representations
of groups on groups seem to be the most fundamental. As a result much of the
book is devoted to these three classes of representations.

The first step in investigating representations of finite groups or finite di-
mensional groups is to break up the representation into indecomposable or
irreducible representations. This process focuses attention on two areas of
study: first on the irreducible and indecomposable representations themselves,
and second on the recovery of the general representation from its irreducible
constituents. Both areas receive attention here.

The irreducible objects in the category of groups are the simple groups. I
regard the finite simple groups and their irreducible linear and permutation
representations as the center of interest in finite group theory. This point of
view above all others has dictated the choice of material. In particular I feel
many of the deeper questions about finite groups are best answered through the
following process. First reduce the question to a question about some class of
irreducible representations of simple groups or almost simple groups. Second
appeal to the classification of the finite simple groups to conclude the group
is an alternating group, a group of Lie type, or one of the 26 sporadic simple
groups. Finally invoke the irreducible representation theory of these groups.

The book serves as a foundation for the proof of the Classification Theorem.
Almost all material covered plays a role in the classification, but as it turns out
almost all is of interest outside that framework too. The only major result treated
here which has not found application outside of simple group theory is the Sig-
nalizer Functor Theorem. Signalizer functors are discussed near the end of the
book. The last section of the book discusses the classification in general terms.
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X Preface

The first edition of the book included a new proof of the Solvable Signalizer
Functor Theorem, based on earlier work of Helmut Bender. Bender’s proof
was valid only for the prime 2, but it is very short and elegant. I've come to
believe that my extension to arbitrary primes in the first edition is so compli-
cated that it obscures the proof, so this edition includes only a proof of the
Solvable 2-Signalizer Functor Theorem, which is closer to Bender’s original
proof. Because of this change, section 36 has also been truncated.

In some sense most of the finite simple groups are classical linear groups.
Thus the classical groups serve as the best example of finite simple groups.
They are also representative of the groups of Lie type, both classical and ex-
ceptional, finite or infinite. A significant fraction of the book is devoted to the
classical groups. The discussion is not restricted to groups over finite fields.
The classical groups are examined via their representation as the automorphism
groups of spaces of forms and their representation as the automorphism groups
of buildings. The Lie theoretic point of view enters into the latter representation
and into a discussion of Coxeter groups and root systems.

I assume the reader has been exposed to a first course in algebra or its
equivalent; Herstein’s Topics in Algebra would be a representative text for
such a course. Occasionally some deeper algebraic results are also needed;
in such instances the result is quoted and a reference is given for its proof.
Lang’s Algebra is one reference for such results. The group theory I assume is
listed explicitly in section 1. There isn’t much; for example Sylow’s Theorem
is proved in chapter 2.

As indicated earlier, the book is intended to serve both as a text and as a
basic reference. Often these objectives are compatible, but when compromise
is necessary it is usually in favor of the role as a reference. Proofs are more
terse than in most texts. Theorems are usually not motivated or illustrated
with examples, but there are exercises. Many of the results in the exercises are
interesting in their own right; often there is an appeal to the exercises in the
book proper. In this second edition I've added an appendix containing solutions
to some of the most difficult and/or important exercises.

If the book is used as a text the instructor will probably wish to expand many
proofs in lecture and omit some of the more difficult sections. Here are some
suggestions about which sections to skip or postpone.

A good basic course in finite group theory would consist of the first eight
chapters, omitting sections 14, 16, and 17 and chapter 7, and adding sections
28, 31, 34, 35, and 37. Time permitting, sections 32, 33, 38, and 39 could be
added.

The classical groups and some associated Lie theory are treated in chapter
7, sections 29 and 30, chapter 14, and the latter part of section 47. A different
sort of course could be built around this material.
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Preface xi

Chapter 9 deals with various concepts in the theory of linear representations
which are somewhat less basic than most of those in chapters 4 and 12. Much of
the material in chapter 9 is of principal interest for representations over fields
of prime characteristic. A course emphasizing representation theory would
probably include chapter 9.

Chapter 15 is the most technical and specialized. It is probably only of
interest to potential simple groups theorists.

Chapter 16 discusses the finite simple groups and the classification. The
latter part of section 47 builds on chapter 14, but the rest of chapter 16 is pretty
easy reading. Section 48 consists of a very brief outline of the proof of the finite
simple groups makes use of results from earlier in the book and thus motivates
those results by exhibiting applications of the results.

Each chapter begins with a short introduction describing the major results
in the chapter. Most chapters close with a few remarks. Some remarks ac-
knowledge sources for material covered in the chapter or suggest references
for further reading. Similarly, some of the remarks place certain results in con-
text and hence motivate those results. Still others warn that some section in
the chapter is technical or specialized and suggests the casual reader skip or
postpone the section.

In addition to the introduction and the remarks, there is another good way
to decide which results in a chapter are of most interest: those resuits which
bear some sort of descriptive label (e.g. Modular Property of Groups, Frattini
Argument) are often of most importance.
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