The Earth’s Mantle

The Earth’s mantle plays a crucial role in a variety of geologic processes and provides researchers important insights into the development of our planet. Interdisciplinary in scope, this book is a comprehensive overview of the composition, structure, and evolution of the mantle layer.

Written by internationally recognized scientists from the Research School of Earth Sciences at the Australian National University, and dedicated to the memory of A. E. (“Ted”) Ringwood, this book draws on perspectives from cosmochemistry, isotope geochemistry, fluid dynamics and petrology, seismology and geodynamics, and mineral and rock physics.

The book begins with a discussion of the accretion and differentiation of the Earth, including the cosmochemical initial conditions, scenarios for core segregation, constraints on the age of the Earth, the dating of core formation, and the subsequent differentiation and outgassing responsible for both the continental crust and the atmosphere. It also reviews the evolution of the Earth, emphasizing the ‘plate’ and ‘plume’ modes of mantle convection. Finally, the book describes experimental constraints on magma genesis and the structure and physical properties of the modern mantle.

Striking a balance between matters of consensus and continuing controversy, The Earth’s Mantle will provide researchers and graduate students with an authoritative review of this important part of our planet.
The Earth’s Mantle
Composition, Structure, and Evolution

Edited by
Ian Jackson
Australian National University

Editorial Advisory Board
D. H. Green, B. L. N. Kennett, K. Lambeck, I. McDougall
Contents

Chapter Outlines page vii
Contributors xvi
Dedication xviii
Preface xxi

I Accretion and Differentiation of the Earth
1. Composition of the Silicate Earth: Implications for Accretion and Core Formation
 Hugh St. C. O’Neill and Herbert Palme 3
2. Early Differentiation of the Earth: An Isotopic Perspective
 Malcolm T. McCulloch and Victoria C. Bennett 127
 Ian McDougall and Masahiko Honda 159

II Dynamics and Evolution of the Earth’s Mantle
4. Understanding Mantle Dynamics through Mathematical Models and Laboratory Experiments
 R. W. Griffiths and J. S. Turner 191
5. Plates, Plumes, Mantle Convection, and Mantle Evolution
 Geoffrey F. Davies 228
6. The Mantle’s Chemical Structure: Insights from the Melting Products of Mantle Plumes
 I. H. Campbell 259
7. Pyrolite: A Ringwood Concept and Its Current Expression
 David H. Green and Trevor J. Falloon 311
III Structure and Mechanical Behaviour of the Modern Mantle

8. Seismic Structure of the Mantle: From Subduction Zone to Craton
 B. L. N. Kennett and R. D. van der Hilst
 381

9. Composition and Temperature of the Earth’s Mantle: Seismological Models Interpreted through Experimental Studies of Earth Materials
 Ian Jackson and Sally M. Rigden
 405

10. The Viscosity of the Mantle: Evidence from Analyses of Glacial-Rebound Phenomena
 Kurt Lambeck and Paul Johnston
 461

11. Mantle Rheology: Insights from Laboratory Studies of Deformation and Phase Transition
 Martyn R. Drury and John D. Fitz Gerald
 503

Index

561
Chapter Outlines

Part I Accretion and Differentiation of the Earth

Chapter 1 Composition of the Silicate Earth: Implications for Accretion and Core Formation

1.1 Introduction 3
1.2 The Meteorite Record 9
 1.2.1. Classification of Meteorites and the Diversity in Their Chemical Compositions 9
 1.2.2. The Cosmochemical Classification of the Elements 19
1.3 Cosmochemical Components and the Composition of Chondritic Meteorites 25
 1.3.1. Refractory Elements 25
 1.3.2. Mg and Si 26
 1.3.3. Oxygen Content and Oxidation State 29
 1.3.4. Nebular Metal–Silicate Fractionation 30
 1.3.5. Volatile-Element Fractionations 33
 1.3.6. Ice-forming Elements 35
 1.3.7. Oxygen Isotopes 35
 1.3.8. Cosmochemical Constraints on the Composition of the Bulk Earth: A Summary 37
1.4 Composition of the Bulk Silicate Earth 38
 1.4.1. Compositions of the Bulk Earth and Bulk Silicate Earth 38
 1.4.2. The Nature of the Problem: Differentiation of the BSE and the Major Geochemical Reservoirs 39
 1.4.3. The Empirical Constraints on Geochemical-Reservoir Compositions 43
 1.4.4. A Procedure for Estimating the BSE Composition 48
 1.4.4.1. Group 1: Major Elements 49
 1.4.4.2. Group 2: Compatible and Moderately Incompatible Trace Elements 60
Chapter Outlines

1.4.4.3. Group 3: Chalcogenides and Chalcophile Elements 64
1.4.4.4. Group 4: Midrange Incompatible Trace Elements 65
1.4.4.5. Group 5: Very Incompatible Elements 70
1.4.5. Mantle Compositions from ‘Primitive’ Mantle Samples 71
1.4.6. Evidence against Gross Compositional Layering in the Mantle 72
1.5 The Composition of the BSE in Context: Implications for Accretion 74
1.5.1. Significance of the Mg-Si-RLE Ratio of the BSE 74
1.5.2. Depletion of Moderately and Highly Volatile Lithophile Elements 75
1.5.3. Mn/Na Systematics 78
1.5.4. Radioactive Heating and the Earth’s Heat Budget 80
1.5.5. K in the Core? 82
1.5.6. K and the Size of the Depleted-Mantle Reservoir 84
1.5.7. The Metal/Silicate Ratio in the Bulk Earth 84
1.5.8. The Pattern of Siderophile-Element Depletion in the BSE 84
1.5.9. The HSEs, Sulphur, and the Late-Veneer Hypothesis 86
1.5.10. Nature of the Late Veneer 87
1.6 Core Formation: The Geochemical Evidence 88
1.6.1. The Physical Setting 88
1.6.2. The Composition of the Earth’s Core Derived from Mass Balance Considerations 92
1.6.3. Metal/Silicate Distribution Coefficients 94
1.6.4. Sources of Metal/Silicate Partitioning Data 96
1.6.4.1. Fe-Ni-Co 97
1.6.4.2. Cr and V 98
1.6.4.3. Mo, W, and the Mo/W Ratio 98
1.6.5. Homogeneous-Accretion Models 98
1.6.5.1. Low Pressures and Moderate Temperatures (<2,000 K) 98
1.6.5.2. Very High Temperatures (>2,000 K) 99
1.6.5.3. High Pressures 101
1.6.6. Heterogeneous Accretion 103
1.7 The Timing of Core Formation 105
1.8 The Enigma of the ‘Light Component’ in the Core 108
1.8.1. The Problem from a Geochemical Perspective 108
1.8.2. A Combination of Si and O as the Light Component? 111
1.9 Summary: A Model for the Earth’s Accretion and Core Formation 113

Chapter 2 Early Differentiation of the Earth: An Isotopic Perspective

2.1 Introduction 127
2.2 Timescales for the Earth’s Accretion and Core Formation 128
2.2.1 Pb Isotopic Constraints on the Timing of Core Formation and Accretion 129
Chapter 3 Primordial Solar Noble-Gas Component in the Earth: Consequences for the Origin and Evolution of the Earth and its Atmosphere

3.1 Introduction 159
3.2 Background Information 160
3.3 Noble Gases in the Solar System 162
3.4 Noble Gases in the Mantle 167
 3.4.1. Helium 167
 3.4.2. Neon 168
 3.4.3. Argon 169
 3.4.4. Krypton 171
 3.4.5. Xenon 171
3.5 Primordial Noble-Gas Components in the Earth 173
 3.5.1. General Comments 173
 3.5.2. Helium and Neon Isotopic Compositions in Mantle-derived Samples 174
 3.5.3. Solar Hypothesis 176
 3.5.4. Solar Noble Gases in the Earth from Interplanetary Dust Particles? 177
3.6 Reconciliation of Existing Evidence and Constraints on Earth Models 178
3.7 Summary and Conclusions 182

Part II Dynamics and Evolution of the Earth’s Mantle

Chapter 4 Understanding Mantle Dynamics through Mathematical Models and Laboratory Experiments

4.1 Introduction 191
4.2 Some Basic Assumptions and Deductions 193
 4.2.1. Rheology of the Mantle 193
 4.2.2. Inevitability of Convection in the Mantle 193
 4.2.3. Boundary Layers in Convection at High Rayleigh Numbers 195
Chapter Outlines

4.3 Upwelling Thermals and Plumes 197
4.3.1. Initiation of Convection at the Base of the Mantle 197
4.3.2. Isolated Thermals 198
4.3.3. Starting Plumes 200
4.3.4. Long-Lived Plumes 204

4.4 Characteristics of Plumes in the Mantle 206
4.4.1. Plume Fluxes from Hotspot Tracks 206
4.4.2. New Plumes and Flood Basalts 208
4.4.3. Temperature of the Plume Source and Resulting Melts 210

4.5 The Upper Boundary Layer and the Descent of Cold Slabs 211
4.5.1. The Lithosphere as an Active Boundary Layer 211
4.5.2. Interaction of Subducting Slabs with a Viscosity or Density Discontinuity 212
4.5.3. Effects of Trench Migration 215

4.6 The Heterogeneity and Stirring of the Mantle 217
4.6.1. Heterogeneity and the Convective Cycle 218
4.6.2. Stirring in Unsteady Convection 220
4.6.3. Effects of Viscosity and Intrinsic Density Differences 222

4.7 Synopsis 223

Chapter 5 Plates, Plumes, Mantle Convection, and Mantle Evolution

5.1 Introduction 228
5.2 Convection 229
5.3 The Lithosphere 231
5.4 Plate-Scale Flow 233
5.5 Plumes 234

5.6 Signatures of Plate-Scale Flow 234
5.6.1. Mid-Ocean-Ridge Topography 235
5.6.2. Heat Flow through the Seafloor 236

5.7 Plume Signatures 237
5.7.1. Plume Topography 237
5.7.2. Plume Heat Flow 238

5.8 A Barrier at a Depth of 660 km? 238
5.8.1. The Topographic Constraint 239
5.8.2. Seismic Tomography 240
5.8.3. Numerical Modelling 240
5.8.4. Summary 244

5.9 Other Internal Layering and Heterogeneity 245
5.9.1. The Bottom of the Mantle (D0 Region) 245
5.9.2. Viscosity Stratification 245
5.9.3. Chemical Stratification and Heterogeneity 246

5.10 Thermal Evolution of the Mantle 248
5.11 Tectonic Evolution of the Earth 251
Chapter Outlines

Chapter 6 The Mantle’s Chemical Structure: Insights from the Melting Products of Mantle Plumes

6.1 Introduction 259
6.2 The Fluid Dynamics of Mantle Plumes 260
6.3 The Melting Products of Mantle Plumes 263
6.4 Hypotheses for the Origin of Flood Basalts 263
6.4.1. The Plume-Head Hypothesis 263
6.4.2. The Extension Hypothesis 266
6.5 An Evaluation of the Plume-Head and Extension Hypotheses 268
6.5.1. Incubation Time 268
6.5.2. Timing of Extension Relative to Volcanism 270
6.6 Refinements to the Plume-Head Hypothesis 272
6.6.1. The Case for Eclogite in OIB-type Mantle 274
6.6.2. The Role of Eclogite in Lowering the Melting Temperature of Plumes 278
6.6.3. The Thermal Structure of Plume Heads 282
6.6.4. Secondary Instability 283
6.7 The Chemistry of the Boundary-Layer Source for Plumes 284
6.7.1. How Plumes Sample a Boundary Layer 284
6.7.2. Plume Tails 285
6.7.3. Identifying the Melting Products of Plume Tails 287
6.7.4. Classification of Mantle Source Regions 287
6.7.5. The Geochemistry of Picrites and Komatiites through Time 290
6.8 The Chemistry of the Lower Mantle 292
6.8.1. Melting of Plume Heads 292
6.8.2. The Nature of the Lower Mantle 296
6.8.3. A Geochemical Test for the Source of Mantle Plumes 299
6.9 A Model for the Evolving Chemical Structure of the Mantle 300
6.10 Discussion 301
6.10.1. The OIB Convective Cycle 301
6.10.2. The Depleted-Mantle Convective Cycle 302
6.11 Conclusion 305

Chapter 7 Pyrolite: A Ringwood Concept and Its Current Expression

7.1 Introduction 311
7.2 The Pyrolite Concept 312
7.2.1. The Historical Development of the Pyrolite Concept 312
7.2.2. The Calculation of Distinctive Pyrolite Compositions 316
7.3 Experimental Studies of Pyrolite Compositions 321
7.3.1. Experimental Methodology 321
7.3.2. Sub-solidus Mineralogy of Pyrolite as a Function of $P-T$ to a Depth of 150 km 324
Chapter Outlines

7.4 Pyrolite Solidi and Melting Relationships 325
 7.4.1. Pyrolite: (C + H)-absent 325
 7.4.2. Melting of Pyrolite in the Presence of (C + H + O) Fluids 328
 7.4.3. Pyrolite + H2O 331
 7.4.3.1. Water-saturated Experiments 331
 7.4.3.2. Water-undersaturated Melting or Dehydration Melting 333
 7.4.4. Pyrolite + CO2 335
 7.4.5. Pyrolite + (CO2 + H2O) 335
 7.4.5.1. Fluid-saturated Experiments 335
 7.4.5.2. Fluid-undersaturated Conditions 339
 7.4.6. Pyrolite + (C + H + O) Fluids at Low Oxygen Fugacities 340

7.5 The Pyrolite Concept and Models of Magma Genesis 341
 7.5.1. General Features of the Current Expression of the Pyrolite Concept 341
 7.5.1.1. The Petrological Lithosphere and the Incipient-Melting Regime 341
 7.5.1.2. The Nature of Mantle Upwelling and Melt Retention 347
 7.5.1.3. Consequences of High Melt Retention and Dynamic Mantle Upwelling 352
 7.5.1.4. Pyrolite Model and Mantle Heterogeneity 354
 7.5.2. Magma Genesis in the Pyrolite Model 355
 7.5.2.1. MORB Magmatism 355
 7.5.2.2. Intraplate Magmatism 358
 7.5.2.3. Plume Magmatism 360
 7.5.2.4. Subduction-Zone Magmatism 363

7.6 Conclusions 369

Part III Structure and Mechanical Behaviour of the Modern Mantle

Chapter 8 Seismic Structure of the Mantle: From Subduction Zone to Craton

3.1 Introduction 381
3.2 The Seismic Structure of the Mantle 382
3.3 The Dominant Radial Structure in the Mantle 383
 8.3.1. The Upper Mantle and Transition Zone 384
 8.3.2. The Lower Mantle 386
3.4 Detailed Three-Dimensional Structure in the Mantle 387
 8.4.1. Subduction Zones and Their Environment 388
 8.4.2. Structure beneath Continental Regions 394
 8.4.2.1. Body-Wave Studies 394
 8.4.2.2. Surface-Wave Imagery 395
3.5 Discussion 400
Chapter Outlines

Chapter 9 Composition and Temperature of the Earth’s Mantle: Seismological Models Interpreted through Experimental Studies of Earth Materials

9.1 Introduction 405
9.2 Improved Resolution of the Seismic Structure of the Mantle 406
 9.2.1. Generalities 406
 9.2.2. Radial Structure of the Transition Zone 407
 9.2.3. Lateral Heterogeneity 408
 9.2.4. Attenuation 410
9.3 Mineralogy of the Deep Mantle 410
 9.3.1. Composition and Temperature of the Upper Mantle 410
 9.3.2. High-Pressure Phase Equilibria 412
 9.3.3. Calorimetry 413
 9.3.4. Transformational and Chemical Buoyancies of Subducting Slabs 414
 9.3.5. Transition-Zone Adiabats 416
 9.3.6. Further Pressure-induced Phase Transformations in the Deep Mantle? 416
9.4 Elasticity and Equations-of-State for Mantle Minerals and Rocks 417
 9.4.1. Experimental Approaches 417
 9.4.2. Equations-of-State 420
 9.4.2.1. Isothermal Compression 420
 9.4.2.2. Thermal Pressure 421
 9.4.2.3. Hot Finite-Strain Isentropes 422
9.5 Variability of Seismic Wave Speeds and Attenuation in the Upper Mantle 422
 9.5.1. Heterogeneity: Thermal versus Compositional 422
 9.5.2. Solid-State Viscoelastic Relaxation 424
9.6 Discontinuities, Velocity Gradients, and the Composition of the Transition Zone 427
 9.6.1. Modelling Strategy 427
 9.6.2. Calculated versus ‘Observed’ Bulk Sound Speeds 428
 9.6.3. Uncertainties in the Extrapolation of Bulk Sound Speeds 431
 9.6.4. Compressional- and Shear-Wave Speeds 432
 9.6.5. Sharpness of the Discontinuities 433
9.7 Composition and Temperature of the Lower Mantle 434
 9.7.1. Uniformity and Adiabaticity 434
 9.7.2. Adiabatic Decompression of the Lower Mantle 435
 9.7.3. Decompressed Lower Mantle Interpreted as a Perovskite and Magnesiowüstite Mixture 437
 9.7.4. Projection of Laboratory Data to Mantle P–T Conditions 439
Chapter Outlines

9.7.5. Comparison with Previous Studies 443
9.7.6. Influence of the Neglected CaSiO$_3$ and Al$_2$O$_3$ Components 443
9.7.7. The Shear Modulus of a Perovskite-rich Lower Mantle 445
9.8 Summary 447
9.9 Future Prospects 449
9.9.1. Temperature Dependence of the Elasticity of Transition-Zone Minerals 449
9.9.2. Perovskite Elasticity 449
9.9.3. Shortening the Extrapolation in Pressure, Temperature, and Frequency 450
9.9.4. Incorporation of Anisotropy into Seismic Tomography and Improved Resolution of Transition-Zone Structure 450
9.9.5. Phase Equilibria, Crystal Chemistry, and Calorimetry 451

Chapter 10 The Viscosity of the Mantle from Analyses of Glacial-Rebound Phenomena

10.1 Introduction 461
10.2 Surface Loading of a Spherical Earth 465
10.2.1. Deformation of Spherical-Earth Models by Surface Loads 465
10.2.1.1. Governing Equations 465
10.2.1.2. Constitutive Law 466
10.2.1.3. Boundary Conditions 467
10.2.1.4. Formulation in Spherical Co-ordinates 467
10.2.1.5. Elastic Solutions 469
10.2.1.6. Viscoelastic Solutions: Laplace-Transform Methods 469
10.2.1.7. Inversion of the Laplace Transform 470
10.2.2. The Sea-Level Equation 471
10.2.2.1. Description of the Load 471
10.2.2.2. Components of Sea-Level Change 472
10.2.3. Changes in the Long-Wavelength Component of the Gravitational Potential 473
10.3 Sea-Level Changes of Glacio-hydro-isostatic Origin 474
10.3.1. Spatial Variability of Sea-Level Change 474
10.3.2. Requirements for Solution of the Glacial-Rebound Problem and the Separation of Parameters 478
10.3.3. An Example of Analysis of Sea-Level Change 483
10.4 Changes in the Earth’s Gravitational Potential 489
10.5 Conclusions 496

Chapter 11 Mantle Rheology: Insights from Laboratory Studies of Deformation and Phase Transition

11.1 General Introduction to Deformation of Crystalline Solids 503
Chapter Outlines

11.1. Macroscopic Description of Deformation: Environmental Variables 504
11.1.2. Microscopic Description of Deformation: Defects and Mechanisms 505
11.1.3. Deformation-Mechanism Maps 507
11.1.4. Transformations and Rheology 508

11.2 Deformation of Earth Materials 510

11.3 The Upper Mantle 513
11.3.1. Deformation Experiments on Olivine 513
11.3.2. Influence of Pressure on Olivine Deformation 515
11.3.3. Influence of Water on Olivine Deformation 516
11.3.4. Influence of Melts on Olivine Deformation 517
11.3.5. Olivine Microstructures in Experimental Studies 518
11.3.5.1. Grain Size 518
11.3.5.2. Melt Distributions 519
11.3.6. Crystallographic Preferred Orientation 520
11.3.7. Flow Laws for Olivine Polycrystals 521
11.3.8. Deformation Mechanisms and Rheology of the Upper Mantle 522

11.4 The Deep Mantle 528
11.4.1. Direct Information on Yield Strength and Relative Creep Resistance 528
11.4.2. Rheological Data for Deep-Mantle Minerals and Their Analogues 529
11.4.2.1. Spinel 529
11.4.2.2. Garnet 529
11.4.2.3. Perovskite 530
11.4.2.4. Magnesiowüstite 532
11.4.3. Role of Water-related Defects 533
11.4.4. Role of Lithologic Heterogeneity and Polyphase Assemblages 533
11.4.5. Deformation Mechanisms and Rheology in the Deep Mantle 534

11.5 Transformations in the Mantle 536
11.5.1. Phase Transitions in (Mg, Fe)2SiO4 in the Mantle 536
11.5.2. Transformations of M(Si, Al)O3 in the Mantle 542
11.5.3. Transformational Faulting 543

11.6 Future Developments in Research 545
11.7 Conclusion 549
Contributors

Victoria C. Bennett
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

I. H. Campbell
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Geoffrey F. Davies
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Martyn R. Drury
Department of Geology
Geodynamics Research Institute
Utrecht University
P. O. Box 80.021
Utrecht 3508TA
The Netherlands

Trevor J. Falloon
Geology Department
University of Tasmania
GPO Box 252C
Hobart, Tasmania 7001
Australia

John D. Fitzgerald
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

David H. Green
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

R. W. Griffiths
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Masahiko Honda
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Ian Jackson
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

xvi
Paul Johnston
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

B. L. N. Kennett
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Kurt Lambeck
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Malcolm T. McCulloch
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Ian McDougall
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Hugh St. C. O’Neill
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

Herbert Palme
Mineralogisch-Petrographisches Institut
Universität zu Köln
Zulpicher Strasse 49b
50674 Köln
Germany

Sally M. Rigden
Department of Geological Sciences
Queen’s University
Kingston, Ontario
Canada K7L 3N6

J. S. Turner
Research School of Earth Sciences
Australian National University
Canberra ACT, 0200
Australia

R. D. van der Hilst
Department of Earth, Atmospheric & Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
USA
Dedication

Questions concerning the origin and evolution of the Earth have inevitably been of special significance to our species and accordingly have occupied the minds of many of our most influential thinkers. During the past four decades, phenomenal progress has been made towards answers to these fundamental questions, and the late Professor A. E. (“Ted”) Ringwood was consistently at the forefront of this research. He participated in, and capitalized upon, the progressive development during this period of equipment now capable of reproducing in the laboratory the extreme conditions of pressure and temperature that prevail within the Earth’s interior. He boldly exploited the opportunities offered by these technological developments to explore key aspects of the chemical behaviour of geological materials. Perhaps foremost amongst his achievements was the demonstration of the occurrence and importance of pressure-induced phase transformations. He combined such findings with insights emerging from increasingly detailed seismological probing of the internal structure of the Earth, as well as with the perspective offered by exploration of the solar system, in imaginative and compelling new models to describe the chemical composition, internal structure, origin, and evolution of our planet and its Moon. Preparation of a volume on The Earth’s Mantle: Structure, Composition, and Evolution, written by his colleagues at the Australian National University (ANU), therefore seemed a fitting tribute to this brilliant earth scientist who will be long remembered for his many seminal contributions in this field of intellectual endeavour.

Ted Ringwood was born in Melbourne, Australia, in 1930 and was educated at the Geelong Grammar School and the University of Melbourne, graduating with his Ph.D. in 1956. He was amongst the first generation of distinguished Australian scientists to be educated to Ph.D. level within Australia. After a postdoctoral fellowship with Francis Birch at Harvard University, Ted joined the Department of Geophysics at the ANU as a Senior Research Fellow in 1959. His rapidly growing stature was recognized through his appointment in 1963 as Personal Professor, and in 1967 as Professor of Geochemistry, a position he filled with distinction until his premature death in 1993.
Dedication

During the late 1960s and early 1970s, with the support of the late Professor J. C. Jaeger, then head of the Department of Geophysics and Geochemistry of the Research School of Physical Sciences at ANU, Ted Ringwood argued the ultimately successful case for the formation of a new Research School of Earth Sciences (RSES). The new school’s mandate was to expand into carefully selected new areas such as geophysical fluid dynamics, ore genesis, and environmental geochemistry, all of which are now integral parts of the school’s research activity. Ringwood also recognized and promoted opportunities for the enhancement of existing research activities, notably in mineral/rock physics and noble-gas geochemistry. Jaeger and Ringwood were responsible for the inspired appointment in 1973 of Professor A. L. Hales as foundation director of RSES. Ringwood himself later served a term (1978–83) as director of the school.

There was a close and instructive symbiosis between Ringwood’s research into the chemical composition, origin, and evolution of the Earth and Moon and his applied-research interests. The same crystal-chemical principles and experimental methods that elucidate the high-pressure behaviour of silicate materials in the Earth’s deep interior provided the basis for the Synroc strategy for safe immobilization of high-level nuclear wastes in a durable ceramic wasteform. He also patented procedures for the fabrication of new cutting-tool materials in the form of diamond- and boron-nitride-based composites.

The impact of Ringwood’s research, as reported in more than 300 papers, two books, and several patents, has been recognized through frequent citation and many awards, including Fellowship of the Australian Academy of Science (1966), the American Geophysical Union (AGU) (1969), and the Royal Society of London (1972). He was a recipient of the Bowie Medal of the AGU (1974), the Day Medal of the Geological Society of America (1974), the Holmes Medal of the European Union of Geosciences (1985), the Wollaston Medal of the Geological Society of London (1988), the Feltrinelli Award of the Italian National Academy (1991), and the Hess Medal of the AGU (1993), amongst others.

Above all, Ted Ringwood will deservedly be remembered as a bold, original, and lateral thinker and an excellent communicator. He was a powerful, often irresistible, advocate for the causes to which he was committed, and a feisty debater. He was supportive of and loyal to those who worked closely with him, impatient with mediocrity, and intensely proud of his country and the life-style that it offers. It is with a real sense of loss that his colleagues in the Research School of Earth Sciences at the Australian National University dedicate this volume to his memory.
A. E. ("Ted") Ringwood (1930–93)
Preface

It has been our goal in assembling this volume to produce an overview of the composition, structure, and evolution of the Earth’s mantle that will be authoritative, up-to-date, and forward-looking, yet thoroughly readable. It is our hope that it will prove useful to all those interested in the Earth’s mantle and its workings, from beginning graduate students to experienced researchers. The volume consists of 11 chapters contributed by the staff of the Research School of Earth Sciences at the Australian National University and their collaborators, arranged into three parts, as follows:

Accretion and Differentiation of the Earth
Dynamics and Evolution of the Earth’s Mantle
Structure and Mechanical Behaviour of the Modern Mantle

Recent progress towards consensus on many of the major issues surrounding the composition, structure, and evolution of the Earth’s mantle makes this volume particularly timely. This Preface is intended to provide the reader a brief connected account of the topics addressed in this volume, not necessarily in their order of appearance, and an indication of the general philosophy adopted in assembling the material.

It is now widely accepted that the planet Earth was accreted from a hierarchy of planetesimals that formed in our solar nebula over a range of radial distances from the Sun. Through studies of chondritic meteorites, which display uniform relative abundances of refractory elements and systematic depletions of volatile species, the bulk composition of the silicate Earth can be constrained, albeit within significant residual uncertainties, especially in the important Mg/Si/Al ratios. The abundances of the siderophile elements in the Earth’s mantle differ markedly from those that would be expected on the basis of the metal–silicate distribution coefficients measured at low pressure. Thermodynamic equilibrium between the core and the mantle in a homogeneously accreted Earth would therefore be excluded, unless
the distribution coefficients should prove to have a particular pressure dependence. It is suggested in this volume that it is more likely that the Earth was formed by heterogeneous accretion. In this scenario, core formation began with the sequestration into the core of almost the entire siderophile-element inventory of the early, volumetrically dominant, highly reduced, strongly devolatilized component of the proto-Earth. This was followed by incorporation into the core of siderophile elements derived from a subsidiary, more oxidized, volatile-rich component. Following the completion of core formation, at about 4.5 billion years ago (4.5 × 10^9 years ago, or 4.5 Ga), a late-stage ‘veneer’ of chondritic material was added to the Earth’s mantle.

Isotopic constraints indicate that another 200 million years probably elapsed before it became possible to preserve a continental crust enriched in light rare-earth elements (LREEs). It seems that part of the Earth’s mantle was at least as LREE-depleted in the early Archaean (before 3.8 Ga) as are the source regions for modern mid-ocean-ridge basalts (MORBs) and that the continental crust probably has grown progressively, albeit episodically, through geological time, with recycling of continental crust back into the mantle playing a subsidiary role. Studies of the crust/mantle distribution of incompatible trace elements and of the Earth’s inventory of radiogenic argon (40Ar) suggest that about half of the Earth’s mantle has been stripped of its incompatible and volatile elements. Studies of noble-gas isotopes (particularly Ne, Ar, and 129Xe) indicate that much of the degassing to form the atmosphere must have occurred within the first few hundred million years of the Earth’s history. A striking contrast between the correlated He and Ne isotopic ratios in MORB and ocean-island-basalt (OIB) source regions provides strong evidence of continuing outgassing from the OIB source region of a primordial (solar) noble-gas component.

Convection within the Earth’s present-day mantle is also becoming increasingly well understood as the superposition of two main modes. The dominant plate-scale flow is driven mainly by the gravitational instability of the cold, stiff upper thermal boundary layer or lithosphere. Plumes represent the second, subsidiary mode of mantle convection, arising from instabilities in a bottom-heated lower thermal boundary layer. The dynamics of both the plate-scale and plume-related flows are becoming increasingly accessible to study through a combination of laboratory experiments and numerical modelling, although complete three-dimensional calculations, with realistic Rayleigh numbers and appropriate temperature- and depth-dependent rheologies that incorporate the complicating effects of phase transformations, melting, and chemical differentiation, remain to be performed.

Considerations of the relative magnitudes of mid-ocean-ridge topography and hotspot-swell topography suggest that plumes originate from the core–mantle boundary (CMB), rather than from another thermal boundary layer at the base of an upper mantle strongly heated from below. It has been argued that plume-head diameters comparable to those of continental flood-basalt provinces provide additional evidence of a CMB origin for mantle plumes. However, recent modelling
Preface

indicates that the highest temperatures may be strongly localized in the near-axial region of the uppermost layer of the plume head. Under these circumstances, an explanation of flood-basalt eruptions in terms of laterally extensive partial melting of plume heads seems to require a major-element chemistry for plumes that is substantially enriched relative to pyrolite — consistent with previous inferences from enriched trace-element signatures. Alternatively, a mechanism would be required that would allow ascent of plume-head material to shallower levels, especially within the continental lithosphere.

Increasingly detailed knowledge of the relevant phase equilibria and of the elastic properties of mantle minerals suggests that phase transformations in an isochemical (pyrolite) model mantle provide an adequate explanation for the seismologically well constrained radial structure, within the residual uncertainties in the temperature and pressure dependence of elastic (especially shear) moduli. Strong compositional layering, with its implication of an additional pair of thermal boundary layers in the mid-mantle, separating convection above and below, not only is not required but also would be difficult to reconcile with the radial velocity models. The superimposed large-scale lateral variability in wave speeds, as revealed by seismic tomography, is most pronounced in the outer few hundred kilometres of the mantle, where it is closely correlated with surface tectonics and probably is primarily of thermal origin. On smaller scales, compositional heterogeneity and anisotropy probably are more important. Tomographic studies suggest that most subducting lithospheric plates penetrate into the lower mantle, but not without significant distortion and deflection within the transition zone, plausibly explained by interactions with the viscosity structure of the mantle and by the effects of chemical layering within the down-going slab and the influence of trench migration.

The likelihood that the Clapeyron slopes for the phase transformations in the normative pyroxene-garnet component of the mantle are comparable in magnitude, but of opposite sign, to those for the relatively well understood olivine \(\rightarrow \) wadsleyite and ringwoodite \(\rightarrow \) perovskite + magnesiowüstitite transformations suggests that transformational buoyancy probably does not strongly perturb the dominantly thermal convection of the mantle. Chemical buoyancy associated with the basaltic layer of subducting oceanic lithosphere and any such material ascending in plumes might be at least equally as important as transformational buoyancy; its effect would be to resist the descent of slabs, but to promote the ascent of plumes.

According to recent analyses of sea-level changes consequent upon deglaciation, the effective viscosity of the mantle increases about 30-fold with increasing depth, from a minimum value of about \(3 \times 10^{20} \) Pa \(\cdot \) s in the upper mantle to \(10^{22} \) Pa \(\cdot \) s in the deep mantle. The rheology of the dominant upper-mantle mineral olivine is becoming increasingly well understood through detailed laboratory experimentation. Of particular interest is the possibility of a transition from dislocation creep to diffusion creep in lithospheric shear zones and deep in the upper mantle, and there is evidence for significant weakening produced by small amounts of melt or water. However, the weakening effects of small degrees of partial melting might
Preface

actually be more than offset by the hardening effects induced by strong partitioning of dissolved water-related defect species from olivine into the melt. There are also preliminary indications of the relative strengths of the key high-pressure minerals of the transition zone and lower mantle, and there have been some intriguing insights into transformation mechanisms and their consequences for the origin of deep-focus earthquakes. Microphysical rheological models for the deep mantle, based on extrapolation of experimentally determined flow laws for analogue materials, are most readily reconciled with those derived from analyses of glacial-rebound phenomena within a whole-mantle convection scenario in which there are no mid-mantle thermal boundary layers.

All of these inferences are consistent with a model of whole-mantle convection in which old cold slabs descend well into the lower mantle, though at speeds substantially less than those for the upper mantle, because of the higher viscosity. In this scenario, plumes rise from the thermal boundary layer at the base of the mantle, with narrow conduits or tails feeding large mushroom-shaped heads that grow by entrainment of surrounding mantle. The small relative motions of ‘hotspots’ require that their sources be located within a region of relatively high viscosity, most plausibly the very deep mantle. The inferred substantial increase in viscosity with depth in the Earth’s mantle results in much longer circulation times, and less effective mixing, for material transported along streamlines penetrating deep into the lower mantle. Long residence times and ineffective mixing are necessary to explain the survival (on timescales of ~2 billion years) of chemical and isotopic heterogeneity, including the observation that the degassing of primordial He and Ne and of radiogenic 40Ar is far from complete.

This unifying view of the composition, structure, and dynamics of the modern mantle is a persistent theme throughout much of this volume. However, there remain substantial areas of uncertainty and controversy, which are also addressed. Some of the areas of residual uncertainty have already been mentioned in the preceding summary. One that is central to the admissibility or exclusion of the model of whole-mantle convection is the efficiency of mixing. The noble-gas data mentioned earlier and the evidence for the extraction into the continental crust of only about 50% of the Earth’s budget of incompatible elements require the presence of a reservoir (or regions having a significant volume) that is essentially inaccessible to the processes of melt extraction and outgassing on timescales comparable to the age of the Earth. Strictly layered convection, in which the circulation patterns of the upper mantle and lower mantle would be separated by a pair of thermal boundary layers impermeable to matter, but conducive of heat, obviously would provide an effective mechanism for the chemical and isotopic isolation of the lower mantle. The upper mantle, with its substantially lower average viscosity and its direct participation in the processes of mid-ocean-ridge volcanism, would be both more homogeneous and much more depleted. However, strict layering is difficult to reconcile with the wide range of geophysical evidence summarized earlier. Nevertheless, it remains to be
Preface

Demonstrated conclusively that whole-mantle convection in a mantle with depth-dependent viscosity is compatible with the survival of chemically and isotopically distinct materials for timescales on the order of 2 billion years.

Another issue of central importance for an understanding of the evolution of the Earth is the possibility that even if whole-mantle convection is currently operative, it may not always have been so. There may have been episodic layering of the mantle in the past, as well as involvement of the cool upper boundary layer of the early Earth in processes distinctly different from those of modern plate tectonics. The proportion of the basaltic layer within the differentiated lithosphere, as well as the equilibrium and kinetic controls on its successive transformations to denser assemblages, may be very influential in deciding the fate of oceanic lithosphere. These factors might be important in determining whether all or part of the lithosphere can sink into the mantle, how and where any such subduction is initiated, and whether or not subduction can be sustained through the transition zone and into the lower mantle.

Also presented here are the very different implications of two alternative views of magma genesis in mid-ocean-ridge, ocean-island, and flood-basalt settings. The advocates of one model consider that the parental magmas for MORBs are olivine tholeiites derived at relatively low pressure from passive upwelling and melt pooling along a \(\sim 1,300^\circ C \) adiabat. The common presence of picrites in ocean-island settings could then be interpreted as evidence for the substantially higher potential temperatures expected of deep-seated plumes. The alternative view, that MORBs are generally derived from picritic precursors, is also argued in some detail in this volume. Under these circumstances, the potential temperature for the typical upper mantle would be much higher (\(\sim 1,450^\circ C \)), indistinguishable from that for hotspot magmatism. Hotspots would be attributed not to higher temperatures, but rather to melting that was fluxed by locally higher concentrations of volatiles, derived ultimately from old subducted lithosphere deep in the upper mantle.

The mixture of emerging consensus and continuing vigorous debate, represented by the contributions that follow, seems appropriate for a volume in honour of Ted Ringwood. Moreover, this blend faithfully represents a living science in which the prevailing hypotheses are subject to continual testing against new observations, followed by revision or replacement as appropriate.

Finally, I thank the following individuals outside the authorship group for their thoughtful reviews of the various chapters: Bill Compston, Steve Eggins, Oli Gudmundsson, Anton Hales, Sue Kesson, Mervyn Paterson, Malcolm Sambridge, John Stone, Geoff Taylor, Sharon Webb, and Greg Yaxley. The editorial assistance of Kay Provins, and the enthusiastic involvement of Catherine Flack from CUP, are greatly appreciated.

Ian Jackson
Canberra