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1 An introduction to liquid matter

One of the most remarkable observations in physical sciences or, for that matter,
of everyday life, is that most substances, with a well defined chemical com-
position, can exist in one of several states, exhibiting very different physical
properties on the macroscopic scale; moreover one can transform the substance
from one state (or phase) to another, simply by varying thermodynamic condi-
tions, like temperature or pressure. In other words, a collection of N molecules,
where N is typically of the order of Avogadro’s number NA, will spontaneously
assemble into macroscopic states of different symmetry and physical behaviour,
depending on a limited number of thermodynamic parameters. The most com-
mon states are either solid or fluid in character, and are characterized by qual-
itatively different responses to an applied stress. At ambient temperatures, the
solid states of matter are generally associated with the mineral world, while
‘soft’ matter, and in particular the liquid state, are more intimately related to
life sciences. In fact it is generally accepted that life took its origin in the pri-
mordial oceans, thus underlining the importance of a full quantitative under-
standing of liquids. However, even for the simplest substances, there are at least
two different fluid states, namely a low density ‘volatile’ gas (or vapour) phase,
which condenses into a liquid phase of much higher density upon compres-
sion or cooling. For more complex substances, generally made up of highly
anisotropic molecules or of flexible macromolecules, the liquid state itself ex-
hibits a rich variety of structures and phases, often referred to as ‘complex
fluids’.

The present book deals with some of the more generic aspects and concepts of
the liquid state of matter. Rather than attempting a systematic description of the
many classes of liquids, this monograph intends to illustrate generic statistical
concepts and theoretical tools on a number of examples, covering a wide range of
structural, dynamic and phase behaviour. This introductory chapter offers general
backgroundmaterial and basic facts of the liquid state. It is intended to provide the
indispensable link between subsequent chapters devoted to more specific aspects
and examples.
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2 An introduction to liquid matter

1.1 Fluid states of simple substances

Consider a sample of a simple, pure substance containing a large number (N �
NA = 6.02 × 1023) of identical molecules, say water or methane. At sufficiently
high temperature T , and for not too high pressures P , the substance will be in its
vapour or gas phase.Under ambient pressure, gases constitute a lowdensity phase,
where molecules are far apart, and undergo only occasional binary collisions, a
regime well described by the ideal gas model and the Boltzmann kinetic equation.
Molecular configurations are highly disordered, as signalled by a large entropy
per molecule, S/N . All physical properties of this high temperature phase are
invariant under arbitrary rotations and translations, i.e. the gas phase has full
rotational and translational symmetry.

When the temperature is lowered, the vapour will generally condense into
droplets of a much denser liquid phase, which has a greatly reduced entropy per
molecule, indicating some degree of molecular order. In fact, if v = V/N is the
mean volume per molecule in the liquid, ρ = 1/v is the number density and v0

is the volume of one molecule, then the packing fraction

φ = v0

v
= ρv0 (1.1)

is typically of the order of 0.3–0.5 in most liquids. At such high densities neigh-
bouring molecules almost touch, and form well defined shells of nearest neigh-
bours around any given molecule, characteristic of short-range order. This order
is, however, lost beyond a few intermolecular distances, so that liquids still pre-
serve, in general, full rotational and translational symmetry, both locally and on
macroscopic scales.

Upon further gradual cooling, the liquid samples will generally freeze into a
crystalline solid phase, which is characterized by the appearance of long-range
order, embodied in a periodic crystal lattice. The regularly spaced crystal planes
will Bragg reflect X-rays, and the observed diffraction patterns obtained upon
varying the crystal orientation in the X-ray beam allow an unambiguous char-
acterization of the crystal structure. The appearance of long-range order leads
to a reduction in symmetry: physical properties of the crystalline solid are now
invariant only under a discrete set of reflections, rotations and translations con-
stituting one of 230 possible space groups. The full rotational and translational
symmetry of the fluid phases is said to be broken at the freezing transition to the
low temperature crystal phase.

The scenario just described, which is generic for simple molecular systems,
is summarized in the phase diagrams of figure 1.1, which represent three cuts
through the surfaces in (P, T, ρ) space, bounding the gas, liquid and solid phases.
It should be noted that the liquid state only occupies a relatively small portion in
the three orthogonal planes, over a range of temperatures limited to Tt ≤ T ≤ Tc,
where Tt denotes the triple point temperature, where all three phases coexist,
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Figure 1.1. Schematic phase diagrams of a simple one-component substance, in the
temperature (T)–pressure (P), density (ρ)–T and ρ–P planes. The shaded areas in
the middle and right panels indicate regions of two-phase coexistence. The bold line
in the right panel is an isotherm while t and c show the locations of the triple and
critical points.

and Tc the critical point temperature, above which the liquid and the gas merge
into a single fluid phase. The shaded areas in the (ρ, T ) and (ρ, P) diagrams in
figure 1.1 are two-phase regions: the corresponding thermodynamic states are ei-
ther metastable or unstable, and will eventually lead to a separation into two coex-
isting stable phases. Examples of such states are superheated solids, supercooled
liquids or supersaturated vapours. Depending on the degree of supersaturation,
the latter will either form liquid droplets by a process of nucleation and growth
(to be discussed in section 10.6), or undergo rapid spinodal decomposition (con-
sidered in section 9.3). Glasses constitute another particularly important class of
metastable materials, often obtained by rapid cooling (or ‘quenching’) of a liquid
well below its freezing temperature. Most substances form glasses only under
rather extreme cooling conditions, but silicate melts, for instance, are easy and
excellent glass-formers, as may be readily observed in the glass-blower’s work-
shop. Glasses are amorphous (‘structureless’) solids, which maintain the disor-
dered structure and rotational/translational symmetry of liquids on the molecular
scale, while exhibiting the rigidity (or resistance to shear deformation) of crys-
talline solids at the macroscopic level, although glasses may eventually flow over
extremely long time scales 1.

The distinction between the spatial arrangements ofmolecules in gases, liquids
and solids is illustrated very schematically in figure 1.2, which shows ‘snapshots’
of typical configurations of disc-like molecules in two-dimensional counterparts
of the three phases. A quantitative measure of the local order on the molecular

1 This slow flowing is often illustrated by medieval stained-glass windows, which should tend to be

thicker at the bottom. Whether this is actually the case remains however a controversial question, see

the discussion by E.D. Zanotto, Am. J. Phys. 66, 392 (1998).
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Figure 1.2. Typical atomic
configurations in a gas
(left), liquid (middle) and
crystalline solid (right).
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Figure 1.3. Typical pair distribution functions for (a) a gas, (b) a liquid and (c) a solid.
These functions have been generated using a molecular dynamics simulation (see
section 1.6) of atoms interacting through a Lennard-Jones potential (equation (1.9),
figure 1.4). The Boltzmann factor for the Lennard-Jones potential has been
superimposed on the gas phase distribution function (dashed curve). The
thermodynamic states are: T = 2ε/kB, ρσ 3 = 0.05 (gas), T = ε/kB, ρσ 3 = 0.8 (liquid),
T = 0.2ε/kB, ρσ 3 = 0.9 (solid).

scale is provided by the radial (or pair) distribution function g(r ), which
characterizes the modulation of the local density ρ(r ) around a given molecule,
as a function of the distance r from that molecule.

In the limit of an ideal gas of non-interacting (point) molecules, the local
density, as seen from any one fixed molecule, is everywhere equal to its average ρ.
In reality, molecules interact via a pair potential v, which, for spherical molecules,
will only depend on the centre-to-centre distance r ; even in a dilute gas, the local
density around a fixed molecule will rapidly vanish for r less than the molecular
diameter, and will be modulated by the Boltzmann factor exp(−βv(r )), where
β = 1/kBT . In other words

ρ(r ) ≡ ρg(r ) = ρ exp (−βv(r )) (1.2)

In the liquid, however, the positions of neighbouring molecules are strongly
correlated, leading to a modulation of ρ(r ) extending over a few molecular di-
ameters, so that the radial distribution would behave as shown schematically in
figure 1.3(b); the maxima may be associated with shells of neighbours, but the
oscillations are rapidly damped, showing the gradual smearing out of short-range
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order; for r � σ , g(r ) goes to one, i.e. the local density around a fixed molecule
tends rapidly to its macroscopic value ρ characteristic of a uniform (translation-
ally invariant) fluid.

At the transition to the crystal phase the short-range order of the liquid grows
spontaneously into full long-range order, signalled bywell defined intermolecular
distances and coordination numbers extending to macroscopic scales, which are
characteristic of the periodic pattern of the crystal lattice. At zero temperature,
this would reduce g(r ) to a sequence of δ-functions located at distances r dictated
by the lattice geometry; at finite temperatures the δ-peaks are broadened by the
thermal vibrations ofmolecules around their equilibrium lattice sites Ri , as shown
in figure 1.3(c). Note that since the crystal is anisotropic, its radial distribution
function involves an average over all orientations of the lattice. An amorphous
solid, however, is again isotropic, and its pair distribution function is generally
difficult to distinguish from that of a liquid.

The two key macroscopic properties which distinguish liquids from their
vapour, on the one hand, and fluids in general from solids, on the other hand, are
cohesion and fluidity. Cohesion, shared by liquids and solids, is a consequence
of intermolecular attractions, which lead to a significant lowering of the inter-
nal energy due to molecular clustering, compared to the gas phase; in the latter
the thermal kinetic energy of the molecules is sufficient to overcome the short-
range attraction, so that the molecules in the gas tend to occupy all the available
volume. The fluidity of liquids and gases distinguishes them from the rigidity of
crystalline solids. Consider the response to an applied stress (or force per unit
area) characterizedby the components of amacroscopic stress tensor. In the elastic
regime of solids, corresponding to small strains or deformations, the components
σαβ of the stress tensor are proportional to those of the dimensionless symmetric
strain tensor u, which measures the gradient of the displacement field u(r)

uαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
α, β = x, y, z (1.3)

The coefficients of the linear relation between the components of the tensors σ

and u are the components of a fourth rank tensor of elastic constants. The number
of independent elastic constants is strongly reduced by symmetry considerations.
In particular, for an isotropic solid, like a glass or a polycrystalline sample, the
stress–strain relation reduces to

σαβ = Bδαβuζ ζ + 2G

(
uαβ − 1

3
δαβuζ ζ

)
(1.4)

where B and G are the bulk and shear moduli, δ refers to the usual Kronecker
symbol, and the Einstein convention of summation over repeated indices has
been adopted. In particular, for a shear stress, the relation reads

σxy = 2Guxy (1.5)
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In fluids, however, the application of an external stress will result in flow
characterized by a fluid velocity field v(r), rather than by an elastic displacement
field u(r). The phenomenological linear relationship valid for the most common
Newtonian fluids is now between the stress tensor and the rate of strain
tensor

γαβ = 1

2

(
∂vα

∂xβ

+ ∂vβ

∂xα

)
(1.6)

Since the velocity field is the time derivative of the displacement field, γαβ has
the dimension of inverse time or frequency. In the case of a shear stress, the
elastic relation (1.5) is now replaced by

σxy = 2ηγxy (1.7)

where η is the shear viscosity, which characterizes the internal friction of
the fluid. In contrast to the elastic response of a solid, the viscous flow in
a liquid dissipates energy. In water, at room temperature, η = 10−2 poise
(1 poise = 0.1 kg/m s). On the molecular scale, the distinction between the
rigidity of solids and the fluidity of liquids reflects itself in molecular diffusion.
While in a solid, molecules remain localized in the vicinity of equilibrium lattice
positions, except for occasional very rare jump events between neighbouring
sites, the same molecules will gradually drift away from their initial positions
in a liquid. The mean square displacement at time t of a molecule from its
initial (t = 0) position is characterized, for times long compared to molecular
time scales (which are typically of the order of femtoseconds), by Einstein’s
relation

〈|r(t) − r(0)|2〉 = 6Dt t � τ (1.8)

where the angular brackets denote a statistical average over initial conditions
and D is the self-diffusion coefficient. For simple liquids, D is of the order of
10−9 m2/s while in solids, D is several orders of magnitude smaller. Molecular
diffusion will be studied in more detail in subsequent chapters. It is worth
stressing already at this stage that, contrarily to viscous flow, molecular diffusion
occurs spontaneously, in the absence of any externally applied stress, and is a
consequence of thermal fluctuations and a signature of irreversible behaviour
on mesoscopic and macroscopic scales. To conclude this introductory section it
is important to underline that the perfect elastic behaviour of solids, embodied
e.g. in equation (1.5), and the ideal Newtonian behaviour of liquids, described
by equation (1.7), constitute ideal limits, and that many materials, either solid or
liquid, exhibit macroscopic behaviour which may deviate very significantly from
the above simple phenomenological laws. This is particularly true of complex
fluids and soft condensed matter, as will become clearer in the course of this
presentation.
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Figure 1.4. The Lennard-
Jones potential, equation
(1.9), as a function of
interatomic distance.

1.2 From simple to complex fluids

The simple phase diagrams shown in figure 1.1, and the generic fluid behaviour
sketched in section 1.1, are typical of ‘simple’ materials or substances composed
of a single species of small, quasi-spherical molecules, say argon (Ar), nitrogen
(N2), methane (CH4) or ammonia (NH3). Argon atoms are strictly spherical and
interact via a short-range repulsion, originating in the Pauli principle which op-
poses the overlap of electronic orbitals on neighbouring atoms, and longer ranged
van der Waals–London dispersion forces, which are attractive; the dominant dis-
persion interaction decays like 1/r6. A convenient, semi-empirical representation
incorporating these essential repulsive and attractive contributions is provided by
the Lennard-Jones potential, shown in figure 1.4

v(r ) = 4ε

((σ

r

)12
−

(σ

r

)6
)

(1.9)

where σ is the atomic diameter, and ε the depth of the attractive well; these
two parameters are generally determined by fitting certain properties derived
from the potential, like the second virial coefficient, to experimental data. For
Ar, σ � 0.34 nm and ε/kB � 120 K 2. Note that the simple 1/r12 form of the
Lennard-Jones repulsion is for convenience; an exponential repulsion would be
more realistic, but lacks the simplicity of an inverse power law.

The potential energy of interaction between two small polyatomic molecules is
generally split into ν2 spherically symmetric pair interactions between ν sites (e.g.
the atomic nuclei) associated with each molecule. For highly polar molecules, the
interaction sites carry electric charges, chosen such as to reproduce the known
multipole moments of the molecule. An example illustrated in figure 1.5 is
the simple point charge (SPC) model for water, involving ν = 3 sites on each
molecule.

An alternative, useful for quasi-spherical molecules, is to supplement a spher-
ically symmetric potential, like the Lennard-Jones potential (1.9), with the

2 Interaction energies are often expressed in temperature units, which gives a simple order of

magnitude estimate for the triple point temperature.



8 An introduction to liquid matter
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Figure 1.5. The simple point charge model of water (left): the oxygen atom carries
an electric charge −αe, and is the centre of a Lennard-Jones potential (cf. equation
(1.9)); each hydrogen atom carries a charge αe/2, with α = 0.8476, and is situated at
a distance d = 0.1 nm from the O atom; the HOH bond angle is 109.5◦; this charge
distribution gives rise to a dipole moment of magnitude µ = 2.3 debye (H.J.C.
Berendsen, J.R. Grigera and T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)). The
right-hand frame shows a typical hydrogen-bonded tetrahedral configuration of four
molecules around a central water molecule. (Courtesy of D. Wales.)

anisotropic potential energy of electrostatic point multipoles. Molecules lacking
a centre of symmetry, like NH3 or CO, carry an electric dipole µ. The potential
energy of two point dipoles µ1 and µ2 placed at a relative position r = r12 is

v(µ1, µ2, r) = −
∑
α,β

µ1αTαβ (r)µ2β (1.10)

where T is the dipole–dipole interaction tensor, with components

Tαβ = ∇α∇β

(
1

4πε0r

)
= 1

4πε0r 3

(rαrβ
r 2

− δαβ

)
(1.11)

The dipole moment of a small molecule is of the order of the product of
the elementary (proton) charge by a typical intramolecular length scale, say
0.1 nm, i.e. 1.6 × 10−29 C m in standard units. A convenient unit is the debye
(1 D = (1/3)10−29 C m); typical values for isolated molecules are µ = 1.08 D
for HCl, µ = 1.47 D for NH3 and µ = 1.85 D for H2O. The resulting dipolar in-
teraction energy between two molecules is strong, v/kB ∼ 104 K for separations
comparable to the molecular diameter; this is significantly larger than the van der
Waals dispersion interaction. The dipolar interaction can be attractive (e.g. for
head-to-tail configurations) or repulsive, depending on the mutual orientations
of the vectors µ1, µ2 and r. Dipolar interactions play a dominant part in some
colloidal dispersions called ferrofluids, where colloidal particles with diameters
σ � 10 nm carrymagnetic dipole moments 3; the strong dipolar interactions lead

3 For magnetic dipole moments the 1/4πε0 in equation (1.11) has to be replaced by its magnetic

counterpart µ0.
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then to alignment of dipoles and chain formation, giving rise to very peculiar rhe-
ological properties. On the molecular scale, a particular form of chain or network
formation is observed for some strongly polar molecules involving H+ groups,
the most prominent examples being HF, H2O and H3N. Because of the small size
of the H atom, the electronegative atoms F, O or N of neighbouring molecules can
approach very close to H+ groups of a given molecule, such that the approximate
point dipole picture to describe the charge distribution on the molecules breaks
down. The true Coulomb interaction between two such molecules is stronger and
highly directional, leading to the formation of hydrogen bonds with ‘bond’ ener-
gies intermediate between the usual intermolecular energies, and chemical bond
energies (which are of the order of a few electronvolts). In the most important
case of water, the intermolecular H-bond energy of a water dimer is typically
of the order of εH/kB = −3000 K, i.e. much larger than thermal energies. It is
also significantly larger, in absolute value, than the energy predicted by the point
dipole approximation. The H-bond is highly directional, with the lowest energy
achieved when the chemical (intramolecular) OH bond is aligned with the H–O
‘bond’ between theHon onemolecule and theOon the neighbouring one; the cor-
responding optimal OH–O distance of the dimer is about 0.28 nm. This strong di-
rectionality, and the fact that the intramolecular HOH bond angle of water is 105◦,
very close to the tetrahedral value of 109◦, leads to a network-like organization of
H2O molecules in ice, whereby each O atom is linked to four O atoms of neigh-
bouringmolecules via fourH-bonds, as illustrated infigure 1.5.This characteristic
network, which implies a low coordination number of 4, essentially survives upon
melting, at least locally, and explains many of the unusual properties of liquid
water 4. The example of the H-bond network in crystalline or liquid water shows
that as simple a molecule as H2O can already give rise to complex behaviour.
More generally complex behaviour of liquid matter may often be traced back to
one or several of the following characteristics of a given substance or material.

� Multicomponent systems, including mixtures of several molecular species and solu-
tions, may give rise to compositional ordering or disordering and hence to fluid–fluid
phase separation or demixing. The corresponding phase diagrams, which now in-
volve the additional thermodynamic concentration variables characterizing the chem-
ical composition, can rapidly become very complicated. In particular there may be
a competition between condensation and demixing. However the step from pure,
one-component simple fluids to mixtures of simple molecular species does not in-
volve any new fundamental concepts. This is no longer true of mixtures involving
charged (ionic) species, which are generally referred to as solutions.

� Ionic fluids involve at least two chemical species carrying electric charges of opposite
sign, to ensure overall charge neutrality. The corresponding attractive and repulsive

4 For example, the fact that the viscosity of liquid water decreases upon application of pressure,

which disrupts the H-bond network and makes the system more fluid.
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Coulomb interactions are of infinite (1/r ) range, and give rise to highly collective
behaviour like theDebye screening of the bareCoulomb forces,whichwill be discussed
in section 3.10. The simplest ionic fluids are molten monovalent salts, which involve
only oppositely charged anions (e.g. Cl−) and cations (e.g. Na+). The high melting
temperature of most salts (e.g. Tm = 1073 K for NaCl) reflects the strength of the bare
Coulomb attraction e2/4πε0r of an anion–cation pair. When a salt, or more generally
an electrolyte, is dissolved in water, the anions and cations dissociate because their
Coulomb interaction is reduced by a factor ε, where ε is the dielectric constant of
water (ε � 78 at room temperature). The gain in entropy due to dissociation more
than compensates for the reduction in the electrostatic attraction. Ionic solutions play
a vital role in many chemical and biological processes. The strong coupling between
ionic charges and the water dipoles leads to the hydration of individual ions by long-
lived shells of water molecules. The strong electric field of the ions, or of strongly
polar molecules, leads to polarization effects responsible for many-body induction
forces. Microscopic ions also form electric double-layers near the highly charged
surfaces of colloidal particles or other mesoscopic objects, which will be examined in
section 7.6. Metals are another class of ionic systems, where the role of the anion is
played by degenerate valence (or conduction) electrons. In many situations the metallic
cations (e.g. Na+, Ca2+ or Al3+) and the neutralizing fraction of polarized valence
electrons surrounding each cation, may be treated as ‘pseudoatoms’ interacting via
short-range (screened), density-dependent pair potentials. The problem of liquid metal
structure and thermodynamics is then similar to that of simple atomic liquids, apart
from some additional twists due to the valence electron component, in particular as
regards electronic transport properties (electric and thermal conductivities).

� Mesogenic substances. As long as it is not too far from spherical, molecular shape
generally has no qualitative influence on phase behaviour of substances. However,
sufficiently elongated (rod-like) or flat (plate-like) molecules may lead to additional
anisotropic fluid phases, called liquid crystal phases. Such molecules are called meso-
genic, and the new anisotropic phases, which are in some sense ‘intermediate’ between
the isotropic liquid and the fully periodic crystal, are referred to as mesophases. The
anisotropy gives rise to optical birefringence, as well as to peculiar elastic behaviour of
liquid crystal materials. Some of the more common mesophases are shown schemat-
ically in figure 1.6. For rod-like molecules, these include the nematic, smectic A,
smectic C and cholesteric phases, while plate-like molecules can form nematic and
columnar phases. In the nematic phase, molecules are preferentially aligned along one
direction, embodied in a unit vector n, called the director, thus breaking the rotational
invariance of the isotropic phase, while translational invariance of the centres of mass
is preserved. The director is an order parameter which plays a key role in the study
of phase transitions (cf. chapter 4). Smectic (or lamellar) phases are characterized by
orientational order, and the rods are organized in layers, with a one-dimensional period-
icity in the direction perpendicular to the layers, thus breaking translational invariance
in that direction; translational invariance is preserved inside each layer, along the two
remaining directions. The distinction between smectic A and C phases is that in the
former the director is along the normal to the layers, while it is tilted in the latter. In
the cholesteric phase, the director rotates along an axis, thus leading to a helicoidal
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Figure 1.6. Typical
configurations of the
isotropic (upper left),
nematic (upper right),
smectic (lower right) and
crystalline phases of a
system of mesogenic
molecules modelled as
hard spherocylinders (i.e.
cylinders capped by
hemispheres of the same
diameter). (Courtesy of
P. Bolhuis.)

arrangement of rod-like molecules, with a pitch of typically a few hundred nm. Finally,
in the columnar phase, flat (discotic) molecules are organized in parallel stacks or
columns, the traces of which are ordered on a periodic two-dimensional hexagonal
lattice, while the positions of the centres of the discotic molecules are disordered along
the axes of the columns. The spontaneous shape-induced partial ordering of mesogenic
molecules (see section 4.5) thus leads to much richer phase behaviour than shown in
the standard phase diagrams in figure 1.1.

� Macromolecular systems. Whilst the mesogenic molecules considered above are fairly
rigid, macromolecules of very high molecular weight (105 g/mol or more) are highly
flexible objects. Linear polymers are chemically bonded chains of thousands of
monomers, which can take on enormous numbers of different intramolecular con-
formations not unlike the many possible trajectories of an N -step random walk. A
single long polymer chain is thus in itself a statistical object, a ‘coil’ which exhibits
self-similarity, or scale invariance. This new type of symmetry means that macro-
molecular conformations are invariant under dilation, or change of scale, as illustrated
in figure 1.7; this in turn implies that many characteristic properties of polymer chains
may be expressed as simple power laws of the number N of monomers, provided
N � 1. Simple models of polymer chains will be discussed in section 1.5. The study
of a single polymer chain is relevant for the description of very dilute polymer solutions.
Collective behaviour sets in in semi-dilute solutions, when neighbouring polymer coils
begin to overlap, and even more in concentrated solutions or in solvent-free polymer
melts, which exhibit complex dynamics. Chemical or physical cross-linking between
different polymer chains can lead to the formation of a space-filling network called a
gel, with peculiar viscoelastic properties intermediate between the elastic behaviour
of a solid and the viscous flow of a simple liquid. The wealth of conformational,
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Figure 1.7. A typical
conformation of a
polymer coil, with two
successive magnifications
(cf. circular insets),
illustrating scale
invariance.

structural and dynamic behaviour is enhanced when one considers branched poly-
mers, copolymers made up of several types of monomeric units, or polyelectrolytes,
where monomers carry electric charges. Important examples are proteins, made up
of random assemblies of 20 different amino-acid residues, or DNA, whose famous
double-helix structure is an example of a particularly ‘stiff ’ polyelectrolyte. These
two macromolecules are key components of living cells, and significant ingredients of
biological complexity.

� Self-assembly. Some large molecules have multiple chemical functionalities which
strongly favour the spontaneous formation of supramolecular aggregates, a phe-
nomenon often referred to as self-assembly. A first example are diblock copolymers,
made up of two incompatible polymer chains, say A and B, linked together by a
chemical bond. Since A and B chains do not mix, a solution or melt of diblock copoly-
mers will lead to local phase separation into A-rich and B-rich microdomains, or-
ganized such as to minimize the contact between A and B segments. The second
very important example is provided by amphiphilic molecules, or surfactants, like
lipids made up of a polar head-group and one or several hydrocarbon chains. The
head-group is hydrophilic, while the hydrocarbon tails are hydrophobic. When dis-
solved in water, such amphiphilic molecules will spontaneously form supramolec-
ular aggregates called micelles, i.e. quasi-spherical assemblies with the hydrophilic
heads at the surface, in contact with the solvent, while the hydrocarbon chains avoid
being exposed to the water by clustering inside the micelle. The thermodynamics
of micelle formation will be examined in section 2.6. Depending on their shape,
lipids will minimize the contact between their hydrocarbon tails and water not by
forming micelles, but rather by forming lipid bilayers, which are lamellar structures,
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Figure 1.8. Schematic
configurations of
amphiphilic (surfactant)
molecules, self-
assembled into a micelle
(upper left frame), a
lamellar bilayer (upper
right frame), and a vesicle
(lower frame). The
hydrophilic head-groups
are represented by black
circles, while the wiggly
lines represent the
hydrophobic tails; note
that in the bilayer, each
surfactant molecule has
two tails.

as shown in figure 1.8. Contact of the hydrophobic alkane chains with water is again
avoided by a spontaneous alignment of the tails inside the bilayer, while the polar
heads point towards the solvent on both sides. The resulting flexible thin films are
the simplest examples of biological membranes, the curvature elasticity of which is
controlled by bending moduli (section 8.2). Depending on lipid concentration, and
the energy cost of curvature, edge effects of planar bilayers may be avoided by the
spontaneous formation of closed surfaces called vesicles, which are prototypes of
living cells. The morphology of vesicles is essentially determined by their surface to
volume ratio. Surfactant molecules will also spontaneously aggregate at the interface
between immiscible water and oil, where they will tend to form monolayers, with the
polar heads pointing to the water side and the hydrophobic alkane chain tails intruding
into the oil phase. The surfactant molecules in fact reduce the strong surface tension
of the liquid–oil interface, thus favouring the stability of microemulsions, which are
mesoscopic two-phase systems of finely divided droplets of oil in water, or of water in
oil, depending on the concentrations of the two liquids. Upon varying the concentration
of surfactant, a large variety of microphases may be generated, including smectic
lamellar phases, with alternating layers of oil and water, as well as more complex
structures like bicontinuous phases where oil and water form interpenetrating domains
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separated by fully connected monolayer membranes spanning the whole volume of the
sample.

� Suspensions and dispersions are highly heterogeneous two-phase (or multi-phase) sys-
tems, ofwhich the previouslymentionedmicroemulsions are a good example involving
two liquid phases. Fog is another example involving finely divided water droplets sus-
pended in air. More generally, colloids are dispersions of mesoscopic solid or liquid
particles, with sizes ranging typically from tens to thousands of nanometres, in a sus-
pending liquid. Colloidal dispersions, like ink, paints, lubricants, cosmetics, or milk,
are ubiquitous in everyday life and play a key role in many industrial processes. Due
to the highly divided nature, or high degree of heterogeneity, of a colloidal dispersion,
the total surface separating the two constituent phases is very large, so that colloidal
dispersions are dominated by interfacial properties. For example, 1 litre of a fairly con-
centrated suspension of spherical colloidal particles with a diameter of 102 nm, and
a packing fraction φ = 0.1, contains 2 × 1017 particles, and the total internal surface
is about 1500 m2! A widely studied category of colloidal dispersions involves meso-
scopic solid particles, which may be crystallites, like naturally occurring silicates, or
polymeric amorphous particles, like synthetic polystyrene or latex spheres, or small
biological organisms, like viruses. Such solid colloids come in different shapes: spher-
ical like the synthetic latexes, lamellar like clay platelets, or long rods, of which the
tobacco mosaic virus (TMV) is a good example. It is then tempting to seek analogies
between large assemblies of microscopic molecules forming various phases discussed
earlier in this chapter, and suspensions of mesoscopic colloidal particles in a liquid.
And indeed, colloidal dispersions are observed to give rise to various phases, including
colloidal crystals and, in the case of rod-like particles, nematic phases, embedded in the
suspending fluid. Quite apart from the difference in scale there are, however, a number
of rather fundamental differences between molecular and colloidal assemblies. First of
all, contrarily to molecules of a given species, which are all identical, colloidal particles
have a size distribution, i.e. they are polydisperse; careful synthesis can limit relative
differences in size to a few per cent in favourable cases, but size polydispersity is an
intrinsic property of colloidal dispersions. A second, fundamental difference is the
nature of particle dynamics: while the motions of interacting molecules are governed
by reversible Newtonian dynamics, colloidal particles undergo irreversible Brown-
ian dynamics due to their coupling to the suspending fluid; due to the very different
time scales between the rapid thermal motions of the molecules, and the considerably
slower motion of the much heavier colloidal (or Brownian) particles, this coupling
can only be described in stochastic terms, as in the framework of the Langevin equa-
tion examined in section 10.1. A final, very significant feature of colloidal systems
is that within a coarse-grained statistical description, where microscopic degrees of
freedom are integrated out, the interaction between colloidal particles is an effective
one, including an entropic component. In other words, the effective interaction en-
ergy between colloidal particles in a bath of microscopic molecules and ions, or in
the presence of macromolecules, is a free energy, rather than a mere potential energy,
and hence generally depends on the thermodynamic state variables (temperature, con-
centrations, etc. . . ) of the suspension. Examples of such effective interactions include
depletion forces, to be discussed in section 2.7, and the interactions between electric
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double-layers, associated with charged colloidal particles (cf. section 7.6). Finally,
flow properties of concentrated dispersions generally deviate very significantly from
the simple Newtonian behaviour of simple fluids, as embodied e.g. in equation (1.7)
for a simple shear flow. The study of such non-Newtonian flow is the realm of rheology,
and its many technological implications.

1.3 Exploring the liquid state

The present book describes some of the key concepts andmodelswhich have been
developed to understand and predict the macroscopic and microscopic proper-
ties of liquids and their interfaces, in particular their structure and dynamical
behaviour on molecular or mesoscopic scales. Ultimately the validity of theo-
retical predictions must be gauged against experimental measurements of such
properties. Although later chapters will not dwell on experimental techniques,
it is important to mention, at least briefly, some of the more widely used tech-
niques, and the physical quantities to which they give access. Broadly speaking,
the properties that are most frequently measured, and the corresponding experi-
mental probes, fall into four categories, two of which are of macroscopic nature,
while the other two relate more directly to the molecular or macromolecular
constituents, on microscopic or mesoscopic scales.

� Thermodynamics characterizes macroscopic samples in equilibrium. The key bulk
thermodynamic properties are the equation of state, compressibility and specific heat
(at constant volume or pressure); they involve the measurement of the fluid density as
a function of applied pressure, as well as various calorimetric techniques which also
give access to latent heats at phase transitions. Free energies follow from thermody-
namic integration, using basic thermodynamic relations which will be summarized in
chapter 2. Solutions are characterized by their osmotic properties. In particular, the
osmotic pressure � exerted by the solute is traditionally measured by monitoring the
rise of the solution in a vertical tube in osmotic equilibrium with the pure solvent
across a semi-permeable membrane which allows the exchange of solvent molecules,
but not of the solute. If h is the height to which the solution rises in the capillary, ρs the
mass density of the solution, and g the acceleration of gravity, the osmotic pressure
is � = ρsgh. Osmometry is a direct application of osmotic equilibrium which allows
the determination of the molar mass of macromolecules by measuring the osmotic
pressure of a macromolecular solution.

The static dielectric constant (or permittivity) ε is another important macroscopic
property of a fluid,which determines the response of a sample, in the formof the electric
polarization P, to an externally applied electric field, or corresponding displacement
field D. The field E inside the sample is related to D via the relation

D = ε0E + P = εε0E (1.12)

where the second equality is valid in the linear regime. ε is a scalar if the fluid sample
is isotropic, and ε0 is the permittivity of empty space. ε is thus directly determined
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by measuring the electric field inside a condenser in the absence and in the presence
of the fluid sample. The dielectric constant is state dependent, and a high value will
ensure strong dissociation of electrolytes in highly polar solvents, like water. Another
important application of equation (1.12) is the propagation of light, since ε (which
depends on the frequency) is related to the index of refraction. In anisotropic, complex
fluids, birefingence (i.e. the dependence of the index of refraction on the polarization
of light) yields important information on molecular orientations.

Interfacial phenomena are dominated by the surface tension, a force per unit
length (or energy per unit area), which may be measured by a number of techniques,
based on the Young–Laplace equation for the pressure drop across a curved interface
(cf. section 6.4)

�P = γ

(
1

R1
+ 1

R2

)
(1.13)

where R1 and R2 are the curvature radii of the dividing surface (see section 6.2). A
classic technique is based on the measurement of the angle made by the meniscus of the
liquid–gas interface in a capillary rise experiment. Relatedmethods are based on digital
image analysis of the shape of drops or bubbles under gravity (sessile drop or bubble
method). The thickness of interfaces or adsorbed thin liquid films is routinely measured
by ellipsometric methods analysing the elliptical polarization of light beams reflected
by interfaces or films. Similar information may be derived from X-ray reflectivity
measurements.

� Macroscopic transport coefficients determine the dissipative (irreversible) behaviour
and theflowproperties of fluids. The thermal and electrical conductivities determine the
heat and charge currents through a fluid subjected to gradients in temperature or electric
potential, while the shear and bulk viscosities, η and ζ , characterize the internal friction
in a flowing Newtonian fluid, obeying a linear relationship between stress and strain
rate (cf. equation (1.7)). Standard viscosimeters measure η, either by monitoring fluid
flow through capillaries or by using rotating coaxial cylinders; in the latter experiment,
the viscosity of a fluid placed between an outer and an inner cylinder is directly
determined by measuring the torque exerted on the inner cylinder, when the outer
cylinder is rotated at constant angular velocity. A combination of η and ζ determines
the attenuation of sound waves propagating though a liquid (cf. section 11.5). The vast
field of rheology explores the flow properties of complex fluids, including polymer
solutions and melts, and colloidal dispersions or various other suspensions. Such fluids
are generally non-Newtonian, i.e. the stress versus strain rate relation is no longer linear.
In particular, Bingham fluids flow only beyond a threshold of applied stress (the yield
stress). Suspensions often exhibit thixotropy, i.e. the reduction of viscosity at higher
flow rates (‘shear thinning’). A well known illustration is the reduction of the viscosity
of paints by brushing. Despite its obvious technological importance, the rheological
behaviour of complex fluids will not be considered further in this book.

� Shifting the attention to mesoscopic and molecular scales, a key objective is to
characterize the static local structure of fluids, i.e. the average spatial organization of
the basic constituents (molecules, macromolecules or supramolecular aggregates). The
spatial arrangement may be described by a set of static correlation functions, of which
the pair distribution function g(r ), already introduced in section 1.1 (cf. equation (1.2))
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is the simplest and most studied. In fact, as will be shown in more detail in section 3.8,
the spatial Fourier transform of g(r ), called the static structure factor S(k) (where
the wavenumber k is the variable conjugate to r ), is directly accessible to radiation
diffraction experiments. If molecular scales (of the order of a nanometre or less) are to
be probed, the natural radiations are X-rays or thermal neutrons from reactors or spal-
liation sources, because their wavelength is of the order of angstroms. The availability
of very intense X-ray sources from synchrotron radiation makes it possible to obtain
time-resolved diffraction patterns, allowing e.g. the evolution of non-equilibrium
and metastable structures (like those of glassy materials) to be monitored on time
scales of a fraction of a second. If mesoscopic structures are to be explored, as
in colloidal suspensions, X-rays and neutrons may still be used, provided that the
diffractometers can resolve very small wavenumbers; as will become clear in section
3.8, this corresponds to the regime of small angle scattering. Alternatively one may use
radiations of longer wavelengths, like visible light which is diffracted by assemblies
of particles of colloidal size, or one can resort to direct visualization using a powerful
microscope; this is combined with video recordings in the widely used technique
of video microscopy. Diffraction measurements are generally applied to local order
determinations of bulk fluids, on the assumption of homogeneity or translational in-
variance. Inhomogeneous fluids and interfacial regions break translational invariance,
and are hence characterized by a spatially varying local density (or density profile),
rather than by a mere constant bulk number density ρ. Such density profiles ρ(r)
are accessible in X-ray or neutron reflectivity experiments, and by grazing incidence
X-ray diffraction. The interfacial structure, and in particular the layering of molecules
in strongly confined fluids, e.g. near a solid wall, may also be measured by a surface
force apparatus, capable of measuring forces between plates induced by very thin fluid
films, on the nanonewton scale, with a spatial resolution of the order of an angstrom.
The same apparatus is also well adapted to investigate lubrication forces and capillary
condensation, as well as various aspects of wetting phenomena (sections 6.3, 6.4).

� Experimental investigations of individual or collective motions of molecules or
particles require the use of dynamical, time or frequency-dependent probes. One of the
most widely used dynamical diagnostics is inelastic scattering of neutrons or photons.
Since thermal neutrons have energies comparable to the kinetic energy of molecules in
fluids, the inelastic scattering cross-section contains detailed information on molecular
motions (cf. section 11.6). Inelastic or quasi-elastic scattering of light probes length
scales of the order of the wavelength of light, and is hence well adapted to examine
collective dynamical fluctuations in molecular fluids (as in Rayleigh–Brillouin
scattering), or the motion of mesoscopic colloidal particles. Dynamics of the latter
may also be explored by photon correlation spectroscopy, an interferometric method
well adapted to slow relaxation processes, typically in the range of milliseconds. Slow
diffusion of molecules and macromolecules, on the scale of microseconds, can be
resolved by nuclear magnetic resonance (NMR, section 11.7), while reorientational
motions of molecular dipoles are conveniently measured by dielectric relaxation
(section 10.3). Detailed information of how intermolecular forces affect the rotational
and vibrational motions of molecules in liquids, as compared to their gas-phase
behaviour, may be gained from various spectroscopic techniques, including infrared
(IR) and Raman spectroscopy, which are beyond the scope of this presentation.
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To conclude this introductory chapter it seems worthwhile to illustrate two
of the key concepts in complex fluids, namely free volume and scale invariance,
by simple examples, before embarking on a more systematic presentation in the
following chapters. As a third example, we shall briefly show how computer sim-
ulations of atomistic models can provide extremely valuable information on the
structure, phase behaviour and dynamics of simple and complex fluids, supple-
menting the data obtained from experimental probes.

1.4 Application 1: excluded and free volume

The single most important feature of the interaction between molecules or col-
loidal particles is their strong mutual repulsion whenever their centres come
within a distance of the order of the particle diameter. For non-spherical parti-
cles, this shape-dependent repulsion will obviously be a function of the mutual
orientation of the molecules, and this will be a very important factor e.g. in the
case of liquid crystals. For the sake of clarity, we shall first restrict the discus-
sion to spherical particles of diameter σ = 2R. In view of the steepness of the
repulsive potential between two such particles, the latter may very often, to a
good approximation, be regarded as non-interpenetrating hard spheres, such that
the interaction ‘potential’ is simply v(r ) = ∞, r < σ and v(r ) = 0, r > σ . The
corresponding Boltzmann factor reduces to a Heaviside step function

exp(−βv(r )) = θ (r − σ ) (1.14)

where θ (x) = 1(0) if x > 0(< 0). Note that the Boltzmann factor for a pair of
hard spheres is independent of temperature; this is a direct consequence of the
absence of any energy scale in a hard sphere fluid, and is a common charac-
teristic of athermal systems made up of particles having only excluded volume
interactions. In the case of hard spheres, the excluded volume around the centre
of any particle is that of a sphere centred on that particle and of radius equal to the
particle diameter σ , so that the excluded volume vex = 4πσ 3/3 is eight times the
volume v0 = 4πR3/3 of the particle itself. Each particle has such an exclusion
sphere associated with it, as shown in the equivalent two-dimensional situation
in figure 1.9. The centre of any additional (or test) particle inserted into the fluid
cannot come closer than σ to the centres of the existing spheres, and hence cannot
penetrate into the exclusion spheres around the latter. It is important to realize
that, while the excluded volume associated with each individual sphere is vex, the
total volume Vex from which the centre of a test sphere is excluded is less than
N × vex, since the exclusion spheres of neighbouring particles can overlap, as
illustrated in figure 1.9. The volume accessible to a test particle is simply the
total volume of the system minus the excluded volume, V ′ = V − Vex. Vex, and
hence V ′, depend on the instantaneous configuration of the N non-overlapping
particles; Vex fluctuates as the positions ri (1 < i < N ) of the spheres vary in
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Figure 1.9. Schematic two-dimensional representation of free (or accessible)
‘volume’ (area in this case) for typical fluid-like configurations of hard discs. The test
particle is shown as a heavy-lined circle; the hard discs are the dark grey circles; the
concentric white areas represent the excluded area around each disc. As the
diameter of the test particle increases (from left to right), so does the diameter of
each exclusion circle; the light grey area represents the free area, accessible to the
centre of the test particle without causing overlap with any of the discs; the free area
is shown only within the rectangular frames. (Courtesy of D. Goulding.)

time, due to their thermal motion. The value of the accessible volume V ′ aver-
aged over all allowed configurations of spheres is called the free volume. Allowed
configurations are such that |ri − r j | > σ for all N (N − 1)/2 pairs of particles.
Bearing in mind that the test particle is identical to the spheres in the system,
it will be shown later (section 2.5) that Vex is intimately related to the chemical
potential of a hard sphere fluid. Meanwhile we consider two limiting cases. At
very low densities, the volume per particle v � vex, so that the overlap of the
exclusion volumes associated with different particles is very unlikely. In that case
the volume accessible to the test particle, which may be identified with any one of
the spheres, is simply V ′ = V − Nvex. The phase space volume for one sphere
is ω = (V − Nvex)/�3, where

� = h/
√

2πmkBT (1.15)

is the de Broglie thermal wavelength, stemming from the integration over a
Maxwell distribution of momenta for particles of mass m, and h is Planck’s
constant. The total phase space volume, or partition function, for hard spheres is
then approximately given by

� = (V − Nvex/2)N

N !�3N
(1.16)

The factor 1/2 occurs to avoid double-counting of the excluded volume for pairs
of spheres. The entropy finally follows from Boltzmann’s relation

S = kB ln � = NkB ln

(
v − vex/2

�3

)
(1.17)
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where Stirling’s formula ln N ! � N ln N − N has been used. In an athermal
system, the Helmholtz free energy reduces to −T S, and the pressure follows
from

P = −
(

∂F

∂V

)
N ,T

= T

(
∂S

∂V

)
N ,T

= kBT

v − vex/2
(1.18)

The dimensionless compressibility factor (or equation of state) reduces to

Z = PV

NkBT
= 1

1 − 4φ
(1.19)

where φ = πσ 3/6v is the packing fraction for hard spheres. Note that (1.19)
can only be expected to be valid for φ � 1, so that to lowest order in φ, Z =
1 + 4φ + O(φ2); the term linear in φ is the leading correction to the ideal gas
law in a virial expansion of Z in powers of the density ρ = 1/v. In the opposite
limit of high densities, which is much more relevant for the condensed (liquid
or solid) states of matter, calculation of the free volume is a much more difficult
task, due to the numerous overlaps of the excluded volumes associated with each
particle. On average each particle is trapped in a cage of neighbouring spheres,
and the free volume per particle v′ = V ′/N is much less than the volume per
particle v = V/N .

The free volume v′ accessible to any one particle trapped in its cage may then
be calculated with a cell model, whereby the nearest neighbours of the particle are
assumed to be fixed at some favourable average position. In a crystal, the average
positions naturally coincide with the lattice positions of the first coordination
shell of nearest neighbours around the trapped particle. The very concept of
an average position of molecules is meaningless in fluids, since the molecules
diffuse away from any initial position, according to Einstein’s law (1.8). However,
on a sufficiently short time scale, say 1 ps, a small molecule will have moved
typically less than 0.1 nm in a dense fluid, so that the neighbours forming the
cage may be considered as effectively ‘frozen’ for the purpose of calculating the
free volume v′. For the sake of an easier graphical free volume representation, we
consider in figure 1.10 the two-dimensional case of hard discs. The most compact
packing is achieved by the triangular lattice, where each atom is surrounded by
six nearest neighbours placed at the vertices of a hexagonal cell, at a distance
d = (2/

√
3ρ)1/2 from the centre, where ρ is the number of atoms per unit area

(number density of the system). The free area available to the atom within the
hexagonal cage is the shaded area in figure 1.10, resulting from the intersection of
the exclusion discs of radius σ = 2R centred on each of the six vertices. For dense
fluids, d is only slightly larger than σ , and an elementary calculation leads to a
simple expression for the free area, valid to second order in (d/σ − 1), namely
a′ = 2

√
3(d − σ )2. The resulting entropy is S = NkB ln[2

√
3(d − σ )2/�2] and


