The advent of global environmental change, with all its uncertainties and requirement for long-term prediction, brings new challenges and tasks for scientists, the public and policy makers.

A major environmental upheaval such as climate change is likely to have significant health effects. Current mainstream epidemiological research methods, in general, do not adequately address the health impacts that arise within a context in which ecological and other biophysical processes display nonlinear and feedback-dependent relationships. The agenda of research and policy advice must be extended to include the larger-framed and longer-term environmental change issues. This book identifies the nature and scope of the problem, and explores the conceptual and methodological approaches to studying these relationships, modelling their future realization, providing estimates of health impacts and communicating the attendant uncertainties.

This timely volume will be of great interest to health scientists and graduate students concerned with the health effects of global environmental change.
Pim Martens holds degrees in Biological and Environmental Health Sciences from Maastricht University, The Netherlands. He worked within the project Global Dynamics and Sustainable Development, launched in 1992 by the Dutch National Institute of Public Health and the Environment (RIVM). After obtaining his PhD from the Department of Mathematics, Maastricht University, he worked as assistant professor at the same Department. Since 1998, Pim Martens has been a senior researcher at the University’s International Centre for Integrative Studies, where he directs the Global Assessment Centre. He is editor-in-chief of the international journal *Global Change and Human Health*. Furthermore, he was a member of the Assessment Study ‘Climate, Ecosystems, Infectious Disease, and Human Health’ (US National Research Council/National Academy of Sciences), and lead-author of several climate change and human health assessment reports of the Intergovernmental Panel on Climate Change (IPCC) and the World Health Organization (WHO). Pim Martens is a Fulbright New Century Scholar within the program ‘Challenges of Health in a Borderless World.’

Anthony J. McMichael is a medical graduate from Adelaide, South Australia. He is currently Director of the National Centre for Epidemiology and Population Health, at the Australian National University, Canberra, Australia, having previously been Professor of Epidemiology at the London School of Hygiene and Tropical Medicine, UK. His research interests, over 30 years, have encompassed the social aetiology of mental health problems, the causes of occupational diseases, studies of diet and cancer, and environmental epidemiology. During the 1990s he developed a strong interest in the assessment of population health risks from global environmental change. His current research activities include studies of heatwave impacts on urban mortality patterns, of solar ultraviolet radiation and immune disorders, of dietary factors in breast cancer, and the mathematical modelling of future climate change impacts on malaria transmissibility. During 1990–1992 he chaired the Scientific Council of the International Agency for Research on Cancer. Between 1994 and 2001 he convened the review by the UN’s Intergovernmental Panel on Climate Change of potential health impacts of climate change. He is a member of WHO’s newly established Expert Group on Globalization and Health, and is a member of the International Scientific Panel on Population and Environment. In 2001, Cambridge University Press published his latest book, *Human Frontiers, Environments and Disease: Past Patterns, Uncertain Futures.*
Contents

List of contributors
page vii

Foreword
xi

Robert T. Watson

1 Global environmental changes: anticipating and assessing risks to health
Anthony J. McMichael & Pim Martens
1

2 Historical connections between climate, medical thought and human health
Ann G. Carmichael & Millicent Fleming Moran
18

3 The contribution of global environmental factors to ill-health
Kirk R. Smith & Manish A. Desai
52

4 Surprise, nonlinearity and complex behaviour
Tamara Awerbuch, Anthony E. Kiszewski & Richard Levins
96

5 Epidemiological and impacts assessment methods
Kristie L. Ebi & Jonathan A. Patz
120

6 Retrospective studies: analogue approaches to describing climate variability and health
R. Sari Kovats & Menno Bouma
144

7 Detecting the infectious disease consequences of climate change and extreme weather events
Paul R. Epstein
172

8 Integrated Assessment modelling of human health impacts
Pim Martens, Jan Rotmans & Dale S. Rothman
197
Contents

9 Remote sensing, GIS and spatial statistics: powerful tools for landscape epidemiology
Louisa R. Beck, Uriel Kitron & Matthew R. Bobo
226

10 Monitoring the health impacts of global climate change
Diarmid H. Campbell-Lendrum, Paul Wilkinson, Katrin Kuhn, R. Sari Kovats, Andy Haines, Bettina Menne & Terry W. Parr
253

11 Epidemiology, environmental health and global change
Alistair Woodward
290

12 Dealing with scientific uncertainties
Tim O’Riordan & Anthony J. McMichael
311

Index
334

Colour plate section between pages 146 and 147
Contributors

Tamara Awerbuch
Department of Population and International Health
Harvard School of Public Health
Boston
USA

Diarmid H. Campbell-Lendrum
Infectious Diseases Department
London School of Hygiene and Tropical Medicine
London
UK

Louisa R. Beck
Ecosystem Science and Technology Branch
NASA Ames Research Center
Moffet Field
USA

Ann G. Carmichael
History Department
Indiana University
Bloomington
USA

Matthew R. Bobo
Ecosystem Science and Technology Branch
NASA Ames Research Center
Moffet Field
USA

Manish A. Desai
Center for Occupational and Environmental Health
School of Public Health
University of California
Berkeley
USA

Menno Bouma
Disease Control and Vector Biology Unit
London School of Hygiene and Tropical Medicine
London
UK

Kristie L. Ebi
Global Climate Change Research
EPRI
Palo Alto
USA
Contributors

Paul R. Epstein
Center for Health and the Global Environment
Harvard Medical School
Boston
USA

Andy Haines
London School of Hygiene and Tropical Medicine
London
UK

Anthony E. Kiszewski
Department of Population and International Health
Harvard School of Public Health
Boston
USA

Uriel Kitron
College of Veterinary Medicine
University of Illinois
Urbana
USA

R. Sari Kovats
Department of Epidemiology and Population Health
London School of Hygiene and Tropical Medicine
London
UK

Katrin Kuhn
Department of Infectious and Tropical Diseases
London School of Hygiene and Tropical Medicine
London
UK

Richard Levins
Department of Population and International Health
Harvard School of Public Health
Boston
USA

Pim Martens
International Centre for Integrative Studies
Maastricht University
Maastricht
The Netherlands

Anthony J. McMichael
National Centre for Epidemiology and Population Health
Australian National University
Canberra
Australia

Bettina Menne
WHO European Centre for Environment and Health
Rome Division
Rome
Italy
Contributors

Millicent Fleming Moran
Department of Applied Health Science
Indiana University
Bloomington
USA

Tim O’Riordan
CSERGE
School of Environmental Sciences
University of East Anglia
Norwich
UK

Terry W. Parr
Centre for Ecology and Hydrology
Merlewood
UK

Jonathan A. Patz
Department of Environmental Health Sciences
Johns Hopkins University
Bloomberg School of Public Health
Baltimore
USA

Dale S. Rothman
International Centre for Integrative Studies
Maastricht University
Maastricht
The Netherlands

Jan Rotmans
International Centre for Integrative Studies
Maastricht University
Maastricht
The Netherlands

Kirk R. Smith
Center for Occupational and Environmental Health
School of Public Health
University of California
Berkeley
USA

Paul Wilkinson
Department of Public Health and Policy
London School of Hygiene and Tropical Medicine
London
UK

Alistair Woodward
Department of Public Health
Wellington School of Medicine and Health Sciences
Wellington South
New Zealand
Over the past two decades there has been a rapid evolution of research concepts and methods in relation to global environmental changes – their processes, impacts and the response options. The scale and complexity of these environmental problems are, in general, greater than those that individual scientists or their disciplines usually address. This is particularly so for those components of the topic that are furthest “downstream” from the pressures, or their drivers, that initiate the processes of global environmental change.

Indeed, in seeking to detect or forecast the population health impacts of global environmental change there is an additional difficulty. Not only is the impact of research contingent on various assumptions, simplifications and projections made by scientists working “upstream” on the environmental change process per se, but the category of outcome – a change in the rate of disease or death – is one that usually has multiple contending explanations. If a glacier melts, then temperature increase is a very plausible explanation. Likewise, if birds, bees and buds exhibit their springtime behaviours a little earlier as background temperatures rise, that too is reasonably attributable to climatic change. However, if malaria ascends in the highlands of eastern Africa, regional climate change is just one contending explanation – along with changes in patterns of land use, population movement, increased urban poverty, a decline in the use of pesticides for mosquito control, or the rise of resistance to antimalarial drugs by the parasite.

There is also the problem of the time-frame. Much of the postulated health impact of global environmental change is likely to unfold over coming decades, as environmental stresses increase and life-support systems weaken. Yet, scientists generally prefer to work with empirical observations. Given that preference, and a well-honed body of scientific methods appropriate to empirical research, why try to use mathematical models to estimate how a change in global climatic conditions...
would affect patterns of infectious diseases, when the simple alternative is to sit back and wait for empirical evidence?

Well, that question is very much the nub of the issue. The world cannot afford to sit back and await the empirical evidence. The luxury of unhurried scientific curiosity must, here, be replaced by a more urgent attempt to estimate the dimensions of this problem – the health consequences of global environmental change – and then feed this information, with all its imperfections and assumptions, into the policy arena. Consideration of human health impacts is a crucial, even central, issue in the emerging international discourse on “sustainable development”.

This, then, is a timely volume. There is an indisputable need to clarify the concepts and research procedures, and to illustrate recent and current research activities in this domain. The ongoing spectrum of health impact research entails learning from the recent past, detecting emergent health impacts and modelling future impacts. It also requires the assessment of how changes in world futures (social, economic, technological, political) will modulate these impacts, and how populations can or are likely to adapt to the change in environmental conditions.

If anything, this volume is overdue. The recognition of global environmental changes has already been a major spur to scientific development and methodological advances in many other disciplines, especially those elucidating and modelling the processes of change themselves. Accordingly, for example, our ability to model the world’s climate system has increased many-fold over the past decade. In contrast, because of the abovementioned complexities that beset research into human health impacts, compounded by an apparent diffidence on the part of most epidemiologists and other population health scientists to engage in this unfamiliar domain, advances have been relatively slow to emerge in this disciplinary area. This volume will help to change that.

It is a well-rounded volume. The range of chapters includes attention to historical and social context, to differing conceptual domains of research, to questions about the assessment of population vulnerability, and to exploring and evaluating societal adaptation options. The challenge of scientific uncertainties is addressed – a challenge that looms large in research that deals with complex biophysical, ecological and social processes and which seeks to estimate future trajectories of population health risks.

Finally, this is an important volume because population health is so central to the formulation of humankind’s “sustainable development” trajectory. If the life-support systems are weakened, and health is jeopardized, then we are all on the wrong track. Health scientists therefore have a major role and responsibility
in informing this international discourse. The team of authors assembled in this
book has had impressive and wide-ranging experience in the pioneering stages of
this great scientific undertaking. Their shoulders should now be stood upon by
others.

Robert T. Watson
Chair, Intergovernmental Panel on Climate Change,
Chief Scientist, and Director, Environmentally and Socially
Sustainable Development, World Bank