THEORY OF FINANCIAL RISKS
FROM STATISTICAL PHYSICS TO RISK MANAGEMENT

This book summarizes recent theoretical developments inspired by statistical physics in the description of the potential moves in financial markets, and its application to derivative pricing and risk control. The possibility of accessing and processing huge quantities of data on financial markets opens the path to new methodologies where systematic comparison between theories and real data not only becomes possible, but mandatory. This book takes a physicist’s point of view of financial risk by comparing theory with experiment. Starting with important results in probability theory the authors discuss the statistical analysis of real data, the empirical determination of statistical laws, the definition of risk, the theory of optimal portfolio and the problem of derivatives (forward contracts, options). This book will be of interest to physicists interested in finance, quantitative analysts in financial institutions, risk managers and graduate students in mathematical finance.

JEAN-PHILIPPE BOUCHAUD was born in France in 1962. After studying at the French Lycée in London, he graduated from the École Normale Supérieure in Paris, where he also obtained his PhD in physics. He was then appointed by the CNRS until 1992, where he worked on diffusion in random media. After a year spent at the Cavendish Laboratory (Cambridge), Dr Bouchaud joined the Service de Physique de l’Etat Condensé (CEA-Saclay), where he works on the dynamics of glassy systems and on granular media. He became interested in theoretical finance in 1991 and founded the company Science & Finance in 1994 with J.-P. Aguilar. His work in finance includes extreme risk control and alternative option pricing models. He teaches statistical mechanics and finance in various Grandes Écoles. He was awarded the IBM young scientist prize in 1990 and the CNRS Silver Medal in 1996.

Born in Belgium in 1969, MARC POTTERS holds a PhD in physics from Princeton University and was a post-doctoral fellow at the University of Rome La Sapienza. In 1995, he joined Science & Finance, a research company located in Paris and founded by J.-P. Bouchaud and J.-P. Aguilar. Dr Potters is now Head of Research of S&F, supervising the work of six other physics PhDs. In collaboration with the researchers at S&F, he has published numerous articles in the new field of statistical finance and worked on concrete applications of financial forecasting, option pricing and risk control. Since 1998, he has also served as Head of Research of Capital Fund Management, a successful fund manager applying systematic trading strategies devised by S&F. Dr Potters teaches regularly with Dr Bouchaud at École Centrale de Paris.
Contents

Foreword ix
Preface xi

1 Probability theory: basic notions 1
1.1 Introduction 1
1.2 Probabilities 2
 1.2.1 Probability distributions 2
 1.2.2 Typical values and deviations 4
 1.2.3 Moments and characteristic function 6
 1.2.4 Divergence of moments – asymptotic behaviour 8
1.3 Some useful distributions 8
 1.3.1 Gaussian distribution 8
 1.3.2 Log-normal distribution 9
 1.3.3 Lévy distributions and Paretian tails 11
 1.3.4 Other distributions 14
1.4 Maximum of random variables – statistics of extremes 15
1.5 Sums of random variables 20
 1.5.1 Convolutions 21
 1.5.2 Additivity of cumulants and of tail amplitudes 21
 1.5.3 Stable distributions and self-similarity 22
1.6 Central limit theorem 23
 1.6.1 Convergence to a Gaussian 24
 1.6.2 Convergence to a Lévy distribution 27
 1.6.3 Large deviations 28
 1.6.4 The CLT at work on a simple case 30
 1.6.5 Truncated Lévy distributions 34
 1.6.6 Conclusion: survival and vanishing of tails 35
1.7 Correlations, dependence, non-stationary models 36
Contents

1.7.1 Correlations 36
1.7.2 Non-stationary models and dependence 36
1.8 Central limit theorem for random matrices 39
1.9 Appendix A: non-stationarity and anomalous kurtosis 43
1.10 Appendix B: density of eigenvalues for random correlation matrices 43
1.11 References 45

2 Statistics of real prices 47
2.1 Aim of the chapter 47
2.2 Second-order statistics 51
2.2.1 Variance, volatility and the additive–multiplicative crossover 51
2.2.2 Autocorrelation and power spectrum 53
2.3 Temporal evolution of fluctuations 56
2.3.1 Temporal evolution of probability distributions 56
2.3.2 Multiscaling – Hurst exponent 64
2.4 Anomalous kurtosis and scale fluctuations 66
2.5 Volatile markets and volatility markets 70
2.6 Statistical analysis of the forward rate curve 72
2.6.1 Presentation of the data and notations 73
2.6.2 Quantities of interest and data analysis 74
2.6.3 Comparison with the Vasicek model 77
2.6.4 Risk-premium and the $\sqrt{\theta}$ law 80
2.7 Correlation matrices 82
2.8 A simple mechanism for anomalous price statistics 85
2.9 A simple model with volatility correlations and tails 87
2.10 Conclusion 88
2.11 References 89

3 Extreme risks and optimal portfolios 91
3.1 Risk measurement and diversification 91
3.1.1 Risk and volatility 91
3.1.2 Risk of loss and ‘Value at Risk’ (VaR) 94
3.1.3 Temporal aspects: drawdown and cumulated loss 98
3.1.4 Diversification and utility – satisfaction thresholds 103
3.1.5 Conclusion 107
3.2 Portfolios of uncorrelated assets 108
3.2.1 Uncorrelated Gaussian assets 109
3.2.2 Uncorrelated ‘power-law’ assets 113
3.2.3 ‘Exponential’ assets 115
3.2.4 General case: optimal portfolio and VaR 116
3.3 Portfolios of correlated assets 117
4 Futures and options: fundamental concepts

4.1 Introduction

4.1.1 Aim of the chapter

4.1.2 Trading strategies and efficient markets

4.2 Futures and forwards

4.2.1 Setting the stage

4.2.2 Global financial balance

4.2.3 Riskless hedge

4.2.4 Conclusion: global balance and arbitrage

4.3 Options: definition and valuation

4.3.1 Setting the stage

4.3.2 Orders of magnitude

4.3.3 Quantitative analysis – option price

4.3.4 Real option prices, volatility smile and ‘implied’ kurtosis

4.4 Optimal strategy and residual risk

4.4.1 Introduction

4.4.2 A simple case

4.4.3 General case: ‘Δ’ hedging

4.4.4 Global hedging/instantaneous hedging

4.4.5 Residual risk: the Black–Scholes miracle

4.4.6 Other measures of risk – hedging and VaR

4.4.7 Hedging errors

4.4.8 Summary

4.5 Does the price of an option depend on the mean return?

4.5.1 The case of non-zero excess return

4.5.2 The Gaussian case and the Black–Scholes limit

4.5.3 Conclusion. Is the price of an option unique?

4.6 Conclusion of the chapter: the pitfalls of zero-risk

4.7 Appendix D: computation of the conditional mean

4.8 Appendix E: binomial model

4.9 Appendix F: option price for (suboptimal) Δ-hedging

4.10 References
Contents

5 Options: some more specific problems	186
5.1 Other elements of the balance sheet | 186
5.1.1 Interest rate and continuous dividends | 186
5.1.2 Interest rates corrections to the hedging strategy | 189
5.1.3 Discrete dividends | 190
5.1.4 Transaction costs | 190
5.2 Other types of options: ‘Puts’ and ‘exotic options’ | 192
5.2.1 ‘Put–call’ parity | 192
5.2.2 ‘Digital’ options | 192
5.2.3 ‘Asian’ options | 193
5.2.4 ‘American’ options | 195
5.2.5 ‘Barrier’ options | 197
5.3 The ‘Greeks’ and risk control | 200
5.4 Value-at-risk for general non-linear portfolios | 201
5.5 Risk diversification | 204
5.6 References | 207

Short glossary of financial terms | 209
Index of symbols | 211
Index | 217
Until recently, finance theory appeared to be reaching a triumphant climax. Many years ago, Harry Markowitz and William Sharpe had shown how diversification could reduce risk. In 1973, Fischer Black, Myron Scholes and Robert C. Merton went further by conjuring away risk completely, using the magic trick of dynamic replication. Twenty-five years later, a multi-trillion dollar derivatives industry had grown up around these insights. And of these five founding fathers, only Black missed out on a Nobel prize due to his tragic early death. Black, Scholes and Merton’s option pricing breakthrough depended on the idea that hungry arbitrage traders were constantly prowling the markets, forcing prices to match theoretical predictions. The hedge fund Long-Term Capital Management – which included Scholes and Merton as partners – was founded with this principle at its core. So strong was LTCM’s faith in these theories that it used leverage to make enormous bets on small discrepancies from the predictions of finance theory. We all know what happened next. In August and September 1998, the fund lost $4.5 billion, roughly 90% of its value, and had to be bailed out by its 14 biggest counterparties. Global markets were severely disrupted for several months. All the shibboleths of finance theory, in particular diversification and replication, proved to be false gods, and the reputation of quants suffered badly as a result. Traditionally, finance texts take these shibboleths as a starting point, and build on them. Empirical verification is given scant attention, and the consequences of violating the key assumptions are often ignored completely. The result is a culture where markets get blamed if the theory breaks down, rather than vice versa, as it should be. Unsurprisingly, traders accuse some quants of having an ivory-tower mentality. Now, here come Bouchaud and Potters. Without eschewing rigour, they approach finance theory with a sceptical eye. All the familiar results -- efficient portfolios, Black–Scholes and so on -- are here, but with a strongly empirical flavour. There are also some useful additions to the existing toolkit, such as random matrix theory. Perhaps one day, theorists will show that the exact Black–Scholes regime is an unstable,
x

Foreword

pathological state rather than the utopia it was formerly thought to be. Until then, quants will find this book a useful survival guide in the real world.

Nick Dunbar
Technical Editor, Risk Magazine
Author of Inventing Money (John Wiley and Sons, 2000)
Preface

Finance is a rapidly expanding field of science, with a rather unique link to applications. Correspondingly, recent years have witnessed the growing role of financial engineering in market rooms. The possibility of easily accessing and processing huge quantities of data on financial markets opens the path to new methodologies, where systematic comparison between theories and real data not only becomes possible, but mandatory. This perspective has spurred the interest of the statistical physics community, with the hope that methods and ideas developed in the past decades to deal with complex systems could also be relevant in finance. Correspondingly, many holders of PhDs in physics are now taking jobs in banks or other financial institutions.

However, the existing literature roughly falls into two categories: either rather abstract books from the mathematical finance community, which are very difficult for people trained in natural sciences to read, or more professional books, where the scientific level is usually quite poor. In particular, there is in this context no book discussing the physicists’ way of approaching scientific problems, in particular a systematic comparison between ‘theory’ and ‘experiments’ (i.e. empirical results), the art of approximations and the use of intuition. Moreover, even in excellent books on the subject, such as the one by J. C. Hull, the point of view on derivatives is the traditional one of Black and Scholes, where the whole pricing methodology is based on the construction of riskless strategies. The idea of zero risk is counter-intuitive and the reason for the existence of these riskless strategies in the Black–Scholes theory is buried in the premises of Ito’s stochastic differential rules.

It is our belief that a more intuitive understanding of these theories is needed for a better overall control of financial risks. The models discussed in Theory of

1 There are notable exceptions, such as the remarkable book by J. C. Hull, Futures, Options and Other Derivatives, Prentice Hall, 1997.

Financial Risk are devised to account for real markets’ statistics where the construction of riskless hedges is in general impossible. The mathematical framework required to deal with these cases is however not more complicated, and has the advantage of making the issues at stake, in particular the problem of risk, more transparent.

Finally, commercial software packages are being developed to measure and control financial risks (some following the ideas developed in this book).3 We hope that this book can be useful to all people concerned with financial risk control, by discussing at length the advantages and limitations of various statistical models.

Despite our efforts to remain simple, certain sections are still quite technical. We have used a smaller font to develop more advanced ideas, which are not crucial to understanding of the main ideas. Whole sections, marked by a star (*), contain rather specialized material and can be skipped at first reading. We have tried to be as precise as possible, but have sometimes been somewhat sloppy and non-rigorous. For example, the idea of probability is not axiomatized: its intuitive meaning is more than enough for the purpose of this book. The notation $P(\cdot)$ means the probability distribution for the variable which appears between the parentheses, and not a well-determined function of a dummy variable. The notation $x \to \infty$ does not necessarily mean that x tends to infinity in a mathematical sense, but rather that x is large. Instead of trying to derive results which hold true in any circumstances, we often compare order of magnitudes of the different effects: small effects are neglected, or included perturbatively.4

Finally, we have not tried to be comprehensive, and have left out a number of important aspects of theoretical finance. For example, the problem of interest rate derivatives (swaps, caps, swaptions...) is not addressed – we feel that the present models of interest rate dynamics are not satisfactory (see the discussion in Section 2.6). Correspondingly, we have not tried to give an exhaustive list of references, but rather to present our own way of understanding the subject. A certain number of important references are given at the end of each chapter, while more specialized papers are given as footnotes where we have found it necessary.

This book is divided into five chapters. Chapter 1 deals with important results in probability theory (the Central Limit Theorem and its limitations, the theory of extreme value statistics, etc.). The statistical analysis of real data, and the empirical determination of the statistical laws, are discussed in Chapter 2. Chapter 3 is concerned with the definition of risk, value-at-risk, and the theory of optimal

3 For example, the software Profiler, commercialized by the company ATSM, heavily relies on the concepts introduced in Chapter 3.

4 $a \simeq b$ means that a is of order b, $a \ll b$ means that a is smaller than, say, $b/10$. A computation neglecting terms of order $(a/b)^2$ is therefore accurate to 1%. Such a precision is usually enough in the financial context, where the uncertainty on the value of the parameters (such as the average return, the volatility, etc.), is often larger than 1%.
portfolio, in particular in the case where the probability of extreme risks has to be minimized. The problem of forward contracts and options, their optimal hedge and the residual risk is discussed in detail in Chapter 4. Finally, some more advanced topics on options are introduced in Chapter 5 (such as exotic options, or the role of transaction costs). Finally, a short glossary of financial terms, an index and a list of symbols are given at the end of the book, allowing one to find easily where each symbol or word was used and defined for the first time.

This book appeared in its first edition in French, under the title: Théorie des Risques Financiers, Aléa-Saclay-Eyrolles, Paris (1997). Compared to this first edition, the present version has been substantially improved and augmented. For example, we discuss the theory of random matrices and the problem of the interest rate curve, which were absent from the first edition. Furthermore, several points have been corrected or clarified.

Acknowledgements

This book owes a lot to discussions that we had with Rama Cont, Didier Sornette (who participated to the initial version of Chapter 3), and to the entire team of Science and Finance: Pierre Cizeau, Laurent Laloux, Andrew Matacz and Martin Meyer. We want to thank in particular Jean-Pierre Aguilar, who introduced us to the reality of financial markets, suggested many improvements, and supported us during the many years that this project took to complete. We also thank the companies ATSM and CFM, for providing financial data and for keeping us close to the real world. We also had many fruitful exchanges with Jeff Miller, and also with Alain Arnéodo, Aubry Miens, Erik Aurell, Martin Baxter, Jean-François Chauwin, Nicole El Karoui, Stefano Galluccio, Gaëlle Gego, Giulia Iori, David Jeammet, Imre Kondor, Jean-Michel Lasry, Rosario Mantegna, Marc Mézard, Jean-François Muzy, Nicolas Sagna, Farhat Selmi, Gene Stanley, Ray Streater, Christian Walter, Mark Wexler and Karol Zyczkowski. We thank Claude Godrèche, who edited the French version of this book, for his friendly advice and support. Finally, J.-P.B. wants to thank Elisabeth Bouchaud for sharing so many far more important things.

This book is dedicated to our families, and more particularly to the memory of Paul Potters.

Paris, 1999

Jean-Philippe Bouchaud
Marc Potters

With whom we discussed Eq. (1.24), which appears in his Diplomarbeit.