Some of the greatest scientists, including Poisson, Faraday, Maxwell, Rayleigh, and Einstein, have contributed to the theory of composite materials. Mathematically, it is the study of partial differential equations with rapid oscillations in their coefficients. Although extensively studied for more than 100 years, an explosion of ideas in the last four decades (and particularly in the last two decades) has dramatically increased our understanding of the relationship between the properties of the constituent materials, the underlying microstructure of a composite, and the overall effective (electrical, thermal, elastic) moduli that govern the macroscopic behavior. This renaissance has been fueled by the technological need for improving our knowledge base of composites, by the advance of the underlying mathematical theory of homogenization, by the discovery of new variational principles, by the recognition of how important the subject is to solving structural optimization problems, and by the realization of the connection with the mathematical problem of quasiconvexification. This book surveys these exciting developments at the frontier of mathematics and presents many new results.

Graeme W. Milton is a Distinguished Professor in the Mathematics Department at the University of Utah. He has been awarded Sloan and Packard Fellowships and is on the editorial board of the *Archive for Rational Mechanics and Analysis*. He has published more than 70 papers on the theory of composite materials.

CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS

Series Editors P. G. CIARLET, A. ISERLES, R. V. KOHN, M. H. WRIGHT

6 The Theory of Composites

The *Cambridge Monographs on Applied and Computational Mathematics* reflects the crucial role of mathematical and computational techniques in contemporary science. The series publishes expositions on all aspects of applicable and numerical mathematics, with an emphasis on new developments in this fast-moving area of research.

State-of-the-art methods and algorithms as well as modern mathematical descriptions of physical and mechanical ideas are presented in a manner suited to graduate research students and professionals alike. Sound pedagogical presentation is a prerequisite. It is intended that books in the series will serve to inform a new generation of researchers.

Also in this series:

A Practical Guide to Pseudospectral Methods, Bengt Fornberg

Dynamical Systems and Numerical Analysis, A. M. Stuart and A. R. Humphries

Level Set Methods and Fast Marching Methods, J. A. Sethian

The Numerical Solution of Integral Equations of the Second Kind, Kendall E. Atkinson

Orthogonal Rational Functions, Adhemar Bultheel, Pablo González-Vera, Erik Hendiksen, and Olav Njåstad

The Theory of Composites

GRAEME W. MILTON University of Utah

Cambridge University Press 0521781256 - The Theory of Composites Graeme W. Milton Frontmatter More information

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > > http://www.cambridge.org

© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times Roman 10/13 pt. System LATEX [AU]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data

Milton, Graeme Walter, 1956-

The theory of composites / Graeme W. Milton.

p. cm. - (Cambridge monographs on applied and computational mathematics ; 6)

Includes bibliographical references and index.

ISBN 0-521-78125-6

1. Composite materials. 2. Differential equations, Partial. 3. Homogenization (Differential equations)

I. Title. II. Series.

TA418.9.C6 M58 2001

620.1'18 - dc21

00-052936

ISBN 0 521 78125 6 hardback

Cover drawing of a composite material with a negative Poisson's ratio, used by permission from G. W. Milton and A. V. Cherkaev, "Which elasticity tensors are realizable?" *ASME Journal of Engineering Materials and Technology* **117**: 483–93 (1995).

To John, Winsome, and John

Contents

	List of figures	xix
		xxiii xxvi
1	Introduction	1
1.1	What are composites, and why study them?	1
1.2	What makes composites useful?	2
1.3	The effective tensors of composites	5
1.4	Homogenization from an intuitive viewpoint	7
1.5	Periodic homogenization	8
1.6	Homogenization in random media	11
1.7	Homogenization in the settings of G -, H -, and Γ -convergence	12
	References	14
2	Some equations of interest and numerical approaches to solving them	19
2.1	The conductivity and related equations	19
2.2	Magnetotransport and convection enhanced diffusion	21
2.3	The elasticity equations	22
2.4	Thermoelectric, piezoelectric, and similar coupled equations	28
2.5	Thermoelasticity and poroelasticity	30
2.6	Pyroelectric equations and their relation to conductivity and magnetotrans- port equations in fibrous composites	33
2.7	The equivalence between elasticity in fibrous composites and two-dimensional piezoelectricity and thermoelasticity	35
2.8	Numerical methods for finding effective tensors References	38 40

Sections or chapters marked with a dagger (\dagger) can be skipped on a first reading of the book. They contain material that is not central to the book, or they include more advanced or more technical subject matter. However, they also sometimes address topics that are at the forefront of current research.

x	Contents	
3	Duality transformations in two-dimensional media	47
3.1	Duality transformations for conductivity	47
3.2	Phase interchange identities for two-phase media	49
3.3	The conductivity of two-dimensional polycrystals	50
3.4	Duality transformations for pyroelectricity	51
3.5	Duality transformations for elasticity	51
3.6	Duality transformations for other elastic media	53
3.7	The effective shear modulus of incompressible two-dimensional polycrys-	
	tals and symmetric materials	55
	References	57
4	Translations and equivalent media	59
4.1	Translations applied to conductivity	59
4.2	A formula for the Hall coefficient in two-dimensional polycrystals	60
4.3	A formula for the Hall coefficient in two-phase, two-dimensional media [†]	61
4.4	Inhomogeneous translations for three-dimensional conductivity	65
4.5	Translations for elasticity	66
4.6	A proof that the Young's modulus of a metal plate with holes does not	
	depend on the Poisson's ratio of the metal	67
4.7	The elastic moduli of certain two-dimensional polycrystals and symmetric	
	materials	69
	References	70
5	Some microstructure-independent exact relations	75
5.1	The uniform field argument	75
5.2	The bulk modulus of polycrystals with cubic symmetry	76
5.3	The elastic moduli of a composite with a constant shear modulus	77
5.4	The thermal expansion tensor and constant of specific heat in a composite	
	of two isotropic phases	79
5.5	The extension to nonlinear thermal expansion	81
5.6	The thermal expansion tensor and specific heat in composites of two	
	anisotropic phases	82
5.7	Exact thermoelastic relations for polycrystals	83
5.8	The effective poroelastic moduli of two-phase media	84
5.9	The elastic moduli of two-phase fibrous composites	86
5.10	Exact relations for pyroelectric, conductivity, and magnetotransport equations	87
5.11	The bulk modulus of a suspension of elastic particles in a fluid References	88 89
6	Exact relations for coupled equations	93
6.1	The covariance property of the effective tensor	93
6.2	The reduction to uncoupled equations for two-phase composites with	
	isotropic phases	95
6.3	Translations for coupled equations	97
6.4	Elasticity as a special case of coupled field equations	98
6.5	Equivalent coupled field problems in two dimensions	101

Contents

xi

6.6	The two-dimensional equations as a system of first-order partial differential equations	103
6.7	The covariance property of the fundamental matrix	104
6.8	Linking special classes of antiplane and planar elasticity problems	105
6.9	Expressing the fields in each phase in terms of analytic functions [†]	106
	References	110
7	Assemblages of spheres, ellipsoids, and other neutral inclusions	113
7.1	The coated sphere assemblage	113
7.2	Multicoated sphere assemblages	117
7.3	A phase interchange identity and inequality	118
7.4	Assemblages of spheres with varying radial and tangential conductivity	120
7.5	The conductivity of Schulgasser's sphere assemblage	121
7.6	The conductivity of an assemblage of spheres with an isotropic core and	
	polycrystalline coating	123
7.7	Assemblages of ellipsoids and their associated Ricatti equations [†]	124
7.8	The conductivity of an assemblage of coated ellipsoids [†]	127
7.9	A solution of the elasticity equations in the coated ellipsoid assemblage [†]	130
7.10	Expressions for the depolarization factors [†]	132
7.11	Neutral coated inclusions References	134 139
	Kelefences	139
8	Tricks for generating other exactly solvable microgeometries	143
8.1	Modifying the material moduli so the field is not disturbed	143
8.2	Assemblages of coated spheres and coated ellipsoids with anisotropic cores	144
8.3	Making an affine coordinate transformation	145
8.4	The conductivity of an assemblage of coated ellipsoids with an anisotropic	1.10
0.5	core and coating	148
8.5	Making a curvilinear coordinate transformation [†]	149
8.6 8.7	Quasiconformal mappings	152
0.7	Generating microgeometries from fields References	153 155
	References	155
9	Laminate materials	159
9.1	The history of laminates and why they are important	159
9.2	Elementary lamination formulas	159
9.3	Lamination formulas when the direction of lamination is arbitrary	164
9.4 9.5	Tartar's lamination formula for two-phase simple and coated laminates	165
9.5	Lamination formulas for elasticity, thermoelasticity, thermoelectricity, and piezoelectricity	167
9.6	The lamination formula for a coated laminate with anisotropic coating and	
	anisotropic core	171
9.7	Reference transformations	172
9.8	Explicit formulas for the conductivity and elasticity tensors of a coated	170
0.0	laminate	173
9.9 0.10	Ordinary differential laminates [†]	175
9.10	Partial differential laminates† References	177 181
	NEIEIEILES	101

xii	Contents	
10	Approximations and asymptotic formulas	185
10.1	Polarizability of a dielectric inclusion	185
10.2	Dielectric constant of a dilute suspension of inclusions to the first order in the volume fraction	188
10.3	Dielectric constant of a suspension of well-separated spheres to the second order in the volume fraction	189
10.4	The Maxwell approximation formula	192
10.5	The effective medium approximation for the dielectric constant of an aggregate with spherical grains	195
10.6	Average field approximations [†]	198
10.7	The differential scheme for the effective conductivity of a suspension of spheres	201
10.8	The effective medium approximation as the attractor of a differential scheme	203
10.9	Approximation formulas for effective elastic moduli	204
	Asymptotic approximation formulas	207
10.11	Critical exponents and universality	211
	References	213
11	Wave propagation in the quasistatic limit	221
11.1	Electromagnetic wave propagation in the quasistatic limit	222
11.2	Electromagnetic signals can propagate faster in a composite than in the constituent phases	228
11.3	Elastic wave propagation in the quasistatic limit	230
11.4	The correspondence principle and the attenuation of sound in a bubbly fluid	233
11.5	Transformation to real equations	234
11.6	Correspondence with thermoelectricity in two dimensions	237
11.7	Resonance and localized resonance in composites [†]	238
	References	242
12	Reformulating the problem of finding effective tensors	245
12.1 12.2	Resolving a periodic field into its three component fields: The Γ -operators A wider class of partial differential equations with associated effective	245
	tensors†	248
12.3	A related Γ-operator	250
12.4	The equation satisfied by the polarization field	251
12.5	The effective tensor of dilute suspensions of aligned ellipsoids	252
12.6	Expressions for the action of the Γ -operators in real space	257
12.7	A framework for defining effective tensors in a more general context	260
12.8	Various solutions for the fields and effective tensor	261
12.9	The duality principle	262
12.10	The effective tensor of the adjoint equation	263
12.11	Magnetotransport and its equivalence to thermoelectricity in two dimensions References	264 267

	Contents	xiii
13	Variational principles and inequalities	271
13.1	Classical variational principles and inequalities	271
13.2	Monotonicity of the effective tensor	274
13.3	Null Lagrangians	274
13.4	Variational principles for problems with a complex or other non-self-adjoint	076
125	tensor	276
13.5	Hashin-Shtrikman variational principles and inequalities	278 281
13.6 13.7	Relation between the Hashin-Shtrikman and classical variational inequalities [†] Variational inequalities for nonlinear media	281
15.7	References	282 286
14	Series expansions for the fields and effective tensors	291
14.1	Expanding the formulas for the effective tensors and fields in power series	291
14.2	The series expansion in a composite to second order	292
14.3	Thermoelastic composites for which the third and higher order terms in the	
	expansion vanish	294
14.4	A large class of exactly solvable materials with complex moduli [†]	295
14.5	Reducing the dimensionality of the problem [†]	297
14.6	Convergence of the expansions and the existence and uniqueness of the	• • • •
	fields and effective tensors	298
14.7	Convergence when L is not self-adjoint [†]	300
14.8	Extending the domain of convergence [†]	301
14.9 14.10	A series with a faster convergence rate	302 304
14.10		304
14.11	expansions	306
	References	309
		507
15	Correlation functions and how they enter series expansions $\!\!\!\dagger$	313
15.1	Expressing the third-order term of the series expansion in terms of correla-	
	tion functions	313
15.2	The terms in the series expansion for random media	315
15.3	Correlation functions for penetrable spheres	319
15.4	Correlation functions for cell materials	320
15.5	Reduced correlation functions	323
15.6	Expansions for two-phase random composites with geometric isotropy	327
15.7	Series expansions for cell materials with geometric isotropy References	333 335
	Kelelences	333
16	Other perturbation solutions	341
16.1	Effect of a small variation in the material moduli	341
16.2	Application to weakly coupled equations of thermoelectricity or piezoelec-	240
16.3	tricity Application to computing the effective Hall coefficient	342 344
16.3 16.4	The variance of the electric field in a two-phase conducting composite	344 344
16.5	Bounds on the conductivity tensor of a composite of two isotropic phases	344 346
16.6	The change in the effective tensor due to a shift in the phase boundary [†]	347

xiv	Contents	
16.7	Perturbing the lamination directions in a multiple-rank laminate [†] References	351 352
17	The general theory of exact relations and links between effective tensors	355
17.1	Links between effective tensors as exact relations: The idea of embedding	355
17.2	Necessary conditions for an exact relation	357
17.3	Sufficient conditions for an exact relation	359
17.4	An exact formula for the shear modulus of certain three-dimensional	
	polycrystals	361
17.5	More exact relations for coupled equations [†]	362
17.6	Exact relations with limited statistical information	363
17.7	Additional necessary conditions for an exact relation [†]	365
	References	367
18	Analytic properties	369
18.1	Analyticity of the effective dielectric constant of two-phase media	369
18.2	Analyticity of the effective tensor for problems involving many eigenvalues	370
18.3	Integral representations for the effective tensor for problems involving two	075
10.4	eigenvalues	375
18.4	The correspondence between energy functions and microgeometries	381
18.5	The correspondence between effective conductivity functions and microge- ometries in two dimensions [†]	383
18.6	Integral representations for problems involving more than two eigenvalues:	202
10.0	The trajectory method	387
18.7	The lack of uniqueness in the choice of integral kernel: Constraints on the	567
10.7	measure [†]	389
18.8	Integral representations for a broader class of composite problems [†]	391
10.0	References	391
19	<i>Y</i> -tensors	397
19.1	The Y-tensor in two-phase composites	397
19.2	The <i>Y</i> -tensor in multiphase composites	399
19.3	A formula for the effective thermoelastic tensor in terms of the elasticity	102
10.4	Y-tensor	403
19.4	The Hilbert space setting for the Y-tensor problem [†]	406
19.5	The Y-tensor polarization problem [†]	408
19.6	Variational inequalities and principles for <i>Y</i> -tensors [†]	409
	References	411
20	<i>Y</i> -tensors and effective tensors in electrical circuits ⁺	413
20.1	The incidence matrix and the fields of potential drops and currents	413
20.2	The subdivision of bonds in an electrical circuit	415
20.3	The Y-tensor of the electrical circuit	417
20.4	The effective tensor of the passive network	418
20.5	The interpretation of the subspace $\mathcal{U}^{(1)}$	419
20.6	The relation between the effective tensor and the Y-tensor in an electrical	
	circuit	421
	References	423

	Contents	XV
21	Bounds on the properties of composites	425
21.1	Why are bounds useful?	425
21.2	What are bounds?	426
21.3	The role of bounds in structural optimization: A model problem	429
	References	433
22	Classical variational principle bounds	437
22.1	Multiphase conducting composites attaining energy bounds	437
22.2	Optimal bounds on the conductivity of isotropic polycrystals	439
22.3 22.4	Optimal bounds on the bulk modulus of isotropic polycrystals The complete characterization of the set $G_f U e_0$ for <i>n</i> -phase composites	441
22.4	and polycrystals	444
22.5	The <i>G</i> -closure in two dimensions of an arbitrary set of conducting materials	446
22.6	Bounds on complex effective tensors [†]	450
	References	452
23	Bounds from the Hashin-Shtrikman variational inequalities	457
23.1	Bounds on the effective conductivity of an isotropic composite of <i>n</i>	
	isotropic phases	457
23.2	Optimal bounds on the effective conductivity of an anisotropic composite	
	of two isotropic phases	461
23.3	Bounds for two-phase, well-ordered materials	462
23.4	Bounds on the energy that involve only the volume fractions	465
23.5	Bounds on the effective tensor that involve only the volume fractions	468
23.6	Bounds for two-phase composites with non-well-ordered tensors [†]	474
23.7	Bounding the complex effective moduli of an isotropic composite of two	176
aa 0	isotropic phases†	476
23.8	Using quasiconformal mappings to obtain bounds	480
23.9	Optimal two-dimensional microgeometries: Reduction to a Dirichlet	401
22.10	problem [†]	481 487
25.10	Bounds for cell polycrystals References	487 490
		470
24	Bounds using the compensated compactness or translation method	499
24.1	The translation bound and comparison bound	499
24.2	Upper bounds on the bulk modulus of two-phase composites and polycrys-	
	tals in two dimensions	500
24.3	Allowing quasiconvex translations	503
24.4	A lower bound on the effective bulk modulus of a three-dimensional, two-	
a (-	phase composite	504
24.5	Using the idea of embedding to extend the translation method	505
24.6	Bounds on the conductivity tensor of a composite of two isotropic phases	506
24.7	The translation bounds as a corollary of the comparison bounds [†]	509
24.8	Embedding in a higher order tensorial problem: A lower bound on the	510
24.0	conductivity tensor of a polycrystal	510 512
24.9	A geometric characterization of translations [†] Translation bounds on the <i>Y</i> -tensor	512 516
24.10		510

xvi	Contents	
24.12	Deriving the trace bounds [†] Mixed bounds Volume fraction independent bounds on the conductivity of a mixture of	518 519
	two isotropic phases Bounds correlating different effective tensors References	520 522 525
25	Choosing the translations and finding microgeometries that attain the	520
25.1	bounds [†] Other derivations of the translation bounds and their extension to nonlinear	529
	problems	529
25.2	Extremal translations	532
25.3	Attainability criteria for the comparison bounds	535
25.4	Isotropic polycrystals with minimum conductivity constructed from a fully anisotropic crystal	537
25.5	Attainability criteria for the translation bounds	541
25.5 25.6	Attainability criteria for the Hashin-Shtrikman-Hill bounds on the conduc-	541
25.0	tivity and bulk modulus	542
25.7	A general procedure for finding translations that generate optimal bounds	
	on sums of energies	544
25.8	Translations for three-dimensional elasticity	547
	References	550
26	Bounds incorporating three-point correlation functions [†]	553
26.1	A brief history of bounds incorporating correlation functions	553
26.2	Three-point bounds on the conductivity of a two-phase mixture	554
26.3	Three-point bounds on the elastic moduli of a two-phase mixture	557
26.4	Correlation function independent elasticity bounds: Improving the Hashin-	
	Shtrikman-Hill-Walpole bounds	558
26.5	Using the translation method to improve the third-order bounds	560
26.6	Third-order bounds from cross-property bounds	561
26.7 26.8	General third-order bounds for a two-phase composite Third order bounds for two phase composites with geometrical instrony	562
26.8	Third-order bounds for two-phase composites with geometrical isotropy References	564 564
	Kelelences	504
27	Bounds using the analytic method	569
27.1	A brief history of bounds derived using the analytic method	569
27.1	A topological classification of rational conductivity functions	571
27.2	Bounds that incorporate a sequence of series expansion coefficients	573
27.3	Relation between the bounds and Padé approximants	578
27.1	Bounds incorporating known real or complex values of the function and	5,0
	series expansion coefficients	579
27.6	Numerical computation of the bounds [†]	583
27.7	Bounds for two-dimensional isotropic composites [†]	585
27.8	Bounds for symmetric materials [†]	588
27.9	Reducing the set of independent bounds	589

	Contents	xvii
27.10	Proving elementary bounds using the method of variation of poles and	
07.11	residues	590
27.11	Proving the bounds using the method of variation of poles and zeros References	592 596
	Kelelences	590
28	Fractional linear transformations as a tool for generating bounds	603
28.1	Eliminating the constraints imposed by known series expansion coefficients	603
28.2 28.3	Eliminating the constraints imposed by known real values of the function An alternative approach that treats the components on a symmetric basis	607 610
28.4	The extension of the fractional linear transformations to matrix-valued	010
	analytic functions	614
	References	617
29	The field equation recursion method ⁺	619
29.1	Associations between operations on analytic functions and operations on	017
	subspace collections	619
29.2	Hints of a deeper connection between analytic functions and subspace	
20.2	collections	624
29.3 29.4	The field equation recursion method for two-phase composites Representing the operators as infinite-dimensional matrices	626 631
29.4 29.5	The field equation recursion method for multiphase composites with	031
27.0	isotropic components	633
29.6	Bounds on the energy function of a three-phase conducting composite	638
	References	641
30	Properties of the G-closure and extremal families of composites	643
30.1	An equivalence between G-closure problems with and without prescribed	
	volume fractions	643
30.2	Stability under lamination and the convexity properties of the <i>G</i> -closure	645
30.3	Characterizing the <i>G</i> -closure through minimums of sums of energies and complementary energies	647
30.4	Characterization of the G-closure by single energy minimizations	650
30.5	Extremal families of composites for elasticity: Proving that any positive-	
	definite tensor can be realized as the effective elasticity tensor of a	
	composite†	652
30.6	An extremal family of unimode materials for two-dimensional elasticity [†]	658
30.7 30.8	An extremal family of bimode materials for two-dimensional elasticity [†] Extremal materials for three-dimensional elasticity	663 666
50.0	References	667
		007
31	The bounding of effective moduli as a quasiconvexification problem	671
31.1	Quasiconvexification problems in elasticity theory	671
31.2	The independence of the quasiconvexified function on the shape and size of	<i>(</i> - <i>i</i>
21.2	the region Ω	674 675
31.3	Replacing the affine boundary conditions with periodic boundary conditions	675

xviii	Contents	
31.4	The equivalence of bounding the energy of multiphase linear composites	
	and quasiconvexification	677
31.5	The link between the lamination closure and Λ -convexification	679
31.6	Quasiconvex hulls and rank-1 convex hulls	681
31.7	Laminate fields built from rank-1 incompatible matrices	683
31.8	Example of a rank-1 function that is not quasiconvex [†]	684
31.9	A composite with an elasticity tensor that cannot be mimicked by a	
	multiple-rank laminate material [†]	690
	References	695
	Author index	699
	Subject index	711

List of figures

1.1 1.2	A negative Poisson's ratio microstructure A porous structure with a negative thermal expansion coefficient	3 4
1.2	A way to think about the function $\sigma_\epsilon(x) = \sigma(x, x/\epsilon)$	9
3.1	Two-dimensional structures with conductivity $\sigma_* = \sqrt{\sigma_1 \sigma_2}$	50
4.1	The idea of translation	60
4.2	Symmetrizing the conductivity tensor	63
4.3	Poisson's ratio of plates containing holes	68
5.1	Adjusting temperature and pressure so a bimetal strip does not bend	79
7.1	The coated sphere as a neutral inclusion	114
7.2	The Hashin coated sphere assemblage	114
7.3	The doubly coated sphere assemblage for a three-component material	118
7.4	The prototype sphere in the Schulgasser sphere assemblage	122
7.5	The coated elliptical cylinder assemblage	125
7.6	Inclusions that can and cannot be made neutral	136
7.7	Neutral inclusions with perfect interfaces and an insulating core	138
8.1	The stretched confocal coated ellipsoid assemblage	149
9.1	A three-dimensional, two-phase laminate	160
9.2	A two-dimensional, two-phase, second-rank laminate	160
9.3	Maxwell's third-rank coated laminate	166
9.4	Tree structure representing a finite-rank laminate	178
9.5	Approximation to a partial differential laminate	179
10.1	A material realizing the effective medium approximation	197
10.2	Conductivity of a fluid-filled porous medium of fused glass beads	202
10.3	Poisson's ratio of a checkerboard with dissimilar phases	208
10.4	Treating an assemblage of inclusions as a resistor network	209
11.1	Equivalence of lattices of coated cylinders and solid cylinders	241

xx	List of figures	
12.1	Partitioning of space used to compute the action of Γ	258
16.1	Perturbation of the position of an interface	348
18.1 18.2	Second-rank laminates that mimic the conductivity function The eigenvectors of σ_* can rotate as σ_1/σ_2 is varied	383 384
20.1	The Wheatstone bridge circuit	414
21.1 21.2	Values of the average current in a two-dimensional polycrystal A model optimization problem	427 430
22.1 22.2 22.3 22.4	A polycrystal with the largest isotropic effective conductivity Laminates in which either the strain or stress field equals I Values of the average current in a multiphase composite Construction of GU for two-dimensional conductivity	441 443 445 448
23.1 23.2 23.3 23.4 23.5 23.6	A three-phase assemblage attaining the Hashin-Shtrikman bounds The stiffest isotropic two-phase material Bounds on the complex bulk modulus Solving a Dirichlet problem to find optimal structures The periodic Vigdergauz microstructure Sigmund's structures attaining the Hashin-Shtrikman bounds	459 472 479 481 486 486
24.1 24.2 24.3	Translations as ellipsoids in a cavity Translations as planes that lie above a cut cylinder Convexification of the cut cylinder	514 515 516
25.1	Ellipsoids corresponding to extremal translations	534
27.1 27.2 27.3	Bounds on the complex dielectric constant of a two-phase material Different topological types of rational conductivity functions Bounds on the conductivity of a cubic array of spheres	570 573 576
28.1	Action of the Y-transformation in the complex plane	613
29.1	Bounds on the complex conductivity of a three-phase composite	640
30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9	The characterization of <i>G</i> -closures by energy minimums The Poisson's ratio of the herringbone laminate and bounds A simple laminate is a bimode extremal material A bimode material supporting a compressive stress A bimode material supporting a shear stress A unimode material approximating to the oblique box laminate A unimode material approximating the herringbone laminate A bimode material obtained by successive lamination The diamond lattice of linkages	650 653 655 655 656 659 661 664 667
31.1 31.2	The relation between the various convexifications of a function Why shape memory materials remember their shape	674 682

	List of figures	xxi
31.3	Building a field from gradients with no rank-1 connections	685
31.4	The infinite-rank cyclic laminate field corresponding to the previous figure	685
31.5	A field ∇u that cannot be mimicked by a laminate field	687
31.6	Values of $\langle \nabla u \rangle$ for a laminate field taking the seven specified values	688

Preface

This book is intended to be a self-contained introduction to the theory of composite materials, encompassing the electrical, thermal, magnetic, thermoelectric, mechanical, piezoelectric, poroelastic, and electromagnetic properties. It is intended not only for mathematicians, but also for physicists, geophysicists, material scientists, and electrical and mechanical engineers. Consequently, the results are not stated in the format of lemmas, propositions, and theorems. Instead, the focus is on explaining the central ideas and providing proofs that avoid unnecessary technicalities. The book is suitable as a textbook in an advanced-level graduate course, and also as a reference book for researchers working on composites or in related areas.

The field of composite materials is enormous. That's good, because it means that there are many avenues of research to explore. The drawback is that a single book cannot adequately cover the whole field. The main focus of this book is on the relation between the microstructure of composites and the effective moduli that govern their behavior. This choice reflects my research interests, and is also the starting point for many other avenues of research on composites. Topics not treated here include fatigue, fracture, and plastic yielding in composites, which are major factors in determining their strength (Sih and Tamuzs 1979; Sih and Chen 1981; Sih and Skudra 1985; Talreja 1994; Hull and Clyne 1996; Nemat-Nasser and Hori 1999); the propagation, localization, and scattering of waves in composites at wavelengths comparable to or smaller than the size of the inhomogeneities (Sheng 1990, 1995; Chew 1995) [of particular recent interest is the study of photonic band gap materials (Joannopoulos, Meade, and Winn 1995), which may lead to the development of new lasers and could be important in photonic circuitry]; flow in porous media, which has obvious applications to the management of oil and water reservoirs and to understanding the seepage of waste fluids (Scheidegger 1974; Sanchez-Palencia 1980); geometrical questions such as the microstructures of rocks (Pittman 1984) and dense random packings of hard spheres (Cargill III 1984; Torquato, Truskett, and Debenedetti 2000); and the many aspects of percolation theory (Kesten 1982; Stauffer and Aharony 1992; Grimmett 1999).

Other important topics, such as homogenization theory (discussed in chapter 1 on page 1), numerical methods for solving for the fields in composites, and hence for determining their effective moduli (discussed in section 2.8 on page 38), the nonlinear theory of composites (discussed in section 13.7 on page 282), structural optimization (discussed in section 21.3 on page 429), and quasiconvexification (discussed in chapter 31 on page 671) are not treated in the depth that they deserve. The reader is encouraged to refer to the references cited in those sections to gain a more complete understanding of these subjects.

The Contents gives a good indication of what topics the book covers. Briefly, the first chapter discusses the motivation for studying composites and outlines homogenization the-

xxiv

Preface

ory from various viewpoints. The second chapter introduces some of the different equations considered in the book, and numerical methods for solving these equations are mentioned. Chapters 3 to 9 cover exact results for effective moduli, relations between (seemingly unconnected) effective moduli and microstructures for which at least some of the effective moduli can be exactly determined (such as coated sphere assemblages, laminates, and their generalizations). Chapter 10 discusses some of the many approximations that have been developed for estimating effective moduli and the asymptotic formulas that are valid in certain high-contrast materials. Chapter 11 shows how wave propagation in composites, at wavelengths much larger than the microstructure, can be treated by allowing the moduli, fields, and effective moduli to be complex, or alternatively by keeping everything real and doubling the size of the system of equations being considered.

Chapters 12 to 18 cover the general theory concerning effective tensors: the formulation as a problem in Hilbert space; various variational principles; convergent series expansions for the effective tensor in powers of the variation in the local tensor field; how (for random composites) the terms in the series expansion can be expressed in terms of correlation functions; other perturbation solutions for the effective tensor; the general theory of exact relations in composites; and, finally, the analytic properties of the effective tensor as a function of the tensors of the constituent tensors. These chapters (due to their generality) are harder to read than those in the first part of the book. The first part of chapter 12 is essential reading since it introduces some of the basic notation used in subsequent chapters. Also, chapter 13, on variational principles, should certainly be read, and will strengthen the reader's understanding of the material in chapter 12. Chapters 19 and 20 are optional. They introduce the *Y*-tensor, which in a multicomponent composite gives information about the average fields in each phase, and which in electrical circuits determines the response of the circuit. The theory of *Y*-tensors parallels that of effective tensors, and many bounds on effective tensors take a simpler form when expressed in terms of the *Y*-tensor.

Chapter 21 introduces the problem of bounding effective tensors and discusses its importance in optimal design problems. Chapters 22 to 26 describe variational methods for bounding effective tensors, including the Hashin-Shtrikman approach, the translation method (or compensated compactness) approach, and those approaches based on classical variational principles. Chapters 27 and 28 show how the analyticity properties of the effective tensor lead to large families of bounds, which usually are the simplest rational approximants of the function compatible with what is known about it. Chapter 29 outlines the parallel between operations on analytic functions and operations on subspace collections, and shows how this leads to bounds for multicomponent composites.

Chapter 30 discusses general properties and characterizations of the set of effective tensors obtained as the microstructure is varied over all configurations. The set of elastic tensors that can be made by mixing a sufficiently compliant isotropic material with a sufficiently stiff isotropic material is shown to coincide with the set of all positive-definite fourth-order tensors satisfying the symmetries of elasticity tensors. Chapter 31 shows how problems of bounding effective tensors are equivalent to quasiconvexification problems, and vice versa. Finally, by extending a famous example of Šverák, an example is given of a seven-phase composite whose effective elastic tensor cannot be mimicked by any (multiple-rank) laminate material.

There are many other related books that present the theory of composites from other perspectives. Those that are closest in their scope include the following. The report of Hashin (1972), the classic book of Christensen (1979), the books of Agarwal and Broutman (1990), Matthews and Rawlings (1994), and Hull and Clyne (1996), and the recent book of Nemat-Nasser and Hori (1999) cover the subject with an emphasis on the mechanical properties of

Preface

XXV

composites. The book of Zhikov, Kozlov, and Oleinik (1994) covers the subject from a rigorous mathematical perspective. The volume edited by Cherkaev and Kohn (1997) contains translations of many significant mathematical papers, which previously were only available in French or Russian. The books of Allaire (2001) and Cherkaev (2000) cover the subject with an emphasis on structural optimization. The book of Ball and James (2001) surveys many problems where microstructure plays an influential role in determining macroscopic behavior. The book of Beran (1968) covers the statistical theory, using an approach that is different from the one presented in chapter 15 on page 313. The book of Torquato (2001) covers many topics with an emphasis on the statistical aspects of composites. There are also many review papers, including Willis (1981), Hashin (1983), Torquato (1991), Bergman and Stroud (1992), and Markov (2000). Additionally, there are many books on homogenization theory and on quasiconvexification, which are referenced in chapters 1 on page 1 and 31 on page 671.

It is a great pleasure to thank those colleagues and friends who contributed in many ways to this book. I would like to thank Ross McPhedran, who introduced me to the subject of composite materials when I was an undergraduate at Sydney University. I am greatly indebted to Michael Fisher for his critical comments during my Ph.D., which have had a lasting impact. I am grateful to George Papanicolaou for encouraging me to write this book. When I started writing, more than 13 years ago, it was just meant to be one-third of a book and certainly was not intended to be more than 700 pages in length. But I found it difficult to resist the temptation to include topics that seemed to tie in closely with what I had already written, and to include new developments such as novel families of neutral inclusions and the associated exactly solvable assemblages (section 7.11 on page 134), the theory of partial differential laminates (section 9.10 on page 177), the general theory of exact relations in composites (chapter 17 on page 355), the optimal microstructures of Sigmund attaining the Hashin-Shtrikman bounds (section 23.9 on page 481), an approach for finding suitable quasiconvex functions for obtaining bounds (section 25.7 on page 544), and a composite with an effective tensor that cannot be mimicked by laminates (section 31.9 on page 690). John Willis and Francois Murat are especially thanked for their help in arranging my visits to the University of Bath, and to the Université Paris VI, where major portions of the text were written, and where (in Paris) the counterexample of 31.9 on page 690 was discovered. I am grateful to numerous people for their constructive comments on sections of the text, including Leonid Berlyand, Andrei Cherkaev, Gilles Francfort, Ken Golden, Zvi Hashin, Robert Kohn, Mordehai Milgrom, Vincenzo Nesi, Sergey Serkov, and Luc Tartar. I am thankful to Eleen Collins for typing most of the references into BIBTFX. I am most indebted to Nelson Beebe for the absolutely terrific job he did in developing the software for the book style and referencing style, for automating the conversion of references to BIBTFX, for solving many technical problems, and for spotting many errors. I am also grateful to Thilagavathi Murugesan for her substantial help in checking most of the equations, to Sergei Serkov for scanning many of the figures, and to Elise Oranges for the great copyediting job she did. Additionally, I wish to thank Bob Kohn for suggesting Cambridge University Press, and David Tranah and Alan Harvey at Cambridge University Press for their continued interest and helpful suggestions. I am grateful to my partner, John Patton, and my parents, John and Winsome Milton, for their continued support throughout the whole work. It is a pleasure to dedicate this book to them.

I am exceedingly thankful to the Packard Foundation for support from a Packard fellowship between 1988 and 1993. This generous award allowed me to spend more time on research and on writing this book. I am also pleased to thank the National Science Foundation for continued support, through grants DMS-9402763, DMS-9501025, DMS-9629692,

xxvi

Preface

and DMS-9803748, and the Centre National de la Recherche Scientifique for supporting my visit to Université Pierre et Marie Curie in the fall of 1996.

While I hope that the derivations in the book are correct, and that work has been properly referenced, it is inevitable that there are still some errors and omissions. I would be grateful to learn about these. The Web site http://www.math.utah.edu/books/tcbook contains a list of known errors in the book, as well as the BIBTEX bibliographic database.

Salt Lake City, Utah October, 2001 Graeme W. Milton

References

- Agarwal, B. D. and L. J. Broutman 1990. *Analysis and Performance of Fiber Composites* (Second ed.). Society of Plastic Engineers (SPE) Monographs. New York / London / Sydney, Australia: John Wiley and Sons. xviii + 449 pp. ISBN 0-471-51152-8. {*xxiv*, *xxvi*}
- Allaire, G. 2001. *Shape Optimization by the Homogenization Method*. Berlin / Heidelberg / London / etc.: Springer-Verlag. 464 pp. ISBN 0-387-95298-5. {*xxv, xxvi, 426, 431, 433*}
- Ball, J. M. and R. D. James 2001. From Microscales to Macroscales in Materials. In preparation. {xxv, xxvi, 672, 695}
- Beran, M. J. 1968. *Statistical Continuum Theories*. New York: Interscience Publishers. xv + 424 pp. ISBN 0-470-06861-2. {*xxv, xxvi, 11, 15, 291, 309, 489, 491*}
- Bergman, D. J. and D. Stroud 1992. Physical properties of macroscopically inhomogeneous media. In H. Ehrenreich and D. Turnbull (eds.), *Solid State Physics: Advances in Research and Applications*, pp. 147–269. New York: Academic Press. ISBN 0-12-607746-0. {*xxv, xxvi*}
- Cargill III, G. S. 1984. Radial distribution functions and microgeometry of dense random packings of hard spheres. In D. L. Johnson and P. N. Sen (eds.), *Physics and Chemistry* of Porous Media: Papers from a Symposium Held at Schlumberger-Doll Research, Oct. 24–25, 1983, pp. 20–36. Woodbury, New York: American Institute of Physics. ISBN 0-88318-306-4. {xxiii, xxvi}
- Cherkaev, A. and R. Kohn (eds.) 1997. *Topics in the Mathematical Modelling of Composite Materials*. Basel, Switzerland: Birkhäuser Verlag. xiv + 317 pp. ISBN 0-8176-3662-5. {*xxv, xxvi*}
- Cherkaev, A. V. 2000. Variational Methods for Structural Optimization. Berlin / Heidelberg / London / etc.: Springer-Verlag. xxvi + 545 pp. ISBN 0-387-98462-3. {xxv, xxvi, 352, 353, 426, 434, 666, 668}
- Chew, W. C. 1995. Waves and Fields in Inhomogeneous Media. IEEE Press Series on Electromagnetic Waves. Piscataway, New Jersey: IEEE Press. xx + 608 pp. ISBN 0-7803-1116-7. {xxiii, xxvi}
- Christensen, R. M. 1979. *Mechanics of Composite Materials*. New York: Wiley-Interscience. xiv + 348 pp. ISBN 0-471-05167-5. {*xxiv, xxvi, 233, 243*}

In the chapter references, each entry is followed by a braced list of page numbers in small *italic* type, showing where in the book the entry is cited, or appears in the references.

References

xxvii

- Grimmett, G. 1999. *Percolation* (Second ed.). Berlin / Heidelberg / London / etc.: Springer-Verlag. xiv + 444 pp. ISBN 3-540-64902-6. {*xxiii*, *xxvii*}
- Hashin, Z. 1972. Theory of fiber reinforced materials. NASA contractor report CR-1974, NASA, Washington, D.C. xv + 690 pp. {*xxiv, xxvii, 247, 268, 272, 287*}
- Hashin, Z. 1983. Analysis of composite materials A survey. Journal of Applied Mechanics 50:481–505. {xxv, xxvii, 7, 16}
- Hull, D. and T. W. Clyne 1996. An Introduction to Composite Materials (Second ed.). Cambridge Solid State Science Series. Cambridge, United Kingdom: Cambridge University Press. xvi + 326 pp. ISBN 0-521-38190-8. {xxiii, xxiv, xxvii}
- Joannopoulos, J. D., R. D. Meade, and J. N. Winn 1995. Photonic Crystals: Molding the Flow of Light. Princeton, New Jersey: Princeton University Press. ix + 184 pp. ISBN 0-691-03744-2. {xxiii, xxvii}
- Kesten, H. 1982. Percolation Theory for Mathematicians. Basel, Switzerland: Birkhäuser Verlag. iv + 423 pp. ISBN 3-7643-3107-0. {xxiii, xxvii}
- Markov, K. Z. 2000. Elementary micromechanics of heterogeneous media. In K. Markov and L. Preziosi (eds.), *Heterogeneous Media: Micromechanics Modeling Methods and Simulations*, Modeling and Simulation in Science, Engineering and Technology, pp. 1–162. Basel, Switzerland: Birkhäuser Verlag. ISBN 0-8176-4083-5. {*xxv, xxvii, 2, 16, 185, 217, 346, 353*}
- Matthews, F. L. and R. D. Rawlings 1994. *Composite Materials: Engineering and Science*. London: Chapman and Hall. ix + 470 pp. ISBN 0-412-55960-9. {*xxiv, xxvii, 1, 16*}
- Nemat-Nasser, S. and M. Hori 1999. Micromechanics: Overall Properties of Heterogeneous Materials (Second ed.). Amsterdam: Elsevier. xxiv + 786 pp. ISBN 0-444-50084-7. {xxiii, xxiv, xxvii, 7, 17}
- Pittman, E. D. 1984. The pore geometries of reservoir rocks. In D. L. Johnson and P. N. Sen (eds.), *Physics and Chemistry of Porous Media: Papers from a Symposium Held at Schlumberger-Doll Research, Oct.* 24–25, 1983, pp. 1–19. Woodbury, New York: American Institute of Physics. ISBN 0-88318-306-4. {*xxiii, xxvii*}
- Sanchez-Palencia, E. 1980. Non-Homogeneous Media and Vibration Theory. Berlin / Heidelberg / London / etc.: Springer-Verlag. ix + 398 pp. ISBN 0-540-10000-8. {xxiii, xxvii, 8, 17, 221, 244}
- Scheidegger, A. E. 1974. *The Physics of Flow Through Porous Media* (Third ed.). Toronto, Canada: University of Toronto Press. xv + 353 pp. ISBN 0-8020-1849-1. {*xxiii, xxvii*}
- Sheng, P. (ed.) 1990. Scattering and Localization of Classical Waves in Random Media. Singapore / Philadelphia / River Edge, New Jersey: World Scientific Publishing Co. 648 pp. ISBN 9971-50-539-8. {xxiii, xxvii}
- Sheng, P. 1995. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena. New York: Academic Press. xi + 339 pp. ISBN 0-12-639845-3. {xxiii, xxvii}
- Sih, G. C. and E. P. Chen 1981. Cracks in Composite Materials: A Compilation of Stress Solutions for Composite Systems with Cracks. The Hague, The Netherlands: Martinus Nijhoff Publishers. lxxxi + 538 pp. ISBN 90-247-2559-3. {xxiii, xxvii}
- Sih, G. C. and A. M. Skudra (eds.) 1985. *Failure Mechanisms of Composites*. Amsterdam: North-Holland Publishing Co. xiii + 441 pp. ISBN 0-444-86879-8. {*xxiii, xxvii*}

Cambridge University Press 0521781256 - The Theory of Composites Graeme W. Milton Frontmatter <u>More information</u>

xxviii

Preface

- Sih, G. C. and V. P. Tamuzs (eds.) 1979. *Fracture of Composite Materials*. Alphen aan den Rijn, The Netherlands: Sijthoff and Noordhoff. xvi + 413 pp. ISBN 90-286-0289-5. {*xxiii, xxviii*}
- Stauffer, D. and A. Aharony 1992. *Introduction to Percolation Theory* (Second ed.). London: Taylor and Francis. x + 181 pp. ISBN 0-7484-0027-3. {*xxiii*, *xxviii*}
- Talreja, R. (ed.) 1994. *Damage Mechanisms of Composite Materials*. Amsterdam: Elsevier. ix + 306 pp. ISBN 0-444-88852-7. {*xxiii, xxviii*}
- Torquato, S. 1991. Random heterogeneous media: Microstructure and improved bounds on effective properties. *ASME Applied Mechanics Reviews* 44(2):37–76. {*xxv, xxviii, 331, 339, 425, 436, 553, 567*}
- Torquato, S. 2001. Random heterogeneous materials: microstructure and macroscopic properties. Berlin / Heidelberg / London / etc.: Springer-Verlag. 712 pp. ISBN 0-387-95167-9. {xxv, xxviii}
- Torquato, S., T. M. Truskett, and P. G. Debenedetti 2000. Is random close packing of spheres well defined? *Physical Review Letters* 84(10):2064–2067. {*xxiii, xxviii*}
- Willis, J. R. 1981. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 21:1–78. {xxv, xxviii, 185, 200, 220, 252, 255, 269, 291, 312}
- Zhikov, V. V., S. M. Kozlov, and O. A. Oleinik 1994. Homogenization of Differential Operators and Integral Functionals. Berlin / Heidelberg / London / etc.: Springer-Verlag. xi + 570 pp. ISBN 3-540-54809-2 (Berlin), 0-387-54809-2 (New York). {xxv, xxviii, 8, 11, 13, 18, 47, 58, 200, 220}