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Introduction

1.1. What are composites, and why study them?
Composites are prevalent in both nature and among engineered materials. Common metals
are composites. When one breaks a rod of metal the polycrystalline nature becomes evident
in the roughness of the surface of the break. The American Museum of Natural History in
New York has a wonderful meteorite collection. Some of the polished cross sections through
these meteorites clearly show the individual metal crystals. Martensite, which is typical of
a shape memory material, has a laminar-type structure comprised of alternating layers of the
two variants of martensite. Some rocks, such as sandstone, are aggregates of grains; other
rocks, such as granite, are aggregates of crystals. In porous rocks the pores are often filled
with a fluid such as salt water or oil. The study of composites in a geological context is
important to the oil industry and for the study of earthquakes. Construction materials such as
wood and concrete are composites. Bone is a porous composite. Fiberglass and lightweight
carbon fiber composites have found applications ranging from the aerospace industry to sports
equipment.

Colloidal suspensions, emulsions, foams, slurries, and clays are all examples of compos-
ites. Clouds, fog, mist, and rain are composites of air and water. High-altitude clouds are
composites of air and ice crystals. Suspensions of volcanic dust in the upper atmosphere are
known to significantly perturb temperatures around the earth. Air itself is an inhomogeneous
medium with fluctuations in density that cause the twinkling of stars. Sea ice is a composite
of ice and brine pockets, and modeling of its properties is important in global climate predic-
tion. Wool and cotton are composites of fiber and air. Ceramics are composites. Solid rocket
propellant is a composite of aluminum particles in an oxidizing matrix. Even chocolate chip
ice cream is a composite. Basically, composites are materials that have inhomogeneities on
length scales that are much larger than the atomic scale (which allows us to use the equations
of classical physics at the length scales of the inhomogeneities) but which are essentially (sta-
tistically) homogeneous at macroscopic length scales, or least at some intermediate length
scales. An alloy, having disorder on the atomic scale, is excluded from consideration (except
if it is one of the phases in a larger composite, in which case it is treated as a homogeneous
material). The book of Matthews and Rawlings (1994) gives many examples of natural and
man-made composites.

Why do we study composites? One obvious answer is their usefulness, which will be
discussed in the next section. A second, equally important reason is that what we learn from
the field of composites could have far-reaching implications in many fields of science. Sig-
nificant progress in improving our understanding of how microscopic behavior influences
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2 1. Introduction

macroscopic behavior could impact our understanding of turbulence, of phase transitions in-
volving many length scales, of how quantum behavior influences behavior on classical length
scales, or, at the more extreme level, of how behavior on the Planck length scale, 10−33cm,
influences behavior on the atomic scale, 10−8cm. While that may seem unlikely, it is hard to
deny the impact that our understanding of classical physics had on the development of quan-
tum mechanics. Therefore it is conceivable that a better understanding of classical questions
involving multiple length scales could have large reverberations. A third compelling reason
for studying composites is simply that there are many beautiful mathematical questions beg-
ging for answers. The solutions of some questions have already led to the development of new
mathematical tools, and one can expect that the solution of the more challenging outstanding
questions will open new mathematical frontiers.

The study of composites is a subject with a long history, which has attracted the inter-
est of some of the greatest scientists. For example, Poisson (1826) constructed a theory of
induced magnetism in which the body was assumed to be composed of conducting spheres
embedded in a nonconducting material. Faraday (1839) proposed a model for dielectric ma-
terials that consisted of metallic globules separated by insulating material. Maxwell (1873)
solved for the conductivity of a dilute suspension of conducting spheres in a conducting ma-
trix. Rayleigh (1892) found a system of linear equations which, when solved, would give
the effective conductivity of nondilute square arrays of cylinders or cubic lattices of spheres.
Einstein (1905) calculated the effective shear viscosity of a suspension of rigid spheres in a
fluid. The main historical developments are summarized in the articles of Landauer (1978)
and Markov (2000).

1.2. What makes composites useful?
What gives composites their utility is that they often combine the attributes of the constituent
materials. For example, suppose that one is given two isotropic conducting materials: a metal
with high conductivity, and a plastic that is electrically insulating. If one places these two
materials in alternating layers in a laminate, one obtains a highly anisotropic composite that
has the conducting properties of the metal in directions parallel to the layers and the insulat-
ing properties of the plastic normal to the layers. Concrete is cheap and relatively light, but
it breaks apart easily under tension. By contrast, steel is strong but expensive and heavy. By
pouring the concrete around prestressed metal bars one obtains a composite, namely, rein-
forced concrete, that is cheap, relatively light, and strong. Wood is an example of a material
that is strong in the fiber direction, but the fibers pull apart easily. By alternating layers of
wood that are strong in the x1 direction with layers of wood that are strong in the x2 direction,
one obtains a plywood that is strong in two directions, that is, in the (x1, x2)-plane.

By combining a compliant isotropic material that has low bulk and shear moduli with a
stiff isotropic material that has high bulk and shear moduli, one can (with a judicious choice of
microstructure) produce an elastically isotropic composite that effectively has the bulk mod-
ulus of the compliant phase and the shear modulus of the stiff phase. Such low-bulk and
high-shear moduli materials are called negative Poisson’s ratio materials: A rod of the ma-
terial will expand laterally when stretched longitudinally. It was long a question of debate
as to whether such materials could actually exist. Now their existence has been confirmed
both experimentally and theoretically [see, for example, Lakes (1987) and Milton (1992) and
references therein, and also section 30.5 on page 652]. A very simple two-dimensional mi-
crostructure that expands laterally when stretched longitudinally was designed and fabricated
by Larsen, Sigmund, and Bouwstra (1997) and is illustrated in figure 1.1 on the facing page.
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1.2. What makes composites useful? 3

Figure 1.1. The two-dimensional microstructure of Larsen, Sigmund, and Bouwstra (1997),
which will expand laterally when stretched longitudinally. Here the black region is relatively
stiff and is surrounded by a void or very compliant material.

Sometimes the properties of a composite can be strikingly different from the properties of
the constituent materials. To see this you can do the following experiment at home. Take a
wine glass filled with air and strike it on the top (but not too hard) with a knife. It rings clearly.
The same is true when it is filled with water. But add powdered Alka-Seltzer (or anything else
that makes lots of bubbles) to the water and one just hears a thud. The acoustic properties of
the bubbly fluid are quite different from those of either the air or the water. One application of
this is to use a screen of bubbles to mask the engine or propeller noise of a submarine; as the
oscillatory pressure in the sound wave compresses and decompresses each bubble, the water
near each bubble is sheared, which dissipates the energy of the sound. The shear viscosity
of the water is converted to the bulk viscosity of the bubbly fluid (Taylor 1954; see also
section 11.4 on page 233). As another example, the beautiful red glass that one sees in some
old church windows is a suspension of small gold particles in glass. The color arises not from
any chemical effect but rather from the effective complex dielectric constant of the suspension
at optical frequencies (Maxwell Garnett 1904). Opals consist of submicron spherical particles
of silica arranged in a face-centered cubic array, diffracting light to create the brilliant colors
that we see (Sanders 1964; Greer 1969). Similarly, the spines of a particular sea worm display
a wonderful iridescence caused by light diffracting off a hexagonal array of fibers within each
spine (Parker, McPhedran, McKenzie, Botten, and Nicorovici 2001).

By combining materials with positive thermal expansion coefficients it is possible to get a
composite with a negative thermal expansion coefficient (Lakes 1996; Sigmund and Torquato
1996, 1997). This is most easily seen in a two-dimensional context. Following Lakes (1996)
consider the structure of figure 1.2(b), where the cell walls consist of thin, stiff, curved metal
strips with a low thermal expansion coefficient coated on the outside with a thick compliant
strip of material with a high thermal expansion coefficient. As the composite is heated the
strips become more tightly curved, as illustrated in figure 1.2(a) and consequently the ma-
terial contracts, that is, it has a negative thermal expansion coefficient. Lakes also shows
that it is possible to construct a porous composite with a significantly larger thermal expan-
sion coefficient than either of the two phases. Bergman and Fel (1999) have shown that the
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4 1. Introduction

thermoelectric power factor in a two-phase composite can be greater than the thermoelectric
power factors of both phases.

A composite of a piezoelectric material and an elastic material can have a dramatically
larger electrical response to hydrostatic compression than either phase alone. For example,
when a cylindrical rod of the piezoelectric material lead zirconate-titanate (PZT) is com-
pressed longitudinally, an electric field is generated parallel to the axis of the rod. When it
is compressed transversely an electric field is generated in the opposite direction. If the rod
is immersed in a fluid and hydrostatic pressure is applied, then the rod is compressed both
axially and transversely and the induced electric fields almost cancel out. This canceling is
avoided if an array of such rods is embedded in a polymer matrix, which restricts the amount
of transverse compression. The electric field generated in the composite can be measured and
thus small variations in the fluid pressure can be detected. Such composites are useful in the
design of piezoelectric hydrophones for detecting low-frequency underwater acoustic waves
(Klicker, Biggers, and Newnham 1981; Avellaneda and Swart 1998). The performance is
greatly enhanced by using a negative Poisson’s ratio material in place of the polymer (Smith
1991; Gibiansky and Torquato 1997; Avellaneda and Swart 1998; Sigmund, Torquato, and
Aksay 1998).

(a) (b)

Low Temperature

High Temperature

Length Decreases

Figure 1.2. Two materials with positive thermal expansion coefficients can be combined in
a porous structure to give a composite with a negative thermal expansion coefficient. The
key observation, illustrated in (a), is that a thin, stiff, curved metal strip with low thermal
expansion that is coated on the outside with a thick, compliant strip of material with high
thermal expansion will, when heated, tighten its curvature and thereby reduce its length. By
combining these elements as in (b), one obtains a porous structure with a negative thermal
expansion coefficient. After Lakes (1996).

Composites can also exhibit product properties as defined by Albers (1973). A two-phase
composite material exhibits a product property if the output from one phase acts as the input
for the other phase. For example, following Albers (1973); Harshé, Dougherty and Newnham
(1993a, 1993b); Avellaneda and Harshé (1994); and Nan (1994), consider a composite of the
magnetostrictive material CoFe2O4 and the piezoelectric material Barium Titanate, BaTiO3.
An applied magnetic field generates a strain in the CoFe2O4 phase, which in turn generates a
strain in the Barium Titanate phase, which thus produces an electric field. Thus the composite
as a whole exhibits a magnetoelectric effect, where an applied magnetic effect generates an
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1.3. The effective tensors of composites 5

electric field, although neither phase individually exhibits such an effect. As another example,
consider a composite of a phase with a large thermal expansion coefficient combined with
the piezoelectric material Barium Titanate. A temperature increase generates a strain in the
first phase, which in turn causes the Barium Titanate to generate an electric field. Thus the
composite as a whole exhibits a pyroelectric effect, where a temperature increase generates
an electric field.

Sometimes it is advantageous to have composites with structure on a hierarchy of length
scales. One sees such structural hierarchy in man-made structures such as the Eiffel tower and
in biological structures such as bones and tendons (Lakes 1993). In this book we will come
across many examples of optimal composites that have structural hierarchy. We will often
explore the limits of what is possible by considering composites with structure on infinitely
many length scales. These could be approximated by more realistic composites with structure
on finitely many length scales.

It is hard to look into the future, but undoubtedly it will become increasingly possible to
produce “designer composites,” where the microstructure has been tailored to produce desir-
able properties. Obviously a better understanding of the link between the microstructure and
the macroscopic properties will be essential in this endeavor.

1.3. The effective tensors of composites
At present, quantum mechanics and quantum field theory provide the best description of mat-
ter on atomic, or subatomic, length scales. Yet it is well beyond the capability of modern
computers to make a full simulation of the quantum mechanical equations to analyze the be-
havior of macroscopic bodies. The wave function for the electrons alone is described by a
function in a 3N-dimensional space, where N is the number of electrons in the body. (The
factor of three arises because each electron has three spatial degrees of freedom.) The situation
becomes worse when one brings the protons and neutrons into the picture, allowing for inter-
actions with the electromagnetic, strong, and weak fields. All of this complexity is avoided
when we use the equations of macroscopic physics, which can be regarded as homogenized
quantum mechanical equations.

The situation is quite similar in composite materials, where, instead of using the equations
of classical physics at the microscopic level, we use homogenized or effective equations at
the macroscopic level. For example, in the context of electrical conductivity in a periodic
microgeometry the microscopic equations, in the absence of internal current sources, take the
form

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0, (1.1)

where j(x) is the current field, e(x) = ∇φ(x) is the electric field, −φ(x) is the electrical
potential, and σ(x) is the conductivity tensor field. The first equation in (1.1) is called the
constitutive relation. It governs the relation between the fields j(x) and e(x), which satisfy
the differential constraints imposed by the last two equations in (1.1). To avoid carrying
around minus signs we will simply refer to φ(x) as the electrical potential, although it should
be kept in mind that it is actually −φ(x), which is the electrical potential. All of these fields
have rapid oscillations on the length scale of the microstructure, and possibly slow variations
on a much larger length scale. At the macroscopic level the equations take the same basic
form:

j0(x) = σ∗e0(x), ∇ · j0 = 0, ∇ × e0 = 0, (1.2)

where j0(x) and e0(x) are local averages of j and e over a cube centered at x, having size
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6 1. Introduction

large compared with the microstructure (we will make this more precise in subsequent sec-
tions). These averaged fields have the oscillations on the length scale of the microstructure
smoothed out, but they retain slow variations. The first equation is the effective constitutive
relation. The tensor field σ∗ appearing in it is called the effective conductivity tensor of the
medium because on a macroscopic length scale the composite behaves exactly like a homo-
geneous medium with conductivity σ∗, which only has variations on the macroscopic scale.
It is defined through the solution to a cell problem. One looks for pairs of periodic fields j(x)

and e(x), which solve the conductivity equations in the periodic microgeometry. The relation

〈j〉 = σ∗〈e〉

between the volume averages 〈j〉 and 〈e〉 of each pair j and e; when evaluated for sufficiently
many pairs, it serves to define the effective tensor σ∗. Thus the problem of solving (1.1)
is decoupled into the problem of solving the macroscopic equations (1.2) and the problem
of solving the microscopic cell problem. This decoupling makes numerical solutions much
easier, and also allows one to intuitively think of the medium as effectively a homogeneous
medium with conductivity σ∗.

The effective tensor σ∗ is not just a simple local average of σ(x) but instead depends on
it nonlinearly. The problem of determining σ∗ from σ(x) is a nontrivial problem, even when
only two isotropic conducting materials are present, that is, when σ(x) only takes the two
values σ1I and σ2I , in which I is the identity tensor and σ1 and σ2 are both positive. One
might hope that if the two constituent materials were sufficiently “well mixed” there would
be a universal mean-field formula giving σ∗ in terms of σ1, σ2 and the volume fractions
occupied by the materials. However, this is not the case. In the mixing of materials there is
nothing equivalent to the Gibbs distribution in statistical physics. The probabilities of different
configurations are highly dependent on the process by which the composite is formed (of
which one typically has limited knowledge). An approximation for σ∗ that works well for
one class of materials will fail for another class of materials. The main focus of this book
is how the behavior of tensor fields, such as σ(x), on the microscopic scale influence the
behavior of the associated effective tensors, such as σ∗, on the macroscopic scale.

It may happen that the equations on a macroscopic scale take a different form than the
equations on the microscopic scale. For example, in a porous medium, and for low flow rates,
the Stokes equations describe the fluid flow on the microscopic level whereas Darcy’s law
(which says that the fluid velocity is a linear function of the pressure gradient) describes the
fluid flow on the macroscopic level. We do not investigate such equations in this book. We
instead focus on sets of equations that have the same form on the microscopic and macro-
scopic levels, consisting of fields linked by a constitutive equation, and satisfying appropriate
differential constraints. In the conductivity example, the constitutive equation is the relation
j = σe, and the fields j and e satisfy the differential constraints that∇ ·j = 0 and ∇×e = 0.

We now endeavor to clarify the concepts of homogenization and effective tensors from
various different viewpoints. For simplicity we confine our attention to the conductivity prob-
lem. The extension to the various other physical equations described in the next chapter is
straightforward. The descriptions given here are sketchy, and are not meant to be a substitute
for the many books on homogenization. On the other hand, a deep understanding of homoge-
nization theory is not necessary for following the rest of the book, so don’t worry if you can’t
understand some of the approaches outlined here.
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1.4. Homogenization from an intuitive viewpoint 7

1.4. Homogenization from an intuitive viewpoint
Homogenization from an intuitive viewpoint is described in the review article of Hashin
(1983) and in the book of Nemat-Nasser and Hori (1999). We need to introduce three length
scales:

• The microscale is characterized by lengths less than �1, which must be chosen greater
than the maximum size of inhomogeneities in the microstructure.

• The mesoscale, which is some intermediate length scale, is characterized by some
length �2, at which the composite appears “statistically homogeneous,” and at which
the macroscopic fields have a slow variation. It is a convenient length scale for carrying
out the mathematical analysis.

• The macroscale is characterized by lengths greater than �3, which must be chosen less
than the relevant dimensions of the body � being examined and less than the scale of
variations in the macroscopic structure of the composite.

It is assumed that these three length scales are well-separated:

�1 � �2 � �3.

Inside the composite is a potential φ and an associated field ∇φ satisfying the elliptic
equation

∇ · σ∇φ = ρ within �, (1.3)

and subject to, say, the Dirichlet boundary condition φ(x) = ψ(x) at the boundary of the
body �, where ψ(x) is some prescribed potential. The length scales have been defined so
that the conductivity tensor field σ(x) has variations on the microscale and possibly on the
macroscale, but no significant variations on the mesoscale. It is assumed that the source term
ρ(x) and the prescribed values of ψ(x) at the boundary of the body have variations only on
the macroscale, that is, only on length scales greater than �3.

On the mesoscale we introduce the smoothing operation of local averaging. Let �(x)

denote a mesosized cubic window of side �2 and volume |�| = �3
2 centered at the point x.

Given a field P , we define

〈P 〉�(x) = 1
|�|

∫
�(x)

P (x′)dx′ = 1
|�|

∫
�(0)

P (x + y)dy (1.4)

as the average of P over the window, where y = x′ − x. Suppose, for example, that we
have a curl free field e(x). Since the locally averaged field 〈e〉�(x) is an average over a set of
fields e(x + y) parameterized by y, each of which is a translation of e(x) and therefore curl
free, it follows that 〈e〉�(x) is also curl free. Thus local averaging preserves the differential
constraints on the fields. The locally averaged field is defined by (1.4) only within a region� ′

inside � consisting of all points x such that �(x) lies entirely inside �. Since �2 � �3, the
boundary of �′ will be close to the boundary of � and the locally averaged fields will have
some smooth extension to the boundary of � (we are not trying to be too precise here).

The basic idea behind homogenization is that when the three length scales are well-
separated the elliptic equation decouples into an equation on the macroscopic scale and a
set of equations on the mesoscale. The expectation is that on the macroscopic scale the local
average 〈φ〉� of the potential φ satisfies

∇ · σ∗∇〈φ〉� = ρ within �, 〈φ〉� = ψ on ∂�,
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8 1. Introduction

for some appropriate choice of the effective conductivity tensor field σ∗(x), which only has
variations on the macroscale, and which only depends on values of σ within the window
�(x), and not on ρ or ψ . Now, since the effective tensor σ∗(x) only has variations on the
macroscopic scale, we only need calculate it at a set of representative sample points (avoiding
those points where �(x) intersects the boundary of �) and then smoothly interpolate the
function between these points and to the boundary of �. Then, because σ∗(x) only depends
onσ within the window, we can calculate it at each representative sample point by considering
a periodic medium obtained by periodically extending the material within the box �(x) and
looking for solutions of the conductivity equation (1.3) with ρ = 0 and ∇φ being periodic.
The effective tensor is obtained through the relation between the average fields,

〈σ∇φ〉� = σ∗〈∇φ〉�, (1.5)

within this periodic medium. This relation defines the effective tensor at each representative
sample point.

The decoupling of the equations means that we can replace the composite that has rapid
oscillations in its moduli by an effective material with a slowly varying effective tensor field
σ∗(x) without changing the local averages of the fields. The idea is that this approximation
should be good when the scales are well-separated, and exact in the limit as �2/�1 and �3/�2
approach infinity.

Incidentally, notice that when ρ = 0 any solution to the conductivity equations (1.3)
remains a solution when σ(x) is replaced by σ′(x) = λσ(x). It then follows from (1.5) that
this medium with conductivity σ′ will have effective conductivity σ′

∗ = λσ∗. In other words,
the effective conductivity has the homogeneity property that

σ′
∗ = λσ∗ when σ′ = λσ. (1.6)

1.5. Periodic homogenization
The intuitive viewpoint, while making good physical sense, needs some mathematical justifi-
cation. A partial justification of the intuitive viewpoint is provided in the context of periodic
homogenization. Periodic homogenization is described in the books of Bensoussan, Lions,
and Papanicolaou (1978); Sanchez-Palencia (1980); Bakhvalov and Panasenko (1989); Pers-
son, Persson, Svanstedt, and Wyller (1993); and Zhikov, Kozlov, and Oleinik (1994). The
two-scale and multiscale treatments of Nguetseng (1989), Allaire (1992), and Allaire and
Briane (1996), provide a rigorous basis for the method. One considers a sequence of prob-
lems, parameterized by a variable ε that, roughly speaking, corresponds to the size of the
microstructure, and one examines what happens in the limit as ε tends to zero. The conduc-
tivity tensor field and the potential are assumed to be functions of both the variable x, called
the macroscopic or slow variable, and the variable y = x/ε, called the microscopic or fast
variable. Roughly speaking, the dependence of the fields on x captures their macroscopic
variation while the dependence on y captures their microscopic or local variation.

In each problem the body � is filled by a material with conductivity tensor

σε(x) = σ(x,x/ε), (1.7)

where for fixed x, σ(x,y) is periodic in the variable y, say, with a square unit cell of side
length h independent of x. When ε is very small this means that σε(x) is almost periodic
in x on the microscale, that is, on length scales of the order of h/ε. Some insight into the
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1.5. Periodic homogenization 9

geometrical interpretation of this can be gained by considering the case when x and y are
one-dimensional variables. Then, as sketched in figure 1.3, σ(x,y) is defined on a cylinder
and σε(x) represents the values of σ(x,y) along a tightly wound spiral on the cylinder,
which gets tighter as ε → 0. (This geometrical interpretation was communicated to me by
Luc Tartar.)

h/ε

x

y

Figure 1.3. When x and y are one-dimensional, the functionσ(x,y) can be regarded as lying
on the surface of a cylinder of circumference h. As illustrated here, the function σ(x,y)

could, for example, take two different values, one value in the darker shaded region and a
different value in the lighter shaded region. The function σε(x) = σ(x,x/ε) represents the
values of the function along a tightly wound spiral on the cylinder.

To obtain the right homogenized equations one has to be careful. This is illustrated by
the following example. Consider a connected cubic network of thin conducting rods, which
is diagonally displaced from a second connected cubic network of conducting rods, with a
different effective tensor, so that the two networks do not touch each other. The surrounding
material is assumed to be nonconducting. It is clear that the electrical potential field on the
second network is independent of the potential field on the first network, and thus one would
expect the homogenized equations to be a pair of uncoupled conductivity equations, one for
each network. If there are suitably thin bridges linking the two networks, then Khruslov
(1978), Briane (1998), and Briane and Mazliak (1998) have shown that the homogenized
equations are coupled.

Some restrictions of the conductivity field σε(x) are needed to avoid such strange homog-
enized equations. For simplicity we assume that σε(x) is a symmetric matrix-valued function
satisfying the ellipticity condition

αI ≤ σε(x) ≤ βI for all ε and x, (1.8)

for some positive α and β independent of both ε and x. We then have a sequence of electrical
potentials φε(x) satisfying the elliptic equations

∇ · σε∇φε = ρ within �, φε = ψ on ∂�, (1.9)

where the source term ρ(x) and the potential ψ(x) at the boundary of � are prescribed and
assumed to be independent of ε.
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10 1. Introduction

To solve for the potential in the limit ε → 0 one uses a multiple-scale analysis and looks
for a solution of the form

φε(x) = φ0(x,x/ε) + εφ1(x,x/ε) + ε2φ2(x,x/ε) + · · · ,
where for fixed x the functions φi (x,y), i = 0, 1, 2, . . ., are periodic functions of y with the
same periodicity as σ(x,y). By substituting this expansion and (1.7) into (1.9) and separating
terms having coefficients sharing the same power of ε one obtains a series of equations. I will
not go through the analysis, since it is contained in the above-cited books. One finds that
φ0(x,y) depends only on x, that is, φ0(x,y) = φ0(x), where φ0(x) satisfies

∇ · σ∗∇φ0 = ρ within �, φ0 = ψ on ∂�,

in which the effective conductivity tensor field σ∗(x) is obtained at each point x by solving
the auxiliary “cell problem.” Given an applied field e0, the cell problem consists of finding
the function φ1(e0; y) periodic in y, which solves

∇y · σ(x,y)∇y[e0 · y + φ1(e0; y)] = 0,

where∇y · and∇y are the divergence and gradient with respect to y, keeping x fixed. Once the
cell problem is solved for a basis of applied fields e0, the effective tensor is obtained through
the relation

〈σ(x,y)∇y[e0 · y + φ1(e0; y)]〉 = σ∗〈∇y[e0 · y + φ1(e0; y)]〉,
where the averages are over y, keeping x fixed. Since φ1 is periodic in y, it follows that the
average value of ∇yφ1 is zero. Therefore we can rewrite the relation as

〈σ(x,y)∇y[e0 · y + φ1(e0; y)]〉 = σ∗e0.

The next function appearing in the series expansion is found to be

φ1(x,y) = φ1(∇φ0(x); y).

Thus the solution of the cell problem not only gives the effective tensor σ∗ needed to com-
pute φ0, but it also gives the leading correction φ1 to the potential in the series expansion. The
results of this multiple-scale analysis can be verified by more rigorous methods [see, for exam-
ple, Bensoussan, Lions, and Papanicolaou (1978); Tartar (1978); Nguetseng (1989); Allaire
(1992); Allaire and Briane (1996); and Murat and Tartar (1997)]. One can extend the analysis
to higher powers in ε and thereby obtain a solution that captures the correct asymptotic behav-
ior as ε → 0. A rigorous justification of the resulting higher order homogenized solutions has
been provided by Bakhvalov and Panasenko (1989). Smyshlyaev and Cherednichenko (2000)
show how the higher order homogenized solutions also can be justified variationally, by using
an energy that depends on higher order gradients.

Notice that while the potential φε(x) converges to φ0(x) as ε → 0, the electric field
∇φε(x) does not converge to ∇φ0(x). Indeed, ∇φε(x) has rapid oscillations on the mi-
croscale, whereas ∇φ0(x) does not. Nevertheless, there is convergence in a weak sense. A
sequence of fields eε(x) is said to weakly converge to e0(x) if

lim
ε→0

∫
g(x)eε(x)dx =

∫
g(x)e0(x)dx,
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