
1 Introduction to LES

1.1 Book’s scope

Large-eddy simulations (LESs) of turbulent flows are extremely powerful
techniques consisting in the elimination of scales smaller than some scale �x
by a proper low-pass filtering to enable suitable evolution equations for the
large scales to be written. The latter maintain an intense spatio-temporal vari-
ability. Large-eddy simulation (LES) poses a very difficult theoretical problem
of subgrid-scale modeling, that is, how to account for small-scale dynamics in
the large-scale motion equations. LES is an invaluable tool for deciphering the
vortical structure of turbulence, since it allows us to capture deterministically
the formation and ulterior evolution of coherent vortices and structures. It also
permits the prediction of numerous statistics associated with turbulence and
induced mixing. LES applies to extremely general turbulent flows (isotropic,
free-shear, wall-bounded, separated, rotating, stratified, compressible, chemi-
cally reacting, multiphase, magnetohydrodynamic, etc.). LES has contributed
to a blooming industrial development in the aerodynamics of cars, trains, and
planes; propulsion, turbo-machinery; thermal hydraulics; acoustics; and com-
bustion. An important application lies in the possibility of simulating systems
that allow turbulence control, which will be a major source of energy sav-
ings in the future. LES also has many applications in meteorology at various
scales (small scales in the turbulent boundary layer, mesoscales, and synoptic
planetary scales). Use of LES will soon enable us to predict the transport and
mixing of pollution. LES is used in the ocean for understanding mixing due
to vertical convection and stratification and also for understanding horizontal
mesoscale eddies. LES should be very useful for understanding the genera-
tion of Earth’s magnetic field in the turbulent outer mantle and as a tool for
studying planetary and stellar dynamics.

It is clear that the study of large-eddy simulations of turbulence has become
a discipline by itself. This book will try to present a global and complete
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2 LARGE-EDDY SIMULATIONS OF TURBULENCE

account of this discipline and its vigorous developments since the early 1960s
and the pioneering work of Smagorinsky [269]. We will also provide various
industrial and environmental applications.

Although we do not expect the reader to be an expert in fluid dynamics and
turbulence, it is not the aim of the present book to give a complete account
of these aspects. We will try, however, to recall in simple terms some of them
while referring to the companion textbook of Lesieur [170] for the more
advanced aspects or detailed derivations on these topics.

The objective of the book is twofold. The first is to present the details of
many models developed in large-eddy simulations of turbulence. The second
is, through examples of application, to give the reader a thorough under-
standing of turbulence dynamics in isotropy, mixing layers, boundary lay-
ers, and separated flows and how such a dynamics may be deeply modified
by rotation, stratification, heating, and compressibility. The book contains
numerous computer-generated graphics as well as a CD-ROM with movies
of some flows computed with LES (isotropic turbulence, mixing layers and
jets, backward-facing steps, boundary layers and channel flows, cavities
at various Mach numbers, heated-channel flows, frontal cyclogenesis in the
atmosphere, etc.). This interdisciplinary textbook addresses a very wide pop-
ulation of graduate students, researchers, and industrial engineers in the
domains of mechanical, aerospace, civil, chemical, and nuclear engineer-
ing; geophysical and astrophysical fluid dynamics; physics; and applied
mathematics.

In the present chapter, we recall the basis of fluid-dynamics and turbulence
theory that will be used for LES. We show the limitations of direct numerical
simulations in terms of practical applications at high Reynolds numbers owing
to the excessive number of degrees of freedom of the system. We recall the
history of LES and finish with an analysis of unpredictability effects in the
framework of LES analyses.

In Chapter 2, we are mainly concerned with coherent-vortex recognition
in terms of pressure and vorticity fields as well as quantities related to the
velocity-gradient tensor, such as the very efficient Q and λ2 criteria. Appli-
cations to isotropic turbulence and backward-facing steps are provided, and
animations of coherent vortices are observed in both cases.

Chapter 3 presents the LES formalism in physical space with the intro-
duction of the famous Smagorinsky model, for which we will show how the
constant may be determined. We will also study the model’s wall behavior,
which poses serious problems. We also present a thorough description of its
more recent so-called dynamic version with a dynamic recalculation of the
constant by a double filtering in space.

Chapter 4 presents spectral models for LES applied to three-dimensional
isotropic turbulence with the plateau-peak eddy viscosity and eddy diffusivity
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INTRODUCTION TO LES 3

and the spectral-dynamic model. The chapter shows new EDQNM1 calcula-
tions at very high Reynolds numbers with an analysis of the well-known phe-
nomenon of kinetic energy cascade pileup before the dissipative range (the
so-called bump). The chapter contains a complete infrared study of kinetic-
energy and pressure spectra done both with EDQNM and LES using the
spectral models. It also discusses other types of spectral eddy viscosities such
as Heisenberg’s and RNG-based.

Chapter 5 shows how the plateau-peak eddy-viscosity model may be ap-
plied to inhomogeneous turbulence in flows of uniform density in the partic-
ular cases of a temporal mixing layer, where it is able to reproduce a vortex
structure of quasi–two-dimensional Kelvin–Helmholtz vortices stretching
thin longitudinal hairpins, or dislocated Kelvin–Helmholtz vortices under-
going helical pairing, according to the quasi–two-dimensional or three-
dimensional nature of the initial forcing. A thorough LES study of the plane
channel using the spectral-dynamic model is carried out at various Reynolds
numbers. The study is complemented by direct numerical simulation (DNS)
focusing on probability density functions of various quantities, which are
discussed with respect to the vortical dynamics.

Chapter 6 presents new subgrid models, such as the structure-function
model and its “selective” and “filtered” versions. These models are compared
with Smagorinsky’s in the framework of a temporal mixing layer. They are
applied to a spatially growing mixing layer, where the influences of upstream
forcing and the extent of the spanwise domain are discussed. A round jet is
also looked at with alternate pairings of vortex rings qualitatively similar to
helical pairing in mixing layers. The jet control by upstream perturbations
of varicose, helical, or flapping types is studied, with possibilities of strongly
enhancing the spreading. The backstep is reconsidered statistically. Afterward
a dynamic version of the structure-function model is presented. We discuss
hyperviscosities as well as a mixed structure-function/hyperviscous model that
parallels in physical space the spectral plateau-peak model. We also present
scale-similarity and mixed models as well as some new, recent models.

Chapter 7 is devoted to LES of compressible ideal gases (neglecting grav-
ity effects). We work in the context of density-weighted Favre filters anal-
ogous to Favre density-weighted ensemble averages. We introduce a new
thermodynamic quantity, the macrotemperature, which may be related by an
equation of state to a macropressure. This greatly simplifies the LES formal-
ism for compressible flows. Afterward we discuss the compressible mixing
layer both in the temporal and spatial cases. The compressible round jet is

1 The eddy-damped quasi-normal Markovian theory (EDQNM) is a very efficient statisti-
cal model of isotropic turbulence based on two-point closures, which will be presented in
more detail in Chapter 4. It also serves to determine subgrid models for spectral large-eddy
simulations.
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4 LARGE-EDDY SIMULATIONS OF TURBULENCE

also studied both in the subsonic and supersonic cases. Jet contol by varico-
flapping excitations is studied. Then various LESs of low-Mach boundary
layers developing spatially upon a flat plate are presented both in the tran-
sitional and developed stages. Animations of various vortices and structures
are provided. A weakly compressible channel (one side of which contains
two small spanwise grooves) is also presented with animations of quasi-
longitudinal vortices traveling on both sides. We recall the main features and
role of longitudinal riblets equipping boats, planes, and swimming costumes
and discuss the influence of compressibility. Turbulence over a square cav-
ity and over a transonic rectangular cavity is studied. Then the structure of
turbulence in the neighborhood of the European Hermès space shuttle at a
local Mach number of 2.5 will be examined with evidence for the presence of
Görtler vortices. Finally, DNS and LES of a heated square duct will be looked
at. This duct may contain riblets, which increase heat transfer significantly.
A curved duct with one wall heated is also studied, and Görtler vortices are
recovered.

Chapter 8 is devoted to geophysical fluid dynamics with some DNS and
LES of relevance for this topic. We first present a review of geophysical flows
at various scales mainly for Earth’s atmosphere and oceans. We determine
the associated Rossby numbers. Climate issues such as global warming, the
ozone hole, El Niño, and the oceanic conveyor belt are briefly discussed.
Afterward we study shear flows (free and wall-bounded) of uniform density
rotating about a spanwise axis. They are looked at mainly from the point of
view of DNS and LES, and we show a wide universality in the dynamics
of these flows. Then we present DNS and LES studies of the instability of
a baroclinic jet, showing that LES permits us to capture secondary instabil-
ities that are dissipated in DNS. We discuss possible analogies with severe
storms.

1.2 Basic principles of fluid dynamics

We work within the assumption of a continuous medium whose characteristic
scales of motion are several orders of magnitude larger (by a factor of 104 to
106) than the mean free path of molecules characterizing the molecular scales.
Equations of fluid motion are obtained in the following way (see Batchelor
[17] and Lesieur [170]). We work in a frame that may be Galilean, or in solid-
body rotation of rotation vector ��, and consider a fluid parcel (of volume δV )
of size smaller than the characteristic scales in the flow. Let ρ be the density,
and let �u be the velocity of the parcel gravity center. One introduces the
operator D/Dt , the derivative following the fluid motion, which is equal to
∂/∂t + �u · �∇ if the flow quantities are expressed in terms of a given space
point �x and time t (Eulerian notations). Notice that we have, respectively, for
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INTRODUCTION TO LES 5

any scalar A(�x, t) and vector �a(�x, t)

D A

Dt
= ∂ A

∂t
+ �u · �∇ A, (1.1)

D�a
Dt

= ∂ �a
∂t

+ (�u · �∇)�a = ∂ �a
∂t

+ �∇�a ⊗ �u, (1.2)

where ⊗ stands for a tensorial product. The three following principles are
applied to the parcel in its motion:

� conservation of mass (δm = ρ δV ),
� balance of forces (Newton’s first and third principles stated in 1687), and
� first principle of thermodynamics.

1.2.1 Continuity equation

The conservation of mass yields the continuity equation

1

δm

D (δm)

Dt
= 1

ρ

Dρ

Dt
+ 1

δV

D (δV )

Dt
,

which yields

1

ρ

Dρ

Dt
+ �∇ · �u = 0. (1.3)

The particular case of incompressibility (conservation of volumes following
the fluid motion) reduces to �∇ · �u = 0.

1.2.2 Balance of forces

The balance of forces corresponds to the so-called Navier–Stokes equation.
It is obtained by equating the “acceleration quantity” δm D�u/Dt to the
body forces plus the surface forces acting upon the external surface of the
parcel. The body forces applied are gravity, δm �g, the Coriolis force (if
any), −2 δm �� × �u, and other possible forces. The gravity �g is irrotational
and includes both the Newtonian gravity and the centrifugal force implied
by the frame rotation. One assumes the existence of a stress tensor σ such
that the force exerted by the fluid on one side of a small surface d� oriented
by a normal unit vector �n is given by d �f = σ ⊗ �n d�. A Newtonian fluid
corresponds to a stress tensor of the form

σi j = −p δi j + µ

[(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
�∇ · �u δi j

]
, (1.4)

where the pressure is defined by p = −(1/3)σi i , andµ is the dynamic viscosity
coefficient. Such a definition of pressure avoids the introduction of a second
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6 LARGE-EDDY SIMULATIONS OF TURBULENCE

viscosity coefficient. After integration of the surface forces over the surface
of the fluid particle, we have

Dui

Dt
= (�g − 2 �� × �u)i + 1

ρ

∂σi j

∂x j
(1.5)

or, equivalently,

Dui

Dt
= (�g − 2 �� × �u)i − 1

ρ

∂p

∂xi
+ 1

ρ

∂

∂x j
µ

[(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
�∇ · �u δi j

]
.

(1.6)
Introducing the geopotential 	 such that �g = −�∇	, we can write the Navier–
Stokes equation as

∂ �u
∂t

+ ( �ω + 2 ��) × �u = − 1

ρ
�∇ p − �∇

(
	 + �u2

2

)
+ vicous dissipation,

(1.7)

where �ω = �∇ × �u is the relative vorticity of the fluid (in the rotating frame)
and �ωa = �ω + 2 �� is the absolute vorticity in the absolute frame. In Eq. (1.7),
the viscous contribution has not been explicitly specified.

1.2.3 Thermodynamic equation

A third equation is obtained by applying the first principle of thermodynamics
to the fluid parcel: The derivative of the total energy (internal, potential,
and kinetic) is equal to a possible heating (or cooling) rate by some source
(e.g., radiation, combustion, condensation, or evaporation of water in the
atmosphere), plus the power of surface forces, plus the rate of heat exchange
by molecular diffusion across the parcel surface. The latter is expressed with
the aid of Fourier’s law. More specifically, let ei be the internal energy per unit
mass. Then

Dei

Dt
= Q̇ + 1

ρ
�∇ · (λ �∇T ) − p

ρ
�∇ · �u + 2ν

(
Si j Si j − 1

3
Sii S j j

)
(1.8)

with S = [ �∇�u + �∇�u|t ]/2, Q̇ characterizing the forcing, and λ being the ther-
mal conductivity. Let h = ei + ( p/ρ) be the enthalpy of the fluid. From the
continuity equation, we have

ρ
D

Dt

(
p

ρ

)
= Dp

Dt
+ p �∇ · �u, (1.9)

and from the enthalpy equation, omitting Q̇, we write

ρ
Dh

Dt
= Dp

Dt
+ �∇ · (λ �∇T ) + 2µ

(
Si j Si j − 1

3
Sii S j j

)
. (1.10)
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INTRODUCTION TO LES 7

It can now easily be shown that by taking the scalar product of the momentum
equation (1.6) with �u and adding the result to Eq. (1.10), we get

ρ
D

Dt

(
h + 1

2
�u2 + 	

)
= ∂p

∂t
+ �∇ · (λ �∇T ) + 2µ

(
Si j Si j − 1

3
Sii S j j

)

+ ui
∂

∂x j
µ

[(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
�∇ · �u δi j

]
.

(1.11)

Indeed the geopotential 	 is time independent, and thus D	/Dt = �u · �∇	.
This gives us the generalized Bernoulli theorem stating that h + 1

2 �u2 + 	 is an
invariant of motion if the flow is time independent and if molecular diffusion
is neglected.

For a perfect barotropic fluid (i.e., p is a function of ρ only) where rotation
is neglected, the momentum equation reduces to

D�u
Dt

= −�∇(h + 	). (1.12)

Returning to the more general case, let us consider successively a liquid and
a gas.

� For a liquid, we have approximately ei = C p T . However, we can check
that the pressure and molecular viscous terms on the right-hand side (r.h.s.)
of Eq. (1.8) are in general negligible, and thus we have

DT

Dt
≈ κ∇2T,

Dρ

Dt
≈ κ∇2ρ, (1.13)

where κ = λ/ρ C p is the thermal diffusivity.2
� For an ideal gas, the state equation reads p/ρ = RT (with R = C p − Cv).

We make a further assumption of identifying this thermodynamic pressure
with the static pressure already introduced in the stress tensor. We suppose
also that Cp and Cv are temperature independent. We now have ei = CvT .
Introducing the potential temperature

 = T

(
p0

p

)(γ−1)/γ

, (1.14)

where γ = C p/Cv and p0 is the pressure at some reference level, we write

2 Notice, however, that in Eq. (1.13) the density equation is obtained by assuming a linear
relation between ρ and T such that ρ is a decreasing function of T . Because of mass
conservation this implies that, if T decreases, ρ will increase and the volume of the fluid
parcel will decrease. This is no longer true for water at temperatures close to 4 ◦C, where it
will dilate when cooled (Balibar [11]). In this case, pressure effects in Eq. (1.8) have to be
taken into account.
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8 LARGE-EDDY SIMULATIONS OF TURBULENCE

the thermodynamic equation as

D

Dt
= 

C pT

[
1

ρ
�∇ · (λ �∇T ) + 2ν

(
Si j Si j − 1

3
Sii S j j

)]
. (1.15)

A good approximation of this equation for subsonic flows is

D

Dt
≈ κ



T
∇2T, (1.16)

where the thermal diffusivity κ has the same definition as before for the
liquid. We recall that if the motion is adiabatic (κ = 0),  is an invariant of
motion, as are both the entropy and p(δV )γ . If the ideal gas is barotropic
(and perfect), it is isentropic.

Validation of these equations of motion comes from the very good compar-
ison of theoretical solutions with laboratory experiments in laminar regimes
for cases such as Poiseuille flow in a channel or a pipe, or boundary layers
developing over a flat plate, or mixing layers. In the turbulent regimes, first-
and second-order statistics of numerical solutions also compare favorably with
experiments for the same flows. Only above Mach numbers of the order of 15–
20 does the molecular-agitation scale catch up with the continuous-medium
scales in such a way that the continuous-medium assumption no longer holds.

The generalized Bernoulli theorem allows us to understand why a hyper-
sonic body heats during atmospheric reentry. Indeed, let us consider a frame
fixed to the body and suppose that an upstream fluid parcel is at a velocity
U∞ and a temperature T∞. Its enthalpy is C pT∞. If the parcel hits the body,
on which the velocity is zero, neglecting gravity, we get

C pT∞ + 1

2
U 2

∞ = C pTa, (1.17)

where Ta is the temperature at the wall, which is higher than T∞ owing to
this exchange between kinetic energy and enthalpy. We will talk more of
this adiabatic temperature in the section of Chapter 7 devoted to LES of a
space-shuttle rear wing.

Let us finally consider Eq. (1.15) in the case of a compressible, paral-
lel time-independant flow of ideal gas. The velocity-vector components are
[u(y), 0, 0]. Let Pr = C pµ(y)/λ(y) be the Prandtl number assumed constant.
We have

d

dy

(
µ

dT

dy

)
= − Pr

C p
µ

(
du

dy

)2

, (1.18)

which shows there is a temperature gradient of molecular-diffusion origin in-
duced by the velocity gradient. This has analogies with the Crocco–Busemann
equation. In fact, such a velocity profile is only possible if the pressure p(x)
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INTRODUCTION TO LES 9

Figure 1.1. Schematic view of a vortex sheet.

depends only on x ; then the pressure gradient dp/dx is constant with

dp

dx
= d

dy

(
µ

du

dy

)
. (1.19)

In the weakly compressible case, this yields a parabolic velocity profile if
dp/dx 	= 0 and a linear velocity profile if dp/dx = 0.

1.2.4 Vorticity

A very important quantity for characterizing turbulence (in the absense of en-
trainment rotation) is the vorticity vector �ω = �∇ × �u. A quasi-discontinuity
between two parallel flows of velocity �U1 and �U2 gives rise to a vortex sheet
(see Figure 1.1). The latter is violently unstable under small perturbations
(Kelvin–Helmholtz instability) and rolls up into spiral Kelvin–Helmholtz
vortices into which vorticity has concentrated. These vortices may undergo
secondary successive instabilities, leading to a violent direct kinetic-energy
cascade toward small scales; they may also be responsible for inverse en-
ergy cascades through pairings (see Lesieur [170], Chapter III). In practive,
Kelvin–Helmholtz-type instabilities are the source of turbulence in many hy-
drodynamic as well as external and internal aerodynamic applications. An
illustration is provided by the famous helium–nitrogen mixing-layer exper-
iment carried out at Caltech by Brown and Roshko [33] and presented in
Figure 1.2 (top). Figure 1.2 (bottom) shows a “numerical dye” (with the pas-
sive scalar of the upstream distribution proportional to the upstream veloc-
ity) in a two-dimensional numerical simulation of a uniform-density mixing
layer carried out in Grenoble by Normand [220]. We will return in detail to
these vortex-dynamic aspects in Chapter 5. Let us focus now on small-scale–
developed turbulence characteristics, which are very important to assess the
potential of direct numerical simulations of flows in terms of practical ap-
plications. This is why we devote a section to very useful spectral tools in
isotropic turbulence.
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10 LARGE-EDDY SIMULATIONS OF TURBULENCE

Figure 1.2. (Top) Experimental mixing layer of Brown and Roshko. (Courtesy A. Roshko.)
(Bottom) Grenoble two-dimensional numerical simulation. (Courtesy X. Normand.)

1.3 Isotropic turbulence

1.3.1 Formalism

Isotropic turbulence is a model that may be relevant to small-scale–developed
turbulent flows. We assume an infinite domain without boundaries. Turbulent
quantities are represented by random functions for which averages are taken
on ensembles of realizations and are denoted 〈 〉. Turbulence is assumed to be
statistically invariant under rotations about arbitrary axes (and hence transla-
tions). Thus the average velocity is zero. We restrict our attention to a flow
of uniform density. The easiest mathematical way to deal with such turbu-
lence is to use spatial Fourier space. Let us first introduce the spatial integral
Fourier transform of a given function (scalar or vector) f (�x, t) associated with
turbulence

f̂ (�k, t) =
(

1

2π

)3 ∫
e−i �k.�x f (�x, t) d �x, (1.20)

where the integral is carried out over the entire three-dimensional space.
Because turbulence is statistically homogeneous, its fluctuations cannot be
expected to decrease at infinity. However, Eq. (1.20) does make sense in the
framework of generalized-functions theory (distributions). In this context, the
inverse relation

f (�x, t) =
∫

ei �k.�x f̂ (�k, t)d�k (1.21)
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