Author Index

Where page numbers are given in *italics*, they refer to publications cited in lists of references.

Agarwal, G.P., 150, 150
Ahmadi, G., 41, 64
Ahmed, M., 236, 295
Anderson, K., 102, 151, 185, 192, 199, 208, 212, 215–16, 219, 227, 230
Anderson, T.B., 17, 20, 21, 62, 100, 132, 135, 139, 150, 151
Anselmet, M.-C., 152
Arastoopour, H., 233–4, 234, 295
Arnold, G.S., 17, 59, 60, 62, 63
Aubin, T.R., 52, 62
Aziz, M., 296
Bader, R., 234, 283, 285, 289, 295
Bai, D., 296
Balzer, G., 55, 62
Baron, T., 99, 100, 152, 183, 231
Bartholomew, R., 234, 295
Basset, A.B., 48, 62
Basu, P., 235, 295
Batchelor, G.K., 101, 102, 120, 151, 152, 224, 226, 295
Benzhina, A., 291, 295
Bezbaras, R., 230, 295
Blake, T.R., 16, 231
Boelle, A., 45, 62
Boude, W., 27
Brenner, K.A., 266, 296
Brennen, C., 331
Briels, W.J., 15
Burnet, S.J., 163, 232
Campbell, D.L., 299, 330
Cankurt, N., 297
Carman, N.P., 40, 63
Casagrande, N.F., 40, 63
Chen, Y.M., 303, 311, 313, 330
Cheng, L.Y., 64
Chepurniy, N., 64, 296
Chomaz, J.-M., 152
Christofferson, J., 66, 97
Cody, G.D., 95, 97
Collins, R., 174, 175, 230
Coulomb, C.A., 70, 97
Crighton, D.G., 199, 227, 230, 231
Danevich, D., 102, 151
Das Gupta, S., 256, 262, 265, 270, 271, 273, 278–9, 285, 295
Davidson, J.F., 1, 15, 99, 151, 156, 158, 175, 221, 230, 232
Davies, R.M., 165, 230
Delhaye, J.M., 17, 63
Didwania, A., 66, 97, 102, 151, 152, 199, 219, 224, 230
Ding, J., 230, 295
Drew, D.A., 17, 36, 48, 59, 62, 63, 64, 102, 151, 198, 230
Drucker, D.C., 70, 73, 97
Durian, D.J., 95, 97
Einstein, A., 34, 35, 63
El-Kaisy, M.M., 100, 151, 152
Ergun, S., 51, 63
Fanucci, J.B., 102, 151, 183, 184, 230
Findlay, J., 295

333
Author Index

Flaherty, J. E., 64
Foscolo, P. U., 30, 32, 46, 63, 100, 101, 116, 119, 151
Ganser, G. H., 102, 151, 198, 230
Garg, S. K., 100, 757, 198, 231
Geldart, D., 155, 230, 297
Geurst, J. A., 33, 63
Gibilaro, L. G., 30, 32, 46, 63, 100, 101, 116, 119, 757
Ginestra, J. C., 303, 315, 330
Glasser, B. J., 102, 757, 185, 189, 198, 227, 230, 235, 291, 296
Goddard, J. D., 66, 97
Goldfarb, D. J., 95, 97
Goldhirsch, L., 236, 296
Goldshtein, A., 37, 63
Goldstik, M. A., 51, 63
Goz, M. F., 102, 757, 198, 227, 230, 231
Grace, J. R., 235, 296
Guazzelli, E., 752
Jiménez, J., 189, 228, 231
Johnson, P. C., 70, 97, 238, 239, 296
Jones, F. J., 299, 330
Joseph, D. D., 17, 33, 63
Judd, M. R., 299, 302, 318, 330
Kanatani, K.-I., 66, 97
Kapbasov, Sh. K., 34, 38, 60, 101, 151
Kawaguchi, T., 16
Kevekdis, I. G., 151, 230, 296
Knowlton, T. M., 295, 300, 330
Koch, D. L., 34, 38, 40, 45, 64, 66, 101, 143, 152, 237, 296
Kojabashian, C., 299, 330
Komatsu, T. S., 199, 227, 231
Kuipers, J. A. M., 75, 228, 231, 296
Kunii, D., 16
Kwauk, M., 99, 752, 234, 297
Kynch, G. J., 120, 752
Kytomaa, H. K., 236, 296
Lahey, R. T., 17, 48, 59, 62, 63, 64
Lam, C. K. G., 296
Large, J., 296
Lavieille, J., 62
Leung, L. S., 299, 330, 331
Leva, M., 16
Levenspiel, O., 16
Lin, S.-C., 295
Liss, B., 297
Liu, J. T. C., 102, 152, 197, 231
Lockett, M. J., 179, 231
Louge, M. Y., 236, 279, 296
Lundgren, T. S., 17, 33, 63
Luo, K. M., 295
Lyall, E., 160, 176, 231, 232
Ma, D., 41, 64
Martin, H. Z., 330
Massimilla, L., 232
Mastorakos, E., 296
Matens, J. M., 235, 296, 299, 331
Matsumoto, S., 10, 16
Mazey, M. R., 35, 53, 64
Medlin, J., 145, 152
Mehrabadi, M. M., 97
Menon, N., 95, 97
Merkin, J. H., 102, 152, 195, 196, 197, 198, 224, 227, 231
Mo, G., 64
Molodtsov, Y., 296
Monteaux, L., 271, 296
Mountziaris, T. J., 303, 305, 307, 310, 311, 323, 327, 331
Murray, J. D., 31, 64, 99, 152, 167, 175, 231
Muters, S. M. P., 101, 144, 152

334
Author Index

Nag, P.K., 235, 295
Nedderman, R.M., 80, 97
Needham, D.J., 102, 152, 195, 196, 197, 198, 224, 227, 231
Nemat-Nasser, S., 97
Ness, N., 151, 230
Nguyen, T.V., 307, 331
Nicolas, M., 100, 152
Nemat-Nasser, S., 97
Ness, N., 75, 230
Nguyen, T.V., 307, 331
Nicolas, M., 100, 152
Nieuwland, J.J., 234, 287, 296
Nigmatulin, R.I., 17, 64
Nitsche, J.M., 102, 224, 230
Norris, A.N., 97
Nott, P., 97, 236, 295
Othmer, D.F., 1, 7(5, 251, 297
Patel, V.C., 261, 296
Phillips, O.M., 199, 231
Pigford, R.L., 99, 100, 231
Pita, J.A., 255, 261, 280, 287, 296
Prager, W., 70, 97
Prins, W., 231
Pritchett, J.W., 2, 16, 100, 228, 231
Prosperetti, A., 17, 33, 34, 64
Prud’homme, M., 52, 62
Rangachari, S., 314, 330, 331
Reuter, H., 158, 179, 231
Richardson, J.F., 5, 16, 49, 64
Rietema, K., 101, 144, 152
Riley, J.J., 35, 53, 64
Rodl, W., 296
Roscoe, K.H., 70, 97
Rowe, P.N., 160, 163, 179, 231, 232, 299, 302, 318, 330
Rowe, P.W., 66, 97
Sabersky, R.H., 331
Saffman, P.G., 53, 64
Salatino, P., 157, 232
Sangani, A.S., 34, 40, 43, 64, 143, 152
Savage, S.B., 37, 63, 64, 70, 97, 236, 296
Saxton, A., 234, 296
Schaefer, G., 296
Schmid, P.J., 236, 296
Schnitzlein, M., 297
Schofield, A.N., 70, 72, 73, 97, 98
Schugert, K., 53, 64, 138, 152
Segel, L.A., 17, 63
Seo, Y.C., 15, 230
Sergeev, Y.A., 232
Shao, M., 297
Shapiro, M., 37, 63
Shield, R.T., 70, 97, 98
Simonin, O. 62
Sinclair, J.L., 236, 254, 261, 264, 265, 270, 278, 279, 280, 287, 296
Slattery, J.C., 17, 64
Stefan, K., 40, 63
Stewart, P.S.B., 175, 176, 179, 232
Storch, G.V., 97
Sundararajakumar, R.R., 43, 64
Sundaresan, S., 102, 151, 230, 255, 261, 280, 287, 295, 296
Syamalal, M., 15, 230, 288, 296
Tan, M.L., 296
Tanaka, T., 16
Taylor, Sir Geoffreyy, 165, 230
Thomas, E., 152
Thornton, C., 66, 98
Tsao, H-K., 64
Tsionides, S.C., 79, 89, 91, 94, 95, 98, 101, 144, 152
Tsui, Y., 3, 16
Tsao, Y.P., 235, 288, 295, 296
Tsuji, T., 231
Tuot, J., 235, 296
Tyson, C.W., 330
Vallet, D., 152
van Sint Annaland, M., 296
van Swaaij, W.P.M., 15, 231, 296
Wace, P.F., 163, 232
Walls, G.B., 17, 64, 120, 152
Wang, C-H., 236, 259, 296
Wasserzug, L., 297
Weil, S.A., 293
Weiner, A.W., 156, 231
Weinstein, H., 234, 270, 297
Whitaker, S., 17, 64
Wingham, K., 309, 331
Wilhelm, R.H., 99, 152
Wilson, L.A., 299, 331
Wong, H.W., 152
Worley, A., 234, 296
Wroth, C.P., 70, 72, 73, 97, 98
Wu, K-T., 230
Yen, R-H., 151, 230
Yerushalmi, J., 234, 271, 297
Youchou, L., 234, 297
Zaki, W.N., 5, 16, 49, 64
Zanetti, G., 296
Zen, F.A., 1, 16, 251, 297
Zhang, D.Z., 17, 33, 34, 52, 64
Zuber, N., 50, 63, 64
Subject Index

aggregative fluidization, 99, 153
angle of repose, 144
angular momentum equation
 particle phase average, 24, 25
 single particle, 24
averages, ensemble, 18
averages, local spatial
 comparison with ensemble averages, 18, 60–2
 dependence on separation of scales, 19
fluid-particle force, 23, 27, 35
fluid phase; definition, 20
fluid phase; differentiation, 20
hard, 19
mass weighted; definition, 21
overall; definition, 19
particle-particle force, 24
particle phase; definition, 21
particle phase; differentiation, 22
radius of, 19
soft, 19
solid phase; definition, 21
weighting functions for, 19
bed height
 measurements of, 91–3, 95–6
 prediction of, 83–9
bifurcations
 one-dimensional structures, 189–91, 221–2
 theory of Göz, 227
 two-dimensional structures, 203–10, 223–4
boundary conditions
 momentum, for gas phase, 241–3
 momentum, for particle phase, 239–40
 pseudo-thermal energy, 240–1
bubbles
 Collins’ model of, 174–5
 Davidson cloud accompanying, 159, 160–2, 176–8, 206, 211
 Davidson’s model of, 157–63
 fluid pressure field near, 179
 fluid streamlines near, 160, 161, 168, 169, 172, 173, 175, 214
 growth of, computed, 208–16, 227–29
 Jackson’s model of, 163–7
 Murray’s model of, 167–73
 photographs of, 154, 155
 pressure, effect on, 156–7
 relation to clusters, 221–4
 rise velocity, 165, 172
 tracer injection study of, 160–3
 void fraction near, 167, 179–82
 X-ray studies of, 154–5, 182
bulk density, 18
buoyancy, 26–32
catalytic cracking, 15, 233, 298
closures for averaged quantities
 effective fluid phase stress, 34, 38, 54–5
 effective particle phase stress, 38, 39–40, 41, 54–5
 fluid-particle interaction force, 35, 38, 39, 41, 48–53
 fluid phase stress, 33
 pseudothermal energy flux, 38, 39–40
compressor characteristics, 8
computational fluid dynamics (CFD), 2, 288–95
consolidation loci, 68–9
continuity equations, 22
 linearized form, 104
continuity waves, 110
and stability criterion, 120
cyclone, 300
Subject Index

diffusion coefficient for particles, 120, 225–6

discrete particle models, 3
drag force, 5, 48–52
 Buyevich’s expression, 39, 51
 Ergun’s expression, 51
 Ishii-Zuber expression, 50–1
 Koch’s expression, 38
 Koch & Sangani’s expression, 41
 Richardson-Zaki expression, 5, 49–50, 103
 Stokes, 35, 51
dynamical waves, 110
 and stability criterion, 120
eigenfunctions, 202, 204
 Einstein viscosity correction, 35
 energy, pseudothermal, 37–8, 142
 balance equation for, 37, 42, 237, 239, 279
 flux vector of, 37, 38, 238, 240, 280
 sources and sinks of, 37, 38, 42, 43, 238, 280, 284
failure loci, 67–8
 Faxen force, 35, 48
 flow rule, 73
 fluid cracking catalyst (FCC), 91–6, 101, 121–3, 144, 289, 300, 330
Geldart classification, 155–6, 300
 granular materials
 and large Stokes number suspensions, 37
 asymptotic shear stress in, 67–8
 consolidation and strengthening in, 69, 75
 consolidation loci for, 68–9
 constitutive relations for, 70–8
 critical state of, 73
 failure and weakening in, 67–8, 74–5
 failure loci for, 67–8
 instability under shear, 236
 plane shear of, 66–70
 shear stress for consolidation, 68
 shear stress for failure, 66–7
 yield loci for, 72–5
 yield stress in, 66–7
 gravity force vector, 22
 effective, for observer in motion, 28
hopper, 301–2, 303–4, 306–8, 311–12
 hysteresis
 in standpipe performance, 314–15, 326
 observed in fluidization–defluidization, 91–3
 predicted in fluidization–defluidization, 86–9
 instabilities
 and shock formation, 183–4, 196
 circulatory in bounded fluidized bed, 145–50
 comparison of predictions and observations, 137–42
 computational studies of, 102, 192–5, 206–19
dispersion relations for, 107–17, 188, 201, 203
 dominant instabilities in fluidized beds, 124–30
 experimental observations of, 130–7
 in typical air and water fluidized beds, 129–31
two-dimensional, 102, 199–203
 with pseudothermal energy balance, 142–4

Janssen approximation, 80, 308
 lift force, 48, 52–3
 mixing length, 280
 Mohr circle construction, 71–2
 momentum equations
 averaged for fluid, 23, 24, 26–7, 29–32
 averaged for mixture, 26
 averaged for particle phase, 23, 24, 26–7, 29–32
 closures for small Stokes number, 35
 closures of Buyevich, 39–40, 44–6
 closures of Foscolo & Gibilaro, 32, 46–7
 closures of Koch, 38, 45–6
 closures of Koch & Sangani, 40–4
 empirical closures, 48–56
 explicit forms for stability analysis, 103–4
 linearized about uniformly fluidized state, 104
 point for fluid, 22
 short relaxation time approximation to, 56–9
 single particle, 23
 number density, 21
 particle temperature
 and particle distribution in risers, 254
 anisotropy of, 41
 definition, 37
 differential equation for, 37, 42, 237, 239, 279
 radial profile in riser, 281
 particulate fluidization, 99, 153
 pressure drop, fluid phase
 in fluidization, 83, 84, 85, 86, 87, 88, 92–3
 in vertical pipe flow, 9
 pressure gradient, fluid phase
 in fluidized bed, 82
Subject Index

in standpipe flow, 298, 302–3, 308, 318–21
in vertical pipe flow, 6, 7, 10, 12
near bubble, 179
pressure, particle phase, 38, 39, 54–5, 81, 100
 closures for, 38, 39, 41, 83, 119, 186, 222, 238
 experimental estimates of, 140–1
 stabilization of fluidized bed by, 100, 118
time average, 258, 261, 264
relaxation time, fluid–particle, 56
Reynolds number, 34, 40
 at terminal velocity, 49
 relation to drag coefficient, 50
table of typical values, 47
riser flow, developing
 CFD modelling of, 288–95
 model of Gasgupta et al., 271–8
 one-dimensional treatments of, 233–4
 particle velocity profiles in, 277
 volume fraction profiles in, 276
riser flow, fully developed
 boundary conditions for, 239–43
 contours of pressure gradient for, 243–5, 246, 266–71
 ‘crossback’ interval in, 245
dimensionless variables for, 243
downflow of particles near pipe wall in, 246
flooded conditions for, 243
K–e closure for time-averaged equations, 260–1
‘laminar’ model of Sinclair & Jackson, 236–55
length scales associated with, 235
 observations of distribution of particles in, 234–5, 270–1, 272–3, 283, 285
 observations of pressure gradient in, 274–5
 ‘pseudoturbulent’ model of Dasgupta et al., 256–71
 ‘pseudoturbulent’ model of Hrenya & Sinclair, 278–87
radial profiles of velocities and solids fraction, 245–53
sensitivity to values of coefficients of restitution, 254–5, 280–2
time-averaged equations of motion for, 257–9
Zenz diagrams for, 234, 251, 254, 270, 271

scales, separation of, 19
 scaling (for equations of motion)
 difficulty of, 59
 for fully developed one-dimensional waves, 187
 for fully developed riser flow, 243
 for stability of uniform fluidized bed, 106
 for standpipe flow, 305
shear cell, 66
shock formation, 184, 196
short relaxation time approximation, 56–9
 condition for validity, 58
 table illustrating range of validity, 58
solitary waves, 199
stability
 analysis with pseudo-thermal energy balance, 142–4
 conditions for uniformly fluidized state, 117–23, 147–50
 criterion of Batchelor, 119
 criterion of Foscolo & Gibilaro, 119
 criterion of Wallis, 120
effect of distributor Ap and bed width on, 147–50
of flow in a vertical pipe, 10
of fully developed one-dimensional waves, 191, 194–6, 204
of fully developed two-dimensional waves, 205
of stratified fluid, 224–6
predictions for specific systems, 121–3
role of yield stress in, 144
standpipe flow
 aerated, 321–8
 aeration point location, 327–9
 alternative configurations for, 300
 comparison of predictions with experiment, 316–18, 327–8
 gas pressure profiles in, 302, 318–21
 hysteresis in, 315–16, 326
 matching conditions between sections, 310–11
 motion in discharge device, 309–10
 motion in feed hopper, 306–8
 motion of packed bed in pipe, 308–9
 motion of suspension in pipe, 309
 predicted behaviour with aeration, 323–7
 predicted behaviour without aeration, 313–16
 regimes with aeration, 322–3
 regimes without aeration, 312
Stokes drag force, 35
Stokes number, 33–4, 36, 38, 39, 40, 47
stress tensor
 closures in suspensions, see closures for averaged quantities
 effective for fluid phase, definition, 26
 effective for particle phase, definition, 26
 point for fluid, 22
terminal velocity, 5, 40, 49, 81, 185, 186, 244, 262
traction on particle surface, 25
‘two fluid’ models, 3
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>velocity fluctuations (in fluidization and defluidization)</td>
<td>95–6</td>
</tr>
<tr>
<td>vertical pipe flow</td>
<td>4–13</td>
</tr>
<tr>
<td>choking in</td>
<td>9–10</td>
</tr>
<tr>
<td>determination of operating conditions for</td>
<td>9</td>
</tr>
<tr>
<td>effect of wall stress on</td>
<td>10–13</td>
</tr>
<tr>
<td>flooding in</td>
<td>7</td>
</tr>
<tr>
<td>stability of</td>
<td>10</td>
</tr>
<tr>
<td>virtual mass force</td>
<td>48</td>
</tr>
<tr>
<td>on isolated particle (Maxey & Riley)</td>
<td>53</td>
</tr>
<tr>
<td>Zhang & Prosperetti’s expression for</td>
<td>52</td>
</tr>
<tr>
<td>Zuber’s expression for</td>
<td>52</td>
</tr>
<tr>
<td>volume fraction</td>
<td></td>
</tr>
<tr>
<td>fluctuation at large Stokes number (Buyevich)</td>
<td>40</td>
</tr>
<tr>
<td>fluid, definition</td>
<td>20</td>
</tr>
<tr>
<td>solids, definition</td>
<td>21</td>
</tr>
<tr>
<td>wall friction</td>
<td>80–1, 88, 308</td>
</tr>
<tr>
<td>waves, one-dimensional</td>
<td></td>
</tr>
<tr>
<td>bifurcations of</td>
<td>190–1</td>
</tr>
<tr>
<td>fully developed</td>
<td>187–99</td>
</tr>
<tr>
<td>nonlinear treatments of</td>
<td>183–99</td>
</tr>
<tr>
<td>stability against one-dimensional perturbations</td>
<td>194–5</td>
</tr>
<tr>
<td>stability against two-dimensional perturbations</td>
<td>199–203</td>
</tr>
<tr>
<td>time development of</td>
<td>192–3</td>
</tr>
<tr>
<td>waves, two-dimensional</td>
<td></td>
</tr>
<tr>
<td>and absence of bubbles from liquid fluidized beds</td>
<td>216–19</td>
</tr>
<tr>
<td>bifurcations of</td>
<td>204–5, 207–8, 210, 223–4</td>
</tr>
<tr>
<td>experimental evidence in liquid fluidized beds</td>
<td>199</td>
</tr>
<tr>
<td>fully developed, in air fluidized bed</td>
<td>203–7, 208, 209</td>
</tr>
<tr>
<td>fully developed in liquid fluidized bed</td>
<td>207–8, 210, 211</td>
</tr>
<tr>
<td>growth from one-dimensional waves</td>
<td></td>
</tr>
<tr>
<td>in air fluidized bed</td>
<td>208–210, 212, 213</td>
</tr>
<tr>
<td>growth from one-dimensional waves in liquid fluidized bed</td>
<td>216–18</td>
</tr>
<tr>
<td>growth from uniform air fluidized bed</td>
<td>212, 214–15</td>
</tr>
<tr>
<td>growth from uniform liquid fluidized bed</td>
<td>219</td>
</tr>
<tr>
<td>relation to bubbles in dense air-fluidized bed</td>
<td>206–7, 210–12, 214</td>
</tr>
<tr>
<td>relation to clusters in dilute air-fluidized bed</td>
<td>221–4</td>
</tr>
<tr>
<td>yield conditions for fluidization-defluidization</td>
<td>79</td>
</tr>
<tr>
<td>yield loci</td>
<td>72–5</td>
</tr>
<tr>
<td>yield surfaces</td>
<td>76</td>
</tr>
<tr>
<td>Zenz diagram</td>
<td>7, 11, 234, 251</td>
</tr>
</tbody>
</table>