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The mathematical modelling of fluidized
suspensions

1.1 Introduction

At the high concentrations of interest in this book interactions between particles
play a major role. These are of two kinds: interactions via motions induced in
the interstitial fluid and interactions by direct contact between solid particles.
The former dominate when the interstitial fluid is a liquid and the particle
concentration is not too large, while the latter dominate when the fluid is a gas,
though they may also be important with a liquid medium if the particles are
present at very high concentration.

As a result of fluid—particle and particle—particle interactions the behaviour
of these systems is very complicated. The distribution of the particles in space
is usually far from uniform; the coexistence of regions of strongly contrast-
ing concentration is apparently an intrinsic feature of fluid—particle systems in
motion. For many years it was therefore assumed that the properties of these
systems could be predicted only by the use of empirical correlations. Many of
these were developed and they have since formed the basis for most engineering
design, as reflected in the earlier textbooks on the subject; see, for example,
Othmer (1956), Leva (1959), and Zenz & Othmer (1960).

Interest in the mechanisms responsible for the observed heterogeneities, and
how simple pictures of their associated flow fields might be integrated into
design calculations, was sparked by the monograph of Davidson & Harrison
(1963) and it dominated the literature of the following decade (Kunii &
Levenspiel, 1969). The same period also marked the beginnings of interest
in a more fundamental approach, based on equations of motion for the inter-
acting fluid and particles. This was regarded primarily as a means of gaining
better understanding of the mechanisms responsible for the complexities of the
observed behaviour, rather than as a basis for practical design calculations, and
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2 1. The mathematical modelling of fluidized suspensions

indeed there was considerable progress of this sort. However, the 1980s saw the
dawning of a realization that it might eventually be possible to base quantitative
design calculations on differential equations of continuity and momentum bal-
ance. Indeed, rapid improvements in the speed and memory capacity of digital
computers, coupled with better methods for addressing the difficulties attend-
ing numerical solution of the equations of motion, tempted a few pioneers to
attempt to predict bubble formation in dense fluidized beds by direct integra-
tion of these equations (Pritchett et al., 1978; Gidaspow & Ettehadieh, 1983;
Gidaspow et al., 1986).

Though empirical correlations remain, quite properly, a central feature of
practical design methods, there is now a rapidly increasing interest in the use
of methods that can loosely be described as “computational fluid dynamics”, or
CFD. These make it possible to answer many questions that cannot be addressed
by using conventional correlations. For example, correlations may be available
that are quite successful in predicting the performance of a riser reactor with
certain standard arrangements for introducing particles and gas at its foot, but
they can say nothing useful about the effect of a proposed change in the detailed
geometry of these arrangements, such as replacement of a single entry point
for the particles by two or more entry points, or a change in the angle at which
a standpipe meets the bottom of the riser. In the case of a dense fluidized bed
one might be interested in the effects of proposed internal baffling of specified
geometry, in exploring the most effective disposition of immersed heat transfer
tubes, or in comparing different designs for the gas distributor. Questions of
this sort could, in principle, be addressed if efficient computational codes were
available to solve the equations describing the dynamics of the system.

These equations can be formulated at different levels of detail. At the
most fundamental level the motion of the whole system is determined by the
Newtonian equations of motion for the translation and rotation of each particle
and the Navier—Stokes and continuity equations, to be satisfied at every point of
the interstitial fluid. These are linked by the no-slip condition between the solid
and the fluid on each particle boundary, and the fluid must also satisfy no-slip
conditions everywhere on the walls bounding the entire system of interest. Cal-
culations at this level of detail have been performed successfully, but only for
quite small numbers of particles. It is not presently conceivable that they could
be extended to systems containing the very large number of particles present in
commercial units such as fluidized beds.

A second description, at a less detailed level, can be obtained by replacing
the fluid velocity at each point by its average, taken over a spatial domain large
enough to contain many particles but still small compared to the whole region
occupied by the flowing mixture. The force exerted by the fluid on each particle
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1.1 Introduction 3

is then related to the particle’s velocity relative to this locally averaged fluid
velocity, and to the local concentration of the particle assembly, using one of
a number of empirical correlations. The Newtonian equations of motion are
then solved for each particle separately, taking into account direct collisions
between particles when this is appropriate. This procedure, sometimes referred
to as “discrete particle modelling”, is much less demanding computationally
than a complete solution at the first level of detail. Results from this approach
have begun to appear in the literature in the past few years (see, for example,
Tsuji et al. (1993) and Hoomans et al. (1996)), and their number can be expected
to increase.

At a third level of detail both the fluid velocity and the particle velocity are
averaged over the local spatial domains introduced above. There are then two
local-averaged velocity fields, u and v, for the fluid and the particles respectively.
Each of these is defined at all points of space, so that the resulting equations
look like the equations of motion one would write for two imaginary fluids, ca-
pable of interpenetrating so that every point is occupied simultaneously by both
fluids. Consequently, a description at this level of detail is often referred to as a
“two fluid model”. As we shall see in Chapter 2 the formal process of averaging
that leads to these equations leaves behind a number of terms whose form is not
determined, and to close the equations they must be related to the fields of u, v,
and particle concentration. This type of model then takes the form of coupled
partial differential equations that usually must be solved numerically, subject
only to boundary conditions at the boundaries of the system as a whole. This
might be expected to be less demanding computationally than the solution of
models at the first and second levels of detail and, as we shall see, there are
certain important problems for which approximate, or even exact, analytical
solutions can be found. Compared with discrete particle models these two-fluid
models suffer from the disadvantage that closures must be formulated for cer-
tain important terms left undetermined in the averaged momentum equation for
the particle phase. However, it is by no means clear that the physical effects cor-
responding to these terms are represented properly even by the discrete particle
models, since these replace the fluid flow field by its locally averaged form.

This book will deal primarily with the third level of description, that is, the
so-called two-fluid models, and what light they have been able to throw on a
number of important questions concerning the motion of fluidized particles. This
focus is in no way intended to reflect adversely on the enormous and continuing
importance of more empirically based approaches, nor on the promise of more
detailed models at the first or second levels described above. The former have
already been covered well in a number of texts, whereas the latter are still
at an early stage of development where it would not yet be appropriate to
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4 1. The mathematical modelling of fluidized suspensions

summarize them in book form. The specific problems discussed in Chapters 3
to 7, while having intrinsic importance and serving to illustrate the sort of results
obtainable using equations of the two-fluid type, also frankly reflect the author’s
own interests over the past three and a half decades.

It should be emphasized that the point of departure for our averaged equa-
tions of motion is the equations at the first level of detail, referred to above,
which are well established. The averaging process is then entirely formal and
it leaves behind terms that, though not expressed in terms of the average vari-
ables themselves, are nonetheless explicitly related to details of the motion at
the “microscopic” scale of the individual particles. We resort to empirical clo-
sures for these terms only because we do not know, at present, how to evaluate
them exactly, except in the simplest cases. This should be contrasted to an al-
ternative approach that, from the outset, “models” the fluid—particle system as
a pair of interpenetrating continuous fluids, then formulates their equations of
motion using intuitive ideas, constrained by general principles of continuum
mechanics. Though both approaches may lead to similar equations there is a
clear distinction between their philosophies.

1.2 A Simple Application of Equations of the Two-Fluid Type

Obviously, the equations of motion for a fluid—particle mixture, in local-
averaged form, are more complicated than the equations of motion of a single-
phase fluid. To begin with, they are larger in number; there are two scalar
equations of continuity and two vector equations of momentum balance, with
the latter coupled through the forces of interaction between the two phases.
Since, even for a single-phase fluid, exact solutions are available only in quite
simple situations one might naturally conclude that the scope for making useful
deductions from the two-fluid equations is very limited. However, paradoxi-
cally, this is not entirely the case. There are situations in which simplifying
assumptions, so radical that they would lose the features of physical interest
for single-phase flow, still succeed in accounting for important aspects of the
behaviour of the two-phase system. We shall now illustrate this by a simple,
but practically important example.

Consider fully developed flow in a vertical pipe of circular cross section. For
a single-phase incompressible fluid there is then the exact Poiseuille solution
that relates the gravity force, the pressure gradient, and the velocity profile.
If the fluid is permitted to slip freely in contact with the pipe wall there is a
simpler, one-dimensional solution. The velocity is then the same at all points of
the cross section, and it is found that the pressure gradient does not depend on
the flow rate but is always equal to the hydrostatic gradient induced by gravity.
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1.2 A simple application of equations of the two-fluid type 5

However, this solution is of little value since the result of most practical interest,
namely the relation between flow rate and pressure gradient, is lost because of
the simplification.

For a fluid—particle suspension, in contrast, a comparably radical simplifi-
cation by no means destroys the usefulness of the solution. A complicated and
largely realistic pattern of behaviour can still be predicted, as we shall now
demonstrate by means of an example that is both simple and of some practical
importance. We shall focus attention on a gas—particle mixture moving up a
vertical pipe. Then, permitting free slip of both phases at the pipe wall, we shall
seek a solution in which the local average velocity of each phase and the con-
centration of the particles are all independent of position and time. This means
that the flow is steady and fully developed, and both the particle concentration
and the velocities of gas and particles are independent of radial position. Then,
if ¢ denotes the fraction of the total volume occupied by the particles, and if
V; and V; denote the volume flow rates of fluid and solid material per unit
cross-sectional area, the local average axial velocities of fluid and particles,
u and v, are given by
/. an

1-¢ ¢
For small enough particles the drag force f, per unit total volume, exerted by
the fluid on the particles would be expected to be proportional to # — v, with a
factor of proportionality B that is an increasing function of ¢:

v,
= B(¢) [—— - —] . 1.2)
! -4 ¢
We shall assume that g is given by a well-known empirical expression due to
Richardson & Zaki (1954), namely

Psg
v (1 — ¢y’

where p; is the density of the solid material, v, is the terminal velocity of fall
of an isolated particle in an infinite body of the fluid, and » is a number whose
value depends on the Reynolds number for a particle moving through the fluid
with speed v,.

As attention is limited to fuily developed flow inertial terms vanish and
the momentum equation for each phase reduces to a force balance. Since the
suspending fluid is a gas, buoyancy forces can also be neglected and, making
use of (1.2) and (1.3), a force balance on the particles in unit volume of the

B(¢) = 1.3)
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6 1. The mathematical modelling of fluidized suspensions
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Figure 1.1. Contours of constant ¢ (or pressure gradient) in the plane of Vs /v, and
Vi /v:. (After Jackson, 1993.)

suspension gives

1-¢ ¢

A corresponding force balance on the gas shows that its pressure gradient must
support the weight of the suspended particles, so

P _ —Ps9g, (1.5)

dz
where z is a coordinate measured vertically upward. This indicates that the pres-
sure gradient or ¢ may be invoked interchangeably, since they are proportional
to each other.

One way of presenting these relations graphically is as contours of constant
dp/dz (or equivalently ¢) in the (V;, V)-plane. From (1.4) we see that these
are a set of straight lines of slopes (1 —¢)/¢, as shown in Figure 1.1. The line for
¢ = 0 coincides with the ordinate axis, while the line of smallest slope corre-
sponds to ¢ = ¢,,, the volume fraction for random close packing. The contours
extend into the first, second, and third quadrants, where they represent cocur-
rent upflow, countercurrent flow, and cocurrent downflow, respectively. Points
in the fourth quadrant are, of course, physically impossible since they would
represent upward flow of particles with a downward flow of gas. In the second
quadrant the set of contours has an envelope, and all points enclosed between
this envelope, the positive V; axis, and the negative V; axis represent possible

=(1-¢). (1.4
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Figure 1.2. Zenz diagram (curves of constant V; in the plane of V¢ /v; and ¢) corre-
sponding to Figure 1.1. (After Jackson, 1993.)

conditions for countercurrent flow. This region is of bounded extent because
countercurrent flow is not possible for arbitrarily large values of either the gas
flow or the particle phase flow. Points on the envelope correspond to conditions
usually referred to as “flooding”.

A second method of graphical presentation is the so-called Zenz diagram,
which shows a set of curves relating the pressure gradient (or equivalently ¢)
to the gas flow rate, for various fixed values of the particle flow rate. It is
easy to translate Figure 1.1 into this alternative form and the result is sketched
as Figure 1.2, where ¢ is used as the ordinate. The curve labelled AB, which
corresponds to V; = 0, represents situations in which the particles are suspended
at rest in the flowing gas — in other words, fluidized beds. The corresponding
part of Figure 1.1 is the interval AB of the ordinate axis. The part of Figure 1.2
to the right of AB represents cocurrent upflow, the part between AB and the axis
V¢ = Orepresents countercurrent flow, and the whole region V; < 0 represents
cocurrent downflow.

We have already noted that this very simple theoretical model predicts flood-
ing in countercurrent flow. It can also be used to illustrate another striking aspect
of suspension flow, namely the importance of interactions between the pipe it-
self and the devices used to supply the gas and the particles. Let us focus on
the characteristics of the gas supply device, assuming that some provision has
been made to feed the particles at the constant flow rate represented by V.
We envisage a system in which gas starting from atmospheric pressure is com-
pressed and introduced at the bottom of the vertical pipe, where it is joined by
the particles, while at the top of the pipe the suspension is discharged into a
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8 1. The mathematical modelling of fluidized suspensions

0.

(a) Reciprocating compressor

Vi vy
:f —> Ap
(b) Variable speed blower
Vi vy
—
Ap
(c) Blower with throttle
Y vy
— — —p AP
(d) Pressure vessel —
Vi v

Figure 1.3. Characteristics of different types of gas compression device. (After Jackson,
1993.)

second region, also at atmospheric pressure. Then the device used to compress
the gas must raise its pressure by an amount that exactly balances the drop in
gas pressure along the pipe. Denote the magnitude of each of these pressure
changes by Ap.

In general the pressure rise across the gas compression device is related to
the flow rate, and a curve showing this relation is called a characteristic of the
device. Figure 1.3 shows sketches of these characteristics for various devices.

Panel (a) represents an idealized reciprocating compressor, for which the
flow rate is almost independent of Ap. Panel (b) is a centrifugal blower whose
speed can be adjusted. There is then a separate characteristic curve for each value
of the speed, and on each curve Ap decreases as the delivered flow increases,
falling to zero at some finite value of the flow. Panel (c) again represents a
centrifugal blower, but in this case the speed is constant and a throttle valve
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1.2 A simple application of equations of the two-fluid type 9

increasing blower speed

Ap

pressure drop curve
for given v,

Vi —»

Figure 1.4. Determination of operating conditions by superimposing the pressure drop
curve for the pipe and the characteristic curves of a variable speed blower. (After Jackson,
1993.)

in the delivery line is used for control. Then there is a separate characteristic
curve for each setting of this valve, as indicated. Finally, panel (d) shows a large
pressurized buffer vessel as a source of the gas. The pressure to which this is
charged then determines Ap, and the characteristics are horizontal lines, one
for each value of this pressure.

The operating conditions for the combination of the gas compression device
and the pipe are determined by the intersection of the characteristic curve of
the compression device with the curve from the Zenz diagram relating Ap to
V; for the pipe. This latter curve is obtained from Figure 1.2 by scaling the
curve for the appropriate value of V; by a multiplier p;g L, where L is the total
length of the pipe. For compression device characteristics of the types shown
in panels (a) and (d) of Figure 1.3 the intersection in question is clearly unique,
but this is not so for the blower characteristics of panels (b) and (c). Figure 1.4
superimposes the pressure drop curve for the pipe, for the specified value of V;,
and several blower characteristics from panel (b) of Figure 1.3; we see that the
number of intersections is either two or zero, depending on the blower speed.
If the blower speed is high there are two, such as the points denoted by a and ’,
and as the blower speed is progressively decreased these move closer together,
as seen from the pair bb'. Finally a critical value of the blower speed is reached
at which the intersection points coincide (point c), and for lower speeds there
is no intersection, indicating that the particles can no longer ascend the pipe as
a suspension in the gas. This represents a condition called “choking”; when the
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10 1. The mathematical modelling of fluidized suspensions

speed falls below this value there is a discontinuous increase in ¢ to the value
¢ and the particles continue to ascend the pipe at the specified flow rate only
if they can be forced up as a packed bed by the particles injected below them.

When the blower speed is high enough to avoid choking the question remains
as to which of the two intersection points represents the actual operating con-
dition of the system. This raises the issue of stability, which can be addressed
either intuitively or more formally. At any point in Figure 1.4 representing an
operating state the pressure rise in the gas feed device balances the pressure
drop in the pipe. If, as a consequence of a small increase in the gas flow rate, the
pressure rise in the compression device should become larger than the pressure
drop in the pipe, intuition would suggest that the original operating point was
unstable. Conversely, if a small increase in the gas flow rate causes the pres-
sure rise in the compression device to become smaller than the pressure drop
in the pipe, one would anticipate stability. A more formal analysis confirms
these intuitive ideas (Matsumoto, 1986); so we conclude that points a and b in
Figure 1.4 represent unstable conditions of operation, whereas points such as
2’ and V', lying to the right of point c, represent conditions that are stable and
could therefore be observed in practice. The same criterion applied to other gas
feed devices indicates that the device of panel (a) in Figure 1.3 gives unique
and stable operating points in all cases, whereas the device of panel (d) would
always lead to unstable operation. Consequently a feed device whose character-
istics approximate sufficiently closely those of panel (a) will exhibit no choking
phenomenon as the gas flow is decreased; instead the particle concentration will
increase in a continuous way, eventually forming a dense, moving suspension
known as a “fast fluidized bed”.

Of course, the fact that the operating conditions are determined by an interac-
tion between the pipe and its feed device comes as no surprise; the same is true
for the flow of a single-phase fluid. The interesting features of the two-phase
flow are the marked qualitative changes, such as flooding and choking, and the
influence of the feed device on the whole pattern of behaviour as the flow rates
are changed. These have no analogues in the case of single-phase flow.

In single-phase flow the tangential forces exerted on the fluid at the walls
of the pipe give rise to the part of the pressure drop that increases with the flow
rate. Though these forces have been omitted in the above discussion, they are
also present in the suspension flow, and it is not difficult to see how they affect
the outcome. For a given value of the particle flow rate we expect that they
will make a contribution to the pressure drop in the pipe that increases with

increasing gas flow rate. At low flow rates this contribution will be proportional
to V;, and at high flow rates to V2, so the curves of Figure 1.2 are modified as
in Figure 1.5, which shows only those corresponding to cocurrent upflow. In
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