
PART 1

Functions and Foundations

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


1

Introduction

“The Medium Is the Message”

Marshall McLuhan

1.1 PROGRAMMING LANGUAGES

Programming languages are the medium of expression in the art of computer pro-
gramming. An ideal programming language will make it easy for programmers to
write programs succinctly and clearly. Because programs are meant to be under-
stood, modified, and maintained over their lifetime, a good programming language
will help others read programs and understand how they work. Software design and
construction are complex tasks. Many software systems consist of interacting parts.
These parts, or software components, may interact in complicated ways. To man-
age complexity, the interfaces and communication between components must be
designed carefully. A good language for large-scale programming will help program-
mers manage the interaction among software components effectively. In evaluating
programming languages, wemust consider the tasks of designing, implementing, test-
ing, and maintaining software, asking how well each language supports each part of
the software life cycle.

There are many difficult trade-offs in programming language design. Some lan-
guage features make it easy for us to write programs quickly, but may make it harder
for us to design testing tools or methods. Some language constructs make it easier for
a compiler to optimize programs, butmaymake programming cumbersome. Because
different computing environments and applications require different program char-
acteristics, different programming language designers have chosen different trade-
offs. In fact, virtually all successful programming languages were originally designed
for one specific use. This is not to say that each language is good for only one purpose.
However, focusing on a single application helps language designers make consistent,
purposeful decisions. A single application also helps with one of the most difficult
parts of language design: leaving good ideas out.

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

THE AUTHOR

I hope you enjoy using this book. At the beginning of each chapter, I have
included pictures of people involved in the development or analysis of
programming languages. Some of these people are famous, with major
awards and published biographies. Others are less widely recognized.
When possible, I have tried to include some personal information based
on my encounters with these people. This is to emphasize that program-
ming languages are developed by real human beings. Like most human
artifacts, a programming language inevitably reflects some of the per-
sonality of its designers.

As a disclaimer, let me point out that I have not made an attempt
to be comprehensive in my brief biographical comments. I have tried
to liven up the text with a bit of humor when possible, leaving serious
biography to more serious biographers. There simply is not space to
mention all of the people who have played important roles in the history
of programming languages.

Historical and biographical texts on computer science and computer
scientists have become increasingly available in recent years. If you like
reading about computer pioneers, you might enjoy paging through Out of
Their Minds: The Lives and Discoveries of 15 Great Computer Scientists
by Dennis Shasha and Cathy Lazere or other books on the history of
computer science.

John Mitchell

Even if you do not use many of the programming languages in this book, you
may still be able to put the conceptual framework presented in these languages to
good use. When I was a student in the mid-1970s, all “serious” programmers (at my
university, anyway) used Fortran. Fortran did not allow recursion, and recursion was
generally regardedas too inefficient tobepractical for “realprogramming.”However,
the instructor of one course I took argued that recursion was still an important idea
and explained how recursive techniques could be used in Fortran by managing data
in an array. I am glad I took that course and not one that dismissed recursion as an
impractical idea. In the 1980s,many people considered object-oriented programming
too inefficient and clumsy for real programming. However, students who learned
about object-oriented programming in the 1980s were certainly happy to know about

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


1.2 Goals 5

these “futuristic” languages in the 1990s, as object-oriented programming became
more widely accepted and used.

Although this is not a book about the history of programming languages, there is
some attention to history throughout the book. One reason for discussing historical
languages is that this gives us a realistic way to understand programming language
trade-offs. For example, programs were different when machines were slow and
memorywas scarce.The concernsof programming languagedesignerswere therefore
different in the 1960s from the current concerns. By imaging the state of the art in
some bygone era, we can give more serious thought to why language designers made
certain decisions. This way of thinking about languages and computing may help
us in the future, when computing conditions may change to resemble some past
situation. For example, the recent rise in popularity of handheld computing devices
and embedded processors has led to renewed interest in programming for devices
with limited memory and limited computing power.

Whenwe discuss specific languages in this book, we generally refer to the original
or historically important form of a language. For example, “Fortran” means the
Fortran of the 1960s and early 1970s. These early languages were called Fortran I,
Fortran II, Fortran III, and so on. In recent years, Fortran has evolved to include
more modern features, and the distinction between Fortran and other languages has
blurred to some extent. Similarly, Lisp generally refers to the Lisps of the 1960s,
Smalltalk to the language of the late 1970s and 1980s, and so on.

1.2 GOALS

In this book we are concerned with the basic concepts that appear in modern pro-
gramming languages, their interaction, and the relationship between programming
languages andmethods for program development. A recurring theme is the trade-off
between language expressiveness and simplicity of implementation. For each pro-
gramming language feature we consider, we examine the ways that it can be used
in programming and the kinds of implementation techniques that may be used to
compile and execute it efficiently.

1.2.1 General Goals

In this book we have the following general goals:

� To understand the design space of programming languages. This includes con-
cepts and constructs from past programming languages as well as those that may
be used more widely in the future. We also try to understand some of the ma-
jor conflicts and trade-offs between language features, including implementation
costs.

� Todevelopabetterunderstandingof the languageswecurrentlyuseby comparing
them with other languages.

� To understand the programming techniques associated with various language
features. The study of programming languages is, in part, the study of conceptual
frameworks for problem solving, software construction, and development.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


6 Introduction

Many of the ideas in this book are common knowledge among professional pro-
grammers. The material and ways of thinking presented in this book should be
useful to you in future programming and in talking to experienced programmers
if you work for a software company or have an interview for a job. By the end of the
course, you will be able to evaluate language features, their costs, and how they fit
together.

1.2.2 Specific Themes

Here are some specific themes that are addressed repeatedly in the text:

� Computability: Some problems cannot be solved by computer. The undecidabil-
ity of the halting problem implies that programming language compilers and
interpreters cannot do everything that we might wish they could do.

� Static analysis: There is a difference between compile time and run time. At
compile time, the program is known but the input is not. At run time, the program
and the input are both available to the run-time system. Although a program
designer or implementer would like to find errors at compile time, many will not
surface until run time. Methods that detect program errors at compile time are
usually conservative, which means that when they say a program does not have
a certain kind of error this statement is correct. However, compile-time error-
detection methods will usually say that some programs contain errors even if
errors may not actually occur when the program is run.

� Expressiveness versus efficiency: There are many situations in which it would be
convenient to have a programming language implementation do something auto-
matically. An example discussed in Chapter 3 is memory management: The Lisp
run-time system uses garbage collection to detect memory locations no longer
needed by the program. When something is done automatically, there is a cost.
Although an automatic method may save the programmer from thinking about
something, the implementation of the language may run more slowly. In some
cases, the automatic methodmaymake it easier to write programs andmake pro-
gramming less prone to error. In other cases, the resulting slowdown in program
execution may make the automatic method infeasible.

1.3 PROGRAMMING LANGUAGE HISTORY

Hundreds of programming languages have been designed and implemented over
the last 50 years. As many as 50 of these programming languages contained new
concepts, useful refinements, or innovations worthy of mention. Because there are
far too many programming languages to survey, however, we concentrate on six
programming languages: Lisp, ML, C, C++, Smalltalk, and Java. Together, these
languages contain most of the important language features that have been invented
since higher-level programming languages emerged from the primordial swamp of
assembly language programming around 1960.

The history of modern programming languages begins around 1958–1960 with
the development of Algol, Cobol, Fortran, and Lisp. The main body of this book

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


1.3 Programming Language History 7

covers Lisp, with a shorter discussion of Algol and subsequent related languages. A
brief account of some earlier languages is given here for those who may be curious
about programming language prehistory.

In the 1950s, a number of languages were developed to simplify the process
of writing sequences of computer instructions. In this decade, computers were very
primitive bymodern standards.Most programmingwas donewith the nativemachine
language of the underlying hardware. This was acceptable because programs were
small and efficiency was extremely important. The twomost important programming
language developments of the 1950s were Fortan and Cobol.

Fortran was developed at IBM around 1954–1956 by a team led by John
Backus. The main innovation of Fortran (a contraction of formula translator) was
that it became possible to use ordinary mathematical notation in expressions. For
example, the Fortran expression for adding the value of i to twice the value of
j is i + 2∗j. Before the development of Fortran, it might have been necessary to
place i in a register, place j in a register, multiply j times 2 and then add the
result to i. Fortran allowed programmers to think more naturally about numeri-
cal calculation by using symbolic names for variables and leaving some details of
evaluation order to the compiler. Fortran also had subroutines (a form of proce-
dure or function), arrays, formatted input and output, and declarations that gave
programmers explicit control over the placement of variables and arrays in mem-
ory. However, that was about it. To give you some idea of the limitations of
Fortran, many early Fortran compilers stored numbers 1, 2, 3 . . . in memory lo-
cations, and programmers could change the values of numbers if they were not
careful! In addition, it was not possible for a Fortran subroutine to call itself, as
this required memory management techniques that had not been invented yet (see
Chapter 7).

Cobol is a programming language designed for business applications. Like
Fortran programs, many Cobol programs are still in use today, although current
versions of Fortran and Cobol differ substantially from forms of these languages
of the 1950s. The primary designer of Cobol was Grace Murray Hopper, an im-
portant computer pioneer. The syntax of Cobol was intended to resemble that
of common English. It has been suggested in jest that if object-oriented Cobol
were a standard today, we would use “add 1 to Cobol giving Cobol” instead of
“C++”.

The earliest languages covered in any detail in this book are Lisp and Algol,
which both came out around 1960. These languages have stack memory manage-
ment and recursive functions or procedures. Lisp provides higher-order functions
(still not available in many current languages) and garbage collection, whereas the
Algol family of languages provides better type systems and data structuring. The
main innovations of the 1970s were methods for organizing data, such as records (or
structs), abstract data types, and early forms of objects. Objects became mainstream
in the 1980s, and the 1990s brought increasing interest in network-centric computing,
interoperability, and security and correctness issues associated with active content
on the Internet. The 21st century promises greater diversity of computing devices,
cheaper andmore powerful hardware, and increasing interest in correctness, security,
and interoperability.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


8 Introduction

1.4 ORGANIZATION: CONCEPTS AND LANGUAGES

There are many important language concepts and many programming languages.
Themost natural way to summarize the field is to use a two-dimensional matrix, with
languages along one axis and concepts along the other. Here is a partial sketch of
such a matrix:

Heap
Language Expressions Functions storage Exceptions Modules Objects Threads

Lisp x x x
C x x x
Algol 60 x x
Algol 68 x x x x
Pascal x x x
Modula-2 x x x x
Modula-3 x x x x x x
ML x x x x x
Simula x x x x x
Smalltalk x x x x x x
C++ x x x x x x
Objective x x x x
C

Java x x x x x x x

Although this matrix lists only a fraction of the languages and concepts that might
be covered in a basic text or course on the programming languages, one general
characteristic should be clear. There are some basic language concepts, such as ex-
pressions, functions, local variables, and stack storage allocation that are present in
many languages. For these concepts, it makes more sense to discuss the concept in
general than to go through a long list of similar languages. On the other hand, for
concepts such as objects and threads, there are relatively few languages that exhibit
these concepts in interesting ways. Therefore, we can study most of the interesting
aspects of objects by comparing a few languages.Another factor that is not clear from
thematrix is that, for some concepts, there is considerable variation from language to
language. For example, it is more interesting to compare the way objects have been
integrated into languages than it is to compare integer expressions. This is another
reason why competing object-oriented languages are compared, but basic concepts
related to expressions, statements, functions, and so on, are covered only once, in a
concept-oriented way.

Most courses and texts on programming languages use some combination of
language-based and concept-based presentation. In this book a concept-oriented
organization is followed for most concepts, with a language-based organization used
to compare object-oriented features.

The text is divided into four parts:

Part 1: Functions and Foundations (Chapters 1–4)
Part 2: Procedures, Types, Memory Management, and Control (5–8)
Part 3: Modularity, Abstraction and Object-Oriented Programming (9–13)

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


1.4 Organization: Concepts and Languages 9

Part 4: Concurrency and Logic Programming (14 and 15)

In Part 1 a short study of Lisp is presented, followed by a discussion of compiler
structure, parsing, lambda calculus, and denotational semantics. A short chapter pro-
vides a brief discussion of computability and the limits of compile-time program
analysis and optimization. For C programmers, the discussion of Lisp should provide
a good chance to think differently about programming and programming languages.

In Part 2, we progress through themain concepts associatedwith the conventional
languages that are descended in some way from the Algol family. These concepts
include type systems and type checking, functions and stack storage allocation, and
control mechanisms such as exceptions and continuations. After some of the history
of the Algol family of languages is summarized, the ML programming language is
used as the main example, with some discussion and comparisons using C syntax.

Part 3 is an investigation of program-structuring mechanisms. The important lan-
guage advances of the 1970s were abstract data types and program modules. In the
late 1980s, object-oriented concepts attainedwidespread acceptance.Because object-
oriented programming is currently the most prominent programming paradigm,
in most of Part 3 we focus on object-oriented concepts and languages, comparing
Smalltalk, C++, and Java.

Part 4 contains chapters on language mechanisms for concurrent and distributed
programs and on logic programming.

Because of space limitations, a number of interesting topics are not covered.
Although scripting languages and other “special-purpose” languages are not covered
explicitly in detail, an attempt has been made to integrate some relevant language
concepts into the exercises.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


2

Computability

Some mathematical functions are computable and some are not. In all general-
purpose programming languages, it is possible to write a program for each function
that is computable in principle. However, the limits of computability also limit the
kinds of things that programming language implementations can do. This chapter
contains a brief overview of computability so that we can discuss limitations that
involve computability in other chapters of the book.

2.1 PARTIAL FUNCTIONS AND COMPUTABILITY

From a mathematical point of view, a program defines a function. The output of
a program is computed as a function of the program inputs and the state of the
machine before the program starts. In practice, there is a lot more to a program than
the function it computes. However, as a starting point in the study of programming
languages, it is useful to understand some basic facts about computable functions.

The fact that not all functions are computable has important ramifications for
programming language tools and implementations. Some kinds of programming
constructs, however useful they might be, cannot be added to real programming
languages because they cannot be implemented on real computers.

2.1.1 Expressions, Errors, and Nontermination

In mathematics, an expression may have a defined value or it may not. For example,
the expression 3 + 2 has a defined value, but the expression 3/0 does not. The reason
that 3/0 does not have a value is that division by zero is not defined: division is defined
to be the inverse of multiplication, but multiplication by zero cannot be inverted.
There is nothing to try to do when we see the expression 3/0; a mathematician
would just say that this operation is undefined, and that would be the end of the
discussion.

In computation, there are two different reasons why an expression might not
have a value:

10

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org


2.1 Partial Functions and Computability 11

ALAN TURING

Alan Turing was a British mathematician. He is known for his early work
on computability and his work for British Intelligence on code breaking
during the Second World War. Among computer scientists, he is best
known for the invention of the Turing machine. This is not a piece of
hardware, but an idealized computing device. A Turing machine consists
of an infinite tape, a tape read–write head, and a finite-state controller.
In each computation step, the machine reads a tape symbol and the
finite-state controller decides whether to write a different symbol on the
current tape square and then whether to move the read–write head one
square left or right. The importance of this idealized computer is that it
is both very simple and very powerful.

Turing was a broad-minded individual with interests ranging from
relativity theory and mathematical logic to number theory and the engi-
neering design of mechanical computers. There are numerous published
biographies of Alan Turing, some emphasizing his wartime work and oth-
ers calling attention to his sexuality and its impact on his professional
career.

The ACM Turing Award is the highest scientific honor in computer
science, equivalent to a Nobel Prize in other fields.

� Error termination: Evaluation of the expression cannot proceed because of a
conflict between operator and operand.

� Nontermination: Evaluation of the expression proceeds indefinitely.

An example of the first kind is division by zero. There is nothing to compute in this
case, except possibly to stop the computation in a way that indicates that it could
not proceed any further. This may halt execution of the entire program, abort one

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780985 - Concepts in Programming Languages
John C. Mitchell
Excerpt
More information

http://www.cambridge.org/0521780985
http://www.cambridge.org
http://www.cambridge.org

