Index

Abernathy, W. J., 132
Ablin, E., 318
accumulation theories, 2
Acer Corp., 144, 148–9, 196, 209, 243, 293
agricultural technology, 70, 237. See also biotechnology industry
Aihuwalla, Isher Judge, 80
aircraft industry, 248–51, 295–7
American Pulp and Paper Technical Institute, 181
Amit, R., 111
Amsden, Alice H., 2, 162n28, 177, 243
Andean Pact, 74, 84
Aoki, M., 107
appropriation regimes, 120
Argentina:
growth in exports, 318, 319f
growth in total factor productivity, 77
natural-resource processing industries, 323
openness to foreign knowledge, 73
productivity and employment, 328f
technological education, 70, 84. See also Latin America
Arora, A., 252
Arthur, W. B., 114
Asia. See China; India; Indonesia; Japan; newly industrializing economies (NIEs); Pakistan; Philippines; Thailand
Asian Development Bank, 252–3
Asia Pacific Economic Cooperation forum (APEC), 263
assets, of business firm, 112–13, 120–1
assimilation theories, 2, 3
Auster, E. R., 197
automotive industry, 109n5, 176–9, 323–4
Bae, Zong-Tae, 335
Barlow, C., 260
Barnard, C., 107

Bartlett, C., 132
Bauer, L. L., 195, 200
Baughn, C. C., 199, 200
Bell, M., 17, 248
Bessant, J., 244, 252, 262
Bielchowsky, R., 325
biotechnology industry, 203. See also agricultural technology
Bisang, R., 325
Bolton, Michele K., 5
Bond, Michael, 350
Boss, H. C., 83
Bourke, P., 237
Box, G. E., 315
Brazil
growth in exports, 318
natural-resource processing industries, 323. See also Latin America
Bruno, Michael, 363
Buckley, P. J., 197
Butler, L., 237
Cantwell, J., 21
Capannelli, G., 132
Capelli, P., 27
capital goods industry
history of in Korea, 171–5
innovation, 170–1, 184–9
learning, 175–84, 185–6, 188–9, 220
capital markets, and technological performance of NIEs, 28, 62. See also financial institutions; foreign direct investment
Cappelen, A., 50–1
Carlaw, K., 301
Casson, M., 197
Castells, M.-Y., 255, 257
Centronix, 150
chaebols (conglomerates):
capital goods industry, 175, 184
development strategies, 90
Index

electronics industry, 136, 137, 138, 160
exports and technological development, 39
globalization, 283
government, 336, 337
industrial structure, 338–9, 350, 354, 358, 363–4
organization and managerial styles, 349, 357, 358
research & development, 58–9, 279, 288, 302
Chesnais, F., 197
Chile, and debt crisis of early 1980s, 310. See also Latin America
China
education, 42, 43, 45
exports as measure of technological performance, 32, 35, 37
foreign direct investment, 38, 39, 245, 248
labor intensity of exports, 33, 35
literacy rate, 41, 42
national technological capability, 54
research & development, 47, 61, 235–6
science, 237
Choi, Youngrak, 24, 132, 283, 335
Chudnovsky, Daniel, 73, 173
Clark, K. B., 108, 117, 118
Clark, M. E., 315
clustering, and OEM system in Taiwan, 144–7
Cooke, Ronald, 107n2
computers. See DRAMs; electronics industry; internet; semiconductors
Confucianism, 348, 350–1
Contractor, Farok J., 74, 194, 197
contractual agreements, and international strategic technological alliances, 210–13. See also licensing
Cooke, P., 257
cooperative agreements, and international strategic technological alliances, 195–6
corporate management, and national innovation system in Korea, 348–9, 357. See also organization and organizational processes
Cortes, Mariluz, 318, 320
crisis, economic. See economic crisis
culture, organization of firm and corporate, 110. See also sociocultural factors
Daeduk Science Town, 279
Daewoo, 136, 138, 179, 196, 271
Dahlan, Carl J., 71, 131, 132, 133n9, 270,
271n1, 318, 320
David, Paul, 307n1
Deal, T. E., 349
defense industry, 350
democratization, and national innovation system in Korea, 351–2, 353
DFI. See foreign direct investment (FDI)
Dodgson, Mark, 7, 106, 243, 244, 252, 262, 291, 292–7
domestic resource cost (DRC), 362, 363
Dorffman, N. S., 131
Dradri, Simon, 33n15
DRAMs (dynamic random access memory), 136n11, 141, 148. See also electronics industry; semiconductors
Dunning, J. H., 132
Duysters, Geert, 7, 198, 202, 221
East Asia. See newly industrializing economies (NIEs)
economic crisis, of 1997–98
future of electronics industry, 163
implications of in Korea, 216, 217–18, 222–4, 335, 358
science, technology, and innovation policies, 263–4
economic success, in NIEs:
common factors in electronics industry, 156–9
international strategic technological alliances, 208–11
technological learning, 220–2
economic theory:
business firm, 105–6
evolutionary theories of development, 315
explanations for technological and industrial development in NIEs, 1–3
market failure terminology, 23n6
national technological capability, 14–15
neoclassical and learning dynamics, 315
neoclassical and technological development, 22–4

technological learning, 16
education:
efforts to increase technological capability, 70, 82–5
human capital as measure of technological performance, 41–6
national innovation system in Korea, 341–3, 354, 355–6, 358, 364
in science, 237–9
technological change, 75–6
education (cont.)
technological development, 281–2. See also knowledge: learning; universities
electronics industry:
industrial development in Korea, 135–42, 224
government support, 230
innovation in OEM system, 133–5, 155–61
international strategic technological alliances, 203, 205, 206–7
OEM system in Taiwan, 143–9
science, technology, and innovation policies, 240–3
special characteristics of, 161–2
transnational corporations and economic growth in Korea, Malaysia, and Taiwan, 129n3, 149–54. See also DRAMs; semiconductors
engineering, and education in NIEs, 45. See also reverse engineering
Enos, W. H., 162n28
equity agreements, and international strategic technological alliances, 197–8, 200, 205–6
Erber, F. S., 171
Ergas, Henry, 278n2
Ernst, D., 283
European Union, and innovation policy, 263
Evenson, Robert, 70
exchange rates, 147
exports:
capital goods industry, 173–4
import-substitution industrialization in Latin America, 318–22
Korea before economic crisis of 1997–98, 216–18
national innovation system in Korea, 340
openness to knowledge and growth of, 72–4
performance and structure of as measures of technological performance, 31–41, 220–1
role of technology in economic development, 96–9
transnational corporations, 152, 155–6. See also trade
externalities, and technological learning, 19–20
factor markets:
determinants of technological development, 27–9, 57–62
labor costs in Latin America, 327–8
Fagerberg, J., 50–1
FDI. See foreign direct investment
financial institutions, and national innovation system in Korea, 347–8, 356–7, 364–5. See also capital markets
firm:
asset and market positions of, 112–13
dimensions of competences and capabilities, 106–7, 122f
innovation theory, 233
knowledge assets of, 120–1
learning, 218
and NIEs, 123–4
organizational processes, 107–12
path dependencies, 113–16
recent work on theory of, 105–6
supporting infrastructure, 121–2. See also chaebols
foreign direct investment (FDI):
licensing, 276, 280–1, 289
NIEs and dependence on, 160
OEM system in Taiwan, 143
openness to foreign knowledge, 73
as percentage of gross domestic investment, 38t
role of factor markets in technological development, 28, 61–2
science, technology, and innovation policy, 245–8, 261, 294–5. See also capital markets; multinational corporations; transnational corporations
Foxall, C., 170
Fransman, Martin, 7, 132, 171
Freeman, Chris, 355
free market, and technological development, 25. See also markets
Fuch, M., 326
Fukuyama, Francis, 352
Fujimoto, T., 108, 109n5, 117, 118
Garvin, D., 108, 117, 131
General Motors, 179
generation stage, of technology development, 270, 271–2, 281–4
Ghoshal, S., 132
global economy and globalization: chaebols, 283
international strategic technological alliances, 210
segewha policy, 283–4
Goh, K., 247, 254
government:
capital goods market, 172–3
degrees of openness and intervention, 99–100
electronics industry in Korea, 135–7
exports as measure of technological development, 40–1
factor markets, 27–29
future role of in technological development, 101–2
market failures, 22–4
national innovation system in Korea, 336–8
national technological capability, 55–62
total factor productivity, 51–2.
See also industrial policy; science, technology, and innovation policies
Green Revolution, 70. See also agricultural technology
Greenwald, B., 19
gross domestic product (GDP): educational expenditures as percentage of, 70
import-substitution industrialization in Latin America, 321
as measure of national technological capability, 31
ratio of investment to, 88
research & development expenditures as percentage of, 345
GTE Corp., 138, 140
Gultom-Siregar, M., 246
Guyton, L. E., 132
Hagedoorn, John, 7, 197, 198, 200, 202, 221, 355
Haklish, C. S., 194, 195
Hall, P., 255, 257
Hamel, G., 158
Harrigan, K. R., 197, 198, 200
Hartley, R. F., 118n21
Heavy and Chemical Industry (HCI) Drive, 275, 277, 288, 301, 349–50
Henderson, R. M., 108
Hewlett-Packard Corp., 148–9
Highly Advanced National (HAN) Project, 59n25, 278, 288, 301, 346–7
Hikino, T., 243
Hill, H., 246, 248–9, 250
Hill, Stephen, 262–3
Hirschman, A. O., 146
Hobday, Mike, 6–7, 71, 72, 86, 123, 132n8, 138, 155n21, 218–19, 220, 260
Hofstede, Geert, 350
Hong Kong:
education, 41, 42, 45
electronics industry, 143n16
exports as measure of technological performance, 32, 35–6, 37
foreign direct investment, 39, 57
labour intensity of exports, 33, 35
national technological capability, 53
research & development, 47, 82, 236
service industries, 365
total factor productivity, 49
trade policy, 40. See also newly industrializing economies (NIEs)
Hughes, H., 132
human capital and human resource development:
as measure of technological performance, 41–6, 58
role of technology in economic development, 96–9. See also education; labor and labor costs
Hyundai chaebol, 136, 138, 176–8, 186, 187, 208, 271, 350
IBM Corp., 89, 112, 120n24, 198, 209
imitation industrialization in NIEs, 3–5
organizational processes of firm, 119–20
stages of technological development, 270, 273–7, 289, 298, 299–300
import-substitution industrialization (ISI): neoclassical economic theory, 307–8
strategies in Latin America, 97, 307–8, 312–22, 361–5
technological development in NIEs, 69–70, 97, 307–8
incentives: determinants of technological development, 24–7
role of government in technological development, 56–7
income:
NIEs compared with U.S., 77n6
per capita growth of in Korea, 361
India:
education, 42, 43, 45
foreign direct investment, 38–9
growth in total factor productivity, 77
labour intensity of exports, 33, 35, 37–8
literacy rate, 41, 42
national technological capability, 54
openness to foreign knowledge, 73
research & development, 47, 48, 61
textile industry, 72n2, 79–80
Indonesia:
education, 42, 43, 45, 238
exports as measure of technological performance, 32, 35–6
foreign direct investment, 39
labour intensity of exports, 33, 35
literacy rate, 41, 42
research & development, 48, 236

© in this web service Cambridge University Press
www.cambridge.org
INDEX

Indonesia (cont.)
science, technology, and innovation policies, 237, 239–40, 248–51, 295–7
subcontracting agreements, 246
Industrial Generic Technology Development Project (IGTDP), 346–7
industrialization, theoretical explanations for development of in NIEs, 1–3. See also industrial policy; industrial targeting; innovation; newly industrializing economies (NIEs); technology; specific countries
industrial policy:
debate on, 13–14
incentives for technological development, 26–7
in Latin America, 313
market failures, 30
science and technology policies in Korea, 275–6
sector-specific, 95–6. See also government; science, technology, and innovation policies
industrial targeting, 274–5, 288, 297
Industrial Technology Development Program (ITDP), 59n25
Industrial Technology Research Institute (ITRI), 84, 86, 99, 239, 255–8
Innes, J., 239
innovation:
capital goods industry, 170–1, 184–9
imitation stage of industrial development, 3–5
major indicators of, 272t
OEM system, 133–5
perspectives on technological development, 131–2
stages of technological development, 271, 273–7
supply push, 299–300
system, 21
theory of, 223
transnational corporations, 152–3, 155–61. See also national innovation system (NIS); science, technology, and innovation policies
Institute for Scientific Information (ISI), 237
institutions:
determinants of technological development, 29–30, 57–62
science, technology, and innovation policies, 251–60, 262
use of term, 307n1
Intel Corp., 89, 148, 149, 150t, 154
intellectual property rights (IPR)
protection, 119, 234, 284. See also patents
internalization stage, of technology development, 270, 271, 277–81, 298, 300–302
International Monetary Fund (IMF), 335. See also World Bank
International Standard Industrial Classification (ISIC), 329
international strategic technology alliances (ISTA)
cooperative agreements, 211–13
economic success, 208–11, 221–2
formation of, 200–6
learning, 206–8
organizational modes, 197–200
structural changes in markets, 194–7
Internet, 236–7
Inventec Corp., 147, 150t
Japan:
automotive industry, 109n5
colonialism in Korea, 276, 351
currency exchange rates, 147
education, 42, 45, 85
electronics industry, 137
foreign direct investment, 74, 243, 245, 248
industrial infrastructure, 251–2
Korea and trade, 221
OEM system, 140, 160
openness to knowledge, 72
paper industry, 179
research & development, 345
reverse engineering, 100n2
textile industry, 87
transnational corporations, 149
Jegasthesan, J., 258
Johnstone, B., 134, 148n18
joint ventures, and international strategic technological alliances, 197–8, 207–8
Jun, Y. W., 137
Justman, M., 244
Kahn, Herman, 350
Kakazu, H., 249
Kam, L. Y., 132
Kamien, M. I., 131
Katz, Jorge, 8, 78, 87, 316, 318, 361–5
Kelly, M., 252
Kennedy, A. A., 349
Kia Motors, 178–9
Kim, D. K., 132
Kim, D. K., 132
Korea and trade, 221
OEM system, 140, 160
openness to knowledge, 72
paper industry, 179
research & development, 345
reverse engineering, 100n2
textile industry, 87
transnational corporations, 149
Jegasthesan, J., 258
Johnstone, B., 134, 148n18
joint ventures, and international strategic technological alliances, 197–8, 207–8
Jun, Y. W., 137
Justman, M., 244
Kahn, Herman, 350
Kakazu, H., 249
Kam, L. Y., 132
Kamien, M. I., 131
Katz, Jorge, 8, 78, 87, 316, 318, 361–5
Kelly, M., 252
Kennedy, A. A., 349
Kia Motors, 178–9
Kim, D. K., 132
Index

Kim, Heung-Gook, 352
Kim, Hwansuk, 172
Kim, J. I., 2
Kim, Ki-Hwan, 172
Kim, Linsu, 1, 2, 8, 71, 72, 86, 106, 131, 132, 162n28, 171, 177, 222, 239, 244, 270, 271n1, 335, 353, 360, 353, 361–5
Kim, S. G., 137
Kim, Y. S., 106, 244
Kim, Young Woo, 274
King, K., 132, 171
Klein, Burton, 348
knowledge:
assets of firm, 120–1
export growth and openness to, 72–4
“know-how” versus “know-why,” 99n1
learning and depth of, 119n22. See also education; learning
Korea:
capital goods industry, 171–89
economic crisis of 1997–9, 216, 222–4, 335, 358
electronics industry, 129n3, 135–42, 159–61
exports, 32, 35–6, 37, 216–18, 221
foreign direct investment, 38–9, 61, 74
government and technological development, 55, 56, 57, 58–9
innovation policy, 244, 273–7
national innovation system, 336–58, 361–5
national technological capability, 52–3
research & development, 46, 48, 81, 86, 89–91, 234, 235, 344–6, 355, 356, 364, 365
science, 237, 239
stages of technology development, 270–90, 297–302
theoretical explanations for technological and industrial development, 1–3
total factor productivity, 49
trade policy, 40
transnational corporations, 129n3, 130n5. See also chaebols; newly industrializing economies (NIEs)
Korean Institute for Industrial Economics and Trade (KIET), 209
Korean Institute of Science and Technology (KIST), 84, 86, 99, 273, 343
Kreiken, E. J., 198

Krugman, Paul R., 2, 30n13, 48n20, 216–17, 222–4
Kwon, J., 50n22

labor and labor costs
exports as measure of national technological performance, 33, 35
factor-saving in Latin America, 327–8
international strategic technological alliances, 207–8
labor movement in Korea, 351–2
productivity in Latin America and U.S., 328–32, 361–2
stages of technological development, 273
Lall, Sanjaya, 6, 20, 24, 35, 36, 37, 39, 40, 43, 46, 95–102, 132, 237, 247, 252, 318
Lan, P., 248
Langlois, R., 111
Latin America:
debt crisis of early 1980s, 308–9, 310, 320
foreign direct investment, 73, 74
import-substitution industrialization, 97, 307–8, 312–22, 361–5
labor and productivity in, 328–32
macroeconomic management and growth performance of, 309–12, 322–8. See also Argentina; Brazil; Chile; Mexico
Lau, L. J., 2
learning, technological:
business firm, 110–11, 119n22, 218
capital goods technology, 175–84, 185–6, 188–9, 220
forms of, 218–19
import-substitution industrialization in Latin America, 312–17
indicators of success, 220–2, 224
innovation, 287
international strategic technological alliances, 206–8
national technological capability, 22
nature of in developing countries, 15–21. See also education; knowledge
Lee, H., 162n28
Lee, Jinjoo, 270, 335
Lee, KongRae, 7, 170, 173, 220
Lee, Won-Young, 7–8, 276, 297–302, 348
Lee, Y. W., 275
Leonard-Barton, D., 243
less developed countries (LDCs). See Latin America; newly industrializing economies (NIEs)
Levenson, Joseph, 350
LG chaebol, 136, 140–2, 198, 271

© in this web service Cambridge University Press
www.cambridge.org
licensing:
capital goods industry, 176, 178, 184, 186
electronics industry, 242
foreign direct investment, 276, 280–1, 289
international strategic technological alliances, 206–7, 209
research & development, 81, 82t. See also contractual agreements
Link, A. N., 195, 200
linkages, and technological learning, 20
Lippman, S. A., 118
Lipsy, R. G., 236, 301
literacy rates, in NIEs, 41, 42t
Loh, L., 248, 254
Lorange, P., 194, 197
Low, L., 157
Lundvall, B.-A., 21, 52, 133, 170, 243, 336
MacDonald, R. J., 195, 198, 199
macroeconomic policies, and import-substitution industrialization in Latin America, 309–12, 322–8
Magaziner, I. C., 138, 140
Malaysia:
education, 42, 43, 238
exports as measure of technological performance, 32, 35–6, 37
foreign direct investment, 38, 39
growth of economy, 129n2
industrial policy, 241–2
literacy rate, 41, 42t
research & development, 47–8, 234
science, technology, and innovation policy, 237, 258–60
transnational corporations, 130n5, 149–52, 150–1t, 160–1. See also newly industrializing economies (NIEs)
Mansfield, Edwin, 4
maquiladoras, and manufacturing in Latin America, 322–4
markets:
economic success of NIEs, 78–9
entrepreneurial failure, 156n22
international strategic technology alliances and structure of, 194–7
international technology, 74
technological development and failures of, 23–4, 25, 28, 30, 56–7. See also free market; trade
Mathews, J., 244n8, 255
Matsushita, 137, 149, 247
McKendrick, D., 249, 250
MERIT-CATI data bank, 194, 211–13
Mexico
growth in exports, 318, 320
maquila-type production, 323. See also Latin America
Microsoft Corp., 114n13
Miller, Danny, 336
Minden, K., 244
Ministry of Science and Technology (MOST), 273, 275, 278–9, 281–2, 283, 337–8, 353, 354, 356
Mitchell, W., 114
MNCs. See multinational corporations
Morelo, J., 318
Morgan, K., 257
Motorola Corp., 149, 150t, 196
Mowery, D. C., 195
Multimedia Super Corridor (Malaysia), 241–2
multinational corporations (MNCs):
high-technology exports, 37–8
industrial policies in Latin America, 313–14, 324–7
role of in technological development, 38–40, 54. See also foreign direct investment; transnational corporations
Multitech International Corporation. See Acer Corp.
Murphy, K. M., 27n11
Mytelka, L. K., 70, 74
Nagaoka, Sadao, 72
Najmabadi, F., 252
Narula, R., 197, 200
national capability, for technological development, 14–15, 21–30
national innovation system (NIS):
chaebols, 338–9
corporate management, 348–9
education, 341–3, 346–7
exports, 340
financial institutions, 347–8
future of economic development in Korea, 365
government regulation, 336–8
heavy and chemical industries, 349–50
infrastructure of science and technology, 343–4
reengineering of, 353–8
research & development, 344–6
sociocultural factors, 350–3
transfers of technology, 341. See also innovation
nationalism:
industrial policy in Latin America, 313
Index

Japanese colonialism in Korea, 351
national innovation system in Korea, 357–8
National Research and Development Projects (NRDP), 301, 302
National Science Foundation, 251
National Semiconductor Corp., 149, 196
National Strategies for Information Industries, 272
natural resources, and manufacturing in Latin America, 322–4
NEC Corp., 137, 141n15
newly industrializing economies (NIEs): assessment of economic success of, 71–9
business firm, 123–4
educational expenditures as percentage of GDP, 70
foreign direct investment, 245–8
implications of economic success for science, technology, and human resources, 79–85
importance of foreign technology, 96–102
import-substitution strategies of Latin American countries compared to, 97
innovation and technological development in, 131–2
international strategic technological alliances, 200–11
literacy rates, 41, 42t
macroeconomic management and growth performance of, 309–12
research & development, 88–92
science, technology, and innovation policies, 234–64, 292–7
sector-specific industrial policies, 95–6
theoretical explanations for technological and industrial development, 1–3
transnational corporations and OEM system, 155–61
use of term, 129n1. See also economic crisis; Korea; Malaysia; Singapore; Taiwan; Third World
Newman, W. H., 112
NIEs. See newly industrializing economies
Nonaka, I., 99n1, 243
non-equity agreements. See equity agreements
North, Douglas C., 357
Obleros, F. J., 195, 198, 199
OBM. See own brand manufacture
O’Connor, D., 132, 143, 283
ODM. See own design and manufacture
OEM. See original equipment manufacture
Ohmae, K., 195
Organization for Economic Cooperation and Development (OECD), 43, 171, 269, 354
international strategic technological alliances, 197–200, 205t
OEM system and innovation, 159
OIM in Taiwan, 147–8. See also corporate management; small and medium-sized enterprises
original equipment manufacture (OEM): definition of, 26n10
electronics industry, 135–49, 158–9
innovation, 133–5
learning, 218–19
research & development, 162
technological development, 271, 298
technological versus organizational innovation, 159
transnational corporations, 155–61, 340
original idea manufacture (OIM): learning, 219
organizational innovations in Taiwan, 147–8
Osborn, R. N., 199, 200
Otsuka, K., 87
own brand manufacture (OBM):
technological development, 271
technological learning, 219
own design and manufacture (ODM):
electronics industry, 145t, 147
innovation, 134–5
learning, 219
training in technology, 139–40
Ozawa, Terutomo, 72
Pack, Howard, 1, 2, 6, 8, 41n17, 50n22, 51, 56n24, 61n31, 72, 75, 78, 88, 91, 92, 96–102, 217
Pakistan:
education, 42, 43
labor and technology intensity of exports, 33, 35
literacy rate, 41, 42t
national technological capability, 54
research & development, 47, 61
Pang, E., 250
INDEX

as measure of technological performance, 46–8, 49
OEM system, 147, 158, 162
reverse engineering, 3–5
stages of technology development, 277–9, 281–4, 285–7, 298, 299
transnational corporations, 154
research institutes:
capital goods industry, 179
industrial research & development, 86–7
national innovation system in Korea, 343–4, 346–7
role of in technological development, 100
stages of technology development in Korea, 274, 279, 286–7, 289, 302. See also universities
reverse engineering, 3–5, 100n2, 172. See also engineering
Rhee, Yung W., 80, 177
Richardson, G. B., 19, 23n6
Riedel, J., 132
Roberts, E., 248, 254
Rodrik, D., 23n6
Rogovsky, N., 27
Rohadian, R., 235, 240, 250
Romanelli, E., 112
Roos, D., 109
Rosenberg, N., 131, 171
Ross-Larson, Bruce, 80
Rothwell, R., 170
Rumelt, R. P., 118
Rush, H., 255
Said, Asmadi M. D., 259n12
Salleh, I., 132
Samsung chaebol, 136, 137, 138, 140–2, 196, 198, 199, 271, 288, 298
Sananikone, Ousa, 71, 133n9
Sanyo Corp., 136, 137
Saxonhouse, G., 87
Schaar, Steven P., 4
Schakenraad, J., 198
Schive, Chi, 73, 132, 143n17, 146
Schmookler, J., 175
Schoemaker, P., 111
Schultz, Theodore W., 75
Schwartz, N. L., 131
science:
education, 45
industrial development, 230
national innovation system in Korea, 342, 343–4. See also science, technology, and innovation policies

paper industry, 179–81
Park, Chung Hee, 273, 274
Park, J. L., 162n28
Parkhe, A., 199
Parkinson, S. T., 170
patents:
capital goods, 184–5
electronics industry, 238f, 240
intellectual property protection, 119
research & development in Korea, 345–6. See also intellectual property rights protection
path dependencies, of business firm, 113–16
Patinkin, M., 138, 140
Pavitt, K., 17, 248
Paxson, Christina, 75
Penrose, Edith, 233
Phelps, E., 75
Philippines, and foreign direct investment, 245
and science, 237
Philips Corp., 140, 151t
Pilat, Dirk, 88
Pisano, G., 119n28
Poon, T., 255
Porter, A., 240
Porter, M. E., 27, 118, 132, 171
Posthuma, A. C., 325
POSTECH (Korea), 238
Powell, W. W., 200
Prahallad, C. K., 158
productivity:
import-substitution industrialization in Latin America, 318–22, 361–2
labor in Latin America and U.S., 328–32. See also total factor productivity
Pursell, Gary, 80, 275
Ranis, G., 87
Rao, K., 36
Rasiah, R., 132, 247
research and development (R & D):
business firm, 115
chaebols, 141
complex industrial development, 81–92
import-substitution industrialization in Latin America, 317
international strategic technological alliances, 202–3
national innovation system in Korea, 344–6, 355, 356, 364, 365
as percentage of GNP, 58–62
as measure of technological performance, 46–8, 49
OEM system, 147, 158, 162
reverse engineering, 3–5
stages of technology development, 277–9, 281–4, 285–7, 298, 299
transnational corporations, 154
research institutes:
capital goods industry, 179
industrial research & development, 86–7
national innovation system in Korea, 343–4, 346–7
role of in technological development, 100
stages of technology development in Korea, 274, 279, 286–7, 289, 302. See also universities
reverse engineering, 3–5, 100n2, 172. See also engineering
Rhee, Yung W., 80, 177
Richardson, G. B., 19, 23n6
Riedel, J., 132
Roberts, E., 248, 254
Rodrik, D., 23n6
Rogovsky, N., 27
Rohadian, R., 235, 240, 250
Romanelli, E., 112
Roos, D., 109
Rosenberg, N., 131, 171
Ross-Larson, Bruce, 80
Rothwell, R., 170
Rumelt, R. P., 118
Rush, H., 255
Said, Asmadi M. D., 259n12
Salleh, I., 132
Samsung chaebol, 136, 137, 138, 140–2, 196, 198, 199, 271, 288, 298
Sananikone, Ousa, 71, 133n9
Sanyo Corp., 136, 137
Saxonhouse, G., 87
Schaar, Steven P., 4
Schakenraad, J., 198
Schive, Chi, 73, 132, 143n17, 146
Schmookler, J., 175
Schoemaker, P., 111
Schultz, Theodore W., 75
Schwartz, N. L., 131
science:
education, 45
industrial development, 230
national innovation system in Korea, 342, 343–4. See also science, technology, and innovation policies

© in this web service Cambridge University Press

Cambridge University Press
978-0-521-77987-6 - Technology, Learning, and Innovation: Experiences of Newly Industrializing Economies
Edited by Linsu Kim and Richard R. Nelson
Index
More information
Science Citation Index (SCI), 342
- science, technology, and innovation policies:
 - assessment of in NIEs, 234–45, 292–7
 - foreign direct investment, 245–8, 294–5
 - future of, 260–4, 284–90
 - intermediary institutions, 251–60, 262
 - recent trends in, 232–4
 - role of in Indonesia, 248–51
- See also government; industrial policy; innovation; science; technology

Science and Technology Policy Institute (Korea), 239

Scott-Kemmis, D., 235, 240, 250

segewha policy, 283–4

SEH (Shin-Etsu) Corp., 151, 154t

semiconductors, 136, 141n15, 224, 242.
- See also DRAMs; electronics industry

Senge, P. M., 131

Sercovich, F., 320

Shapira, P., 252

Shapiro, H., 30

Sheehan, P., 234

Shien, G. S., 132

Shih, Stan, 209

Shin, Yoo-Keun, 352

Shinpoong Paper, 179–81

Shuen, A., 107n3

Singapore:
- education, 41, 42, 43, 45, 46, 83–4, 85
 - exports as measure of technological performance, 32, 35–6
 - foreign direct investment, 37, 38, 39, 53, 56, 57, 160, 248
 - growth in total factor productivity, 77
 - national technological capability, 53
 - research & development, 46–7, 60, 235, 236, 345
 - science, technology, and innovation policies, 237, 253–4
 - service industries, 365
 - total factor productivity, 49
 - trade policy, 40
 - transnational corporations, 130n5, 149.
- See also newly industrializing economies (NIEs)

Singh, A., 171

small and medium-sized enterprises (SMEs):
- capital goods industry, 181–2, 187, 189
 - chaebols and growth of, 339
- industrialization in Taiwan, 52, 90, 143,
- labor and productivity growth, 331–2
 - multinational corporations in Latin America, 324–7
 - national innovation system in Korea, 344, 354, 364, 365
 - research & development, 46, 60–1

Smith, H., 257

sociocultural factors, and national innovation system in Korea, 350–3.
- See also culture

Song, Jong-kook, 348

Sony Corp., 140, 151, 154t

Southeast Asia.
- See newly industrializing economies (NIEs)

Ssangyong, 136

stabilization programs, in Latin America, 321–2

Sta, R., 131

Stiglitz, J. E., 17, 19, 23n6, 28, 62

Strategic National R & D Project (SNRP), 346–7

Stumpo, G., 325

success. See economic success

Supapol, A., 246, 248

supply push, and innovation, 299–300

Suzigan, W., 318

Szulanski, G., 118n19

Taiwan:
- capital goods industry, 173–4
 - education, 41, 42–3, 45–6, 83, 84, 98, 238–9
 - electronics industry, 129n3, 143–9, 159–61
 - exports as measure of technological performance, 32, 35–6, 37
 - foreign direct investment, 39, 61
 - government and technological development, 55, 56
 - innovation policy, 244
 - international strategic technological alliances, 196
 - national technological capability, 52, 53
 - OEM system, 143–9
 - openness to knowledge, 73, 74
 - patents, 346
 - research & development, 46, 47, 48, 59–60, 81, 82t, 86, 234, 235, 345, 346
 - science, technology, and innovation policies, 237, 239, 255–8
 - small and medium-sized enterprises, 52, 90, 143, 144, 145–6, 364
 - total factor productivity, 49
 - trade policy, 40

© in this web service Cambridge University Press

www.cambridge.org
Taiwan (cont.)
transnational corporations, 129n3, 130n5. See also newly industrializing economies (NIEs)
Takeuchi, H., 243
Tang, H., 248, 253
Tatung Corp., 144
Taylor, L., 30
technology:
assets of business firm, 112
capital goods industry in Korea, 173
enterprise technological learning, 15–21
importance of for industrial development in NIEs, 96–102, 230
indicators and determinants of competence, 30–55
international strategic technology alliances, 194–7, 206–8
national capability, 14–15, 21–30, 233–4
national innovation system in Korea, 341, 343–4
OEM system and innovation, 159
OEM as training, 138–40
path dependencies of business firm, 115
role of government in development of, 55–62
stages of development in Korea, 270–3
theoretical explanations for development of in NIEs, 1–3. See also industrialization; innovation; science, technology, and innovation policies; specific countries
Teece, David, 6, 24, 112, 113, 114, 118, 199, 218
Teitel, S., 320
Telecommunication Technology Program, 282–3
Tebal, Morris, 8, 244, 297, 300
Texas Instruments, 208, 209
textile industry, 72n2, 79–80, 87
TFP. See total factor productivity
Thailand:
education, 42, 45
foreign direct investment, 39, 245
labour intensity of exports, 33, 35, 37
research & development, 48, 236
science, 237
subcontracting agreements, 246
transnational corporations, 149
Thee, K., 246
Third World, and exports from Korea, 340.
See also newly industrializing economies (NIEs); specific countries
Tinbergen, Jan, 83

TNCs. See transnational corporations
Toshiba Corp., 140, 141n15, 199
total factor productivity (TFP):
domestic capability and growth of, 76–7
as measure of national technological capability, 31, 48–52. See also productivity
trade:
capital goods and deficits in NIEs, 171, 174–5
exports as measure of technological development, 40–1
as incentive for technological development, 24–6. See also exports; markets
transnational corporations (TNCs):
economic growth, 129n3, 130n5
electronics industry, 149–52
learning, 219
OEM system, 133, 153–61. See also foreign direct investment; multinational corporations
Trigem, 138
trust, and culture of Korea, 352, 357
Tu, Wei-Ming, 350
Turpin, T., 239
Tushman, M. L., 112
uncertainty, and technological learning, 17
United States:
intellectual property rights protection, 284
OEM system, 142, 143–4, 340
patent system, 345–6
per capita income, 77n6
productivity and labor in, 328–32
science and technology infrastructure, 237, 252, 260, 262
transnational corporations, 149
universities:
science education, 238–9, 342, 343
technological development in Korea, 281–2, 346–7, 354, 355, 356. See also education; research institutes
Utterback, James M., 124, 132, 335
Uy, M., 28, 62
value added/labor (VA/L), 362
Vernon, R., 132
Villegas, A., 318
Vogel, Ezra F., 2, 351
Von Hippel, E., 133, 170
Wang, C., 143, 257
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiss, L.</td>
<td>255</td>
</tr>
<tr>
<td>Westphal, Larry E.</td>
<td>1, 70, 78, 91, 132, 173, 177, 275</td>
</tr>
<tr>
<td>Williamson, O. E.</td>
<td>197</td>
</tr>
<tr>
<td>Winter, Sidney G.</td>
<td>5, 16n4, 17, 110, 115n14, 118, 131</td>
</tr>
<tr>
<td>Womack, J.</td>
<td>109</td>
</tr>
<tr>
<td>Wong, J.</td>
<td>246, 254</td>
</tr>
<tr>
<td>Wong, P.</td>
<td>244, 248, 254, 258</td>
</tr>
<tr>
<td>Woot, P. de</td>
<td>195</td>
</tr>
<tr>
<td>World Bank</td>
<td>26n9, 48n20, 50, 252, 362n2, 364. See also International Monetary Fund</td>
</tr>
<tr>
<td>Yang, Jin Chang</td>
<td>256</td>
</tr>
<tr>
<td>Yeo, K.</td>
<td>253</td>
</tr>
<tr>
<td>Young, Alwyn</td>
<td>2, 48n20, 49, 50, 91–2, 96</td>
</tr>
<tr>
<td>Yuan, L. T.</td>
<td>157, 257</td>
</tr>
<tr>
<td>Zenith Electronics Corp.</td>
<td>142</td>
</tr>
</tbody>
</table>