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Gromov's Preface

Harmony and Harmonicity
If you fall in love with harmonic functions your mathematician's soul will
never come to rest unless you comprehend the origin of their irresistible
appeal and beauty. And if you are bent on spaces, manifolds and maps you
start researching for the geometric habitat of harmonicity.

In 1964 Eells and Sampson found the promised land not limited to func-
tions but encompassing harmonic maps between (almost) arbitrary Rie-
mannian manifolds. Yet one's greed for generality has not been quenched
and the urge to extend harmonicity to rugged terrains of singular spaces
could not be contained for long.

Here the story of this begins. There are two players in the harmonic map-
pings game: the source space X and the target Y. Suppose we are granted a
harmonic structure on X, that is a distinguished space (or rather a sheaf) of
R-valued functions on X regarded as "harmonic". Then one can, under suit-
able assumptions, define another space (sheaf) consisting of corresponding
"subharmonic functions" on X. Similarly, one needs distinguished functions
on Y: these should be thought of as "convex functions". A map f : X —>Y
is declared "harmonic" if the pull-back of every "convex function" on Y is
"subharmonic" on X.

Now a hard choice is to be made: how much of "Riemannian" is one
willing to sacrifice for the sake of generality (singularity) and harmonicity?
The authors decide in favour of "measurable Riemannian" for both X and
y, where X is a (rather general) topological polyhedron and Y is allowed
an arbitrary local topology modified by the negative sign restriction on the
curvature. In other words, the dimensions of X and Y are limited, for
most part, to be finite, fractality (e.g. subellipticity) is not admitted and
foliated structures are not allowed. By paying this price one arrives at a
full fledged harmonic theory on X, extending Nash-De Giorgi-Moser, which
then perfectly welds with the negative curvature on Y. It is some three
hundred pages of smooth ride.

Misha Gromov
May 15, 2000
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Authors' Preface

During the past thirty-five years harmonic maps between smooth Riemann-
ian manifolds have played a significant role in geometry and elliptic analysis.
They provide san especially rich mixture of classical potential theory and the
Riemannian geometry of maps. Relevant guidelines are described in [EL
1978, 1988], mostly without proof, but with full references.

About eight years ago it became apparent that the notion of harmonic-
ity should be expanded to include maps between certain singular spaces.
In particular, (a) for applications to rigidity Gromov (see [GS 1992]) has
shown that Riemannian polyhedra, and more generally the geodesic spaces of
Alexandrov and Busemann (Definition 2.7), are natural targets; (b) certain
Riemannian polyhedra (e.g., normal complex analytic spaces) are natural
domains for harmonic maps.

This monograph is a research essay on harmonic maps between admissible
Riemannian polyhedra (definitions in Chapter 4), these being prototypes
of the relevant singular spaces. While harmonic spaces (in the sense of
Brelot) are natural domains for harmonic functions, we have not been able
to study harmonic maps in that generality, not even when adding a suitable
Dirichlet space structure to obtain a notion of energy. We have discovered,
however, that admissible Riemannian polyhedra are both geodesic, harmonic
and Dirichlet spaces, more precisely hypoelliptic Dirichlet spaces in the sense
of Feyel and de La Pradelle [FP 1978]. These polyhedra illustrate clearly our
main ideas, and provide a wealth of examples as well. Thus harmonic maps
(especially when presented in their variational context, via the Dirichlet
integral) between Riemannian polyhedra are our main object of study.

A particular novelty in our presentation is the use of the fine topology
of H. Cartan (the weakest topology in which all subharmonic functions are
continuous), and its intimate relation to quasitopological concepts (defined
in terms of capacity). This leads among other things to the quasicontinuity
of finite energy maps in the sense of Korevaar and Schoen [KS 1993] into
geodesic spaces, also in our setting of maps with polyhedral domain.

In spite of their importance, we do not treat applications in detail, for
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xii Authors' Preface

that simply would take us too far afield. However, here are three such - the
first having smooth Riemannian domains and singular targets, the second
having singular domains and smooth Riemannian targets:

• p-adic super-rigitity for lattices of rank one in the isometry groups of
the quaternionic hyperbolic space and the Cayley plane, [GS 1992]
and [Co 1992].

• Representation of integral homology classes of a compact Riemann-
ian manifold by harmonic maps of compact oriented normal circuits
[E 1997]. The proof is based on the method in [EF 1991] - except
for the case of 2-dimensional homology classes, which can be so rep-
resented, using [Cha 1988].

• Reduction methods, as in [ER 1993, Chapter IV]. The idea (Ex-
amples 12.2 and 13.5) is to obtain an equivariant harmonic map
ip : M —> N between smooth Riemannian manifolds, starting from
a harmonic map (p : M/K —» N/L between orbit spaces, where K
(resp., L) is a compact group of isometries of M (resp., N); and I/J
covers (p.

We have discussed various aspects of our text with many colleagues and
with much profit; in particular, S. Hildebrandt, J. Jost, N. Korevaar, B.
Lackey, L. Lemaire, C. Plaut, M. Ramachandran, R. Schoen, Richard Stong,
K.-T. Sturm, D. Toledo and M. Wolf. Hereby we record our special thanks
to all!

It is our pleasure to record our appreciation of the effort of M. Gromov,
who graciously responded to our invitation to write a preface. And to T.
Serbinowski for providing Chapter 15, a version of an unpublished part of
his Thesis.

We further thank the referees, whose constructive comments have sub-
stantially improved the final version.

The second named author is grateful for all the facilities at the Depart-
ment of Mathematics, University of Copenhagen, made available to him in
his retirement. In this connection we are indebted to Anders Thorup and
Lene K0rner, who helped us with the AmSTeX file.

Cambridge/Warwick James Eells
Copenhagen Bent Fuglede
September 2000
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