CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK

142 Harmonic Maps between Riemannian Polyhedra Cambridge University Press 978-0-521-77311-9 - Harmonic Maps between Riemannian Polyhedra J. Eells and B. Fuglede Frontmatter More information J. Eells Cambridge/Warwick B. Fuglede Copenhagen

With a preface by M. Gromov

Harmonic Maps between Riemannian Polyhedra

CAMBRIDGE

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521773119

© J. Eells k B. Fuglede 2001

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001

A catalogue record for this publication is available from the British Library

Library of Congress cataloguing in publication data Eells, James, 1926-Harmonic maps between Riemannian polyhedra / J. Eells & B. Fuglede; with a preface by M. Gromov p. cm. - (Cambridge tracts in mathematics) Includes bibliographical references. ISBN 0 521 773II 3 I. Harmonic maps. 2. Riemannian manifolds. I. Fuglede, Bent. II. Title. III. Series. QA614.73.E353 2001 514´.74-dc21 00-054670

1SBN 978-0-521-77311-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

Gromov's Preface	ix
Authors' Preface	xi
1 Introduction	
The smooth framework	1
Harmonic and Dirichlet spaces	1
Riemannian polyhedra	5
Hermonic functions on X	6
Geometric examples	7
Mans between polybedra	8
Harmonic maps	11
Harmonic morphisms	12
Singular frameworks	12
Part I. Domains, targets, examples	14
2. Harmonic spaces, Dirichlet spaces, and geodesic spaces	15
Harmonic spaces	15
Dirichlet structures on a space	20
Geodesic spaces	24
3. Examples of domains and targets	30
Example 3.1. Riemannian manifolds	30
Example 3.2. Almost Riemannian spaces	31
Example 3.3. Finsler structure on a manifold	31
Example 3.4. Metric associated to a holomorphic quadratic	
differential	33
Example 3.5. Lie algebras of vector fields on a manifold	33
Example 3.6. Riemannian Lipschitz manifolds	37
Example 3.7. The infinite dimensional torus \mathbb{T}^{∞}	39
4. Riemannian polyhedra	41
Lip continuous map. Lip homeomorphism	41
Simplicial complex	42
Polyhedron	44
Circuit	45

vi Contents	
Lip polyhedron Riemannian polyhedron The intrinsic distance d_X Local structure in terms of cubes Uniform estimate of ball volumes	46 47 51 57 60
Part II. Potential theory on polyhedra	62
5. The Sobolev space $W^{1,2}(X)$. Weakly harmonic functions The Sobolev space $W^{1,2}(X)$ A Poincaré inequality Weakly harmonic and weakly sub/superharmonic functions Unique continuation of harmonic functions	63 63 68 72 77
6. Harnack inequality and Hölder continuity for weakly harmonic functions Proof of Theorem 6.1 in the locally bounded case Completion of the proof of Theorem 6.1 Hölder continuity	79 79 88 91
7. Potential theory on Riemannian polyhedra Harmonic space structure The Dirichlet space $L_0^{1,2}(X)$ The Green kernel Quasitopology and fine topology Sobolev functions on quasiopen sets Subharmonicity of convex functions	99 99 104 108 125 127 129
8. Examples of Riemannian polyhedra and related spaces Example 8.1. 1-dimensional Riemannian polyhedra Example 8.2. The need for dimensional homogeneity Example 8.3. The need for local chainability Example 8.4. Manifolds as polyhedra Example 8.5. A kind of connected sum of polyhedra Example 8.6. Riemannian joins of Riemannian manifolds Example 8.7. Riemannian orbit spaces Example 8.8. Conical singular Riemannian spaces Example 8.9. Normal analytic spaces with singularities Example 8.10. The Kobayashi distance Example 8.11. Riemannian branched coverings Example 8.12. The quotient M/K Example 8.13. Riemannian orbifolds	$130 \\ 130 \\ 131 \\ 132 \\ 132 \\ 132 \\ 133 \\ 134 \\ 134 \\ 135 \\ 138 \\ 139 \\ 142 \\ 146 \\ 146 \\ 130 \\ 140 $
Example 8.14. Buildings of Bruhat-Tits	147

Contents	vii
Part III. Maps between polyhedra	150
9. Energy of maps	151
Energy density and energy	151
Energy of maps into Riemannian manifolds	162
Energy of maps into Riemannian polyhedra	173
The volume of a map	176
10. Hölder continuity of energy minimizers	178
The case of a target of nonpositive curvature	179
Proof of Theorem 10.1	189
The case of a target of upper bounded curvature	192
11. Existence of energy minimizers	198
The case of free homotopy	200
The Dirichlet problem relative to a homotopy class	206
The ordinary Dirichlet problem	208
The case where the target is a Riemannian manifold	211
The case of 2-dimensional manifold domains	211
Questions and remarks	213
12. Harmonic maps. Totally geodesic maps	217
A concept of harmonic map	217
Weakly harmonic maps into a Riemannian manifold	221
Hölder continuity revisited	230
Totally geodesic maps	233
Geodesics as harmonic maps	236
Jensen's inequality for maps	241
Harmonic maps from a 1-dimensional Riemannian polyhedron	243
13. Harmonic morphisms	247
Harmonic morphisms between harmonic spaces	247
Harmonic morphisms between Riemannian polyhedra	249
Harmonic morphisms into Riemannian manifolds	251
14. Appendix: Energy according to Korevaar-Schoen	259
Subpartitioning Lemma	259
Directional energies	261
Trace maps	262
15. Appendix: Minimizers with small energy decay	
(By T. Serbinowski)	264
Introduction and results	264
Embedding Y into an NPC cone	265
Hölder continuity of the minimizer	268

viii Contents	
Proof of Theorem 15.1 Lipschitz continuity of the minimizer	273 275
Bibliography	277
Special symbols	291
Index	294

Gromov's Preface

Harmony and Harmonicity

If you fall in love with harmonic functions your mathematician's soul will never come to rest unless you comprehend the origin of their irresistible appeal and beauty. And if you are bent on spaces, manifolds and maps you start researching for the geometric habitat of harmonicity.

In 1964 Eells and Sampson found the promised land not limited to functions but encompassing harmonic maps between (almost) arbitrary Riemannian manifolds. Yet one's greed for generality has not been quenched and the urge to extend harmonicity to rugged terrains of singular spaces could not be contained for long.

Here the story of this begins. There are two players in the harmonic mappings game: the source space X and the target Y. Suppose we are granted a harmonic structure on X, that is a distinguished space (or rather a sheaf) of \mathbb{R} -valued functions on X regarded as "harmonic". Then one can, under suitable assumptions, define another space (sheaf) consisting of corresponding "subharmonic functions" on X. Similarly, one needs distinguished functions on Y: these should be thought of as "convex functions". A map $f: X \to Y$ is declared "harmonic" if the pull-back of every "convex function" on Y is "subharmonic" on X.

Now a hard choice is to be made: how much of "Riemannian" is one willing to sacrifice for the sake of generality (singularity) and harmonicity? The authors decide in favour of "measurable Riemannian" for both X and Y, where X is a (rather general) topological polyhedron and Y is allowed an arbitrary local topology modified by the negative sign restriction on the curvature. In other words, the dimensions of X and Y are limited, for most part, to be finite, fractality (e.g. subellipticity) is not admitted and foliated structures are not allowed. By paying this price one arrives at a full fledged harmonic theory on X, extending Nash-De Giorgi-Moser, which then perfectly welds with the negative curvature on Y. It is some three hundred pages of smooth ride.

Misha Gromov May 15, 2000 Cambridge University Press 978-0-521-77311-9 - Harmonic Maps between Riemannian Polyhedra J. Eells and B. Fuglede Frontmatter More information

Authors' Preface

During the past thirty-five years harmonic maps between smooth Riemannian manifolds have played a significant role in geometry and elliptic analysis. They provide an especially rich mixture of classical potential theory and the Riemannian geometry of maps. Relevant guidelines are described in [EL 1978, 1988], mostly without proof, but with full references.

About eight years ago it became apparent that the notion of harmonicity should be expanded to include maps between certain singular spaces. In particular, (a) for applications to rigidity Gromov (see [GS 1992]) has shown that Riemannian polyhedra, and more generally the geodesic spaces of Alexandrov and Busemann (Definition 2.7), are natural targets; (b) certain Riemannian polyhedra (e.g., normal complex analytic spaces) are natural domains for harmonic maps.

This monograph is a research essay on harmonic maps between admissible Riemannian polyhedra (definitions in Chapter 4), these being prototypes of the relevant singular spaces. While harmonic spaces (in the sense of Brelot) are natural domains for harmonic functions, we have not been able to study harmonic maps in that generality, not even when adding a suitable Dirichlet space structure to obtain a notion of energy. We have discovered, however, that admissible Riemannian polyhedra are both geodesic, harmonic and Dirichlet spaces, more precisely hypoelliptic Dirichlet spaces in the sense of Feyel and de La Pradelle [FP 1978]. These polyhedra illustrate clearly our main ideas, and provide a wealth of examples as well. Thus harmonic maps (especially when presented in their variational context, via the Dirichlet integral) between Riemannian polyhedra are our main object of study.

A particular novelty in our presentation is the use of the fine topology of H. Cartan (the weakest topology in which all subharmonic functions are continuous), and its intimate relation to quasitopological concepts (defined in terms of capacity). This leads among other things to the quasicontinuity of finite energy maps in the sense of Korevaar and Schoen [KS 1993] into geodesic spaces, also in our setting of maps with polyhedral domain.

In spite of their importance, we do not treat applications in detail, for

xii

Authors' Preface

that simply would take us too far afield. However, here are three such – the first having smooth Riemannian domains and singular targets, the second having singular domains and smooth Riemannian targets:

- *p*-adic super-rigitity for lattices of rank one in the isometry groups of the quaternionic hyperbolic space and the Cayley plane, [GS 1992] and [Co 1992].
- Representation of integral homology classes of a compact Riemannian manifold by harmonic maps of compact oriented normal circuits [E 1997]. The proof is based on the method in [EF 1991] – except for the case of 2-dimensional homology classes, which can be so represented, using [Cha 1988].
- Reduction methods, as in [ER 1993, Chapter IV]. The idea (Examples 12.2 and 13.5) is to obtain an equivariant harmonic map $\psi: M \to N$ between smooth Riemannian manifolds, starting from a harmonic map $\varphi: M/K \to N/L$ between orbit spaces, where K (resp., L) is a compact group of isometries of M (resp., N); and ψ covers φ .

We have discussed various aspects of our text with many colleagues and with much profit; in particular, S. Hildebrandt, J. Jost, N. Korevaar, B. Lackey, L. Lemaire, C. Plaut, M. Ramachandran, R. Schoen, Richard Stong, K.-T. Sturm, D. Toledo and M. Wolf. Hereby we record our special thanks to all!

It is our pleasure to record our appreciation of the effort of M. Gromov, who graciously responded to our invitation to write a preface. And to T. Serbinowski for providing Chapter 15, a version of an unpublished part of his Thesis.

We further thank the referees, whose constructive comments have substantially improved the final version.

The second named author is grateful for all the facilities at the Department of Mathematics, University of Copenhagen, made available to him in his retirement. In this connection we are indebted to Anders Thorup and Lene Kørner, who helped us with the AmSTeX file.

Cambridge/Warwick Copenhagen September 2000 James Eells Bent Fuglede