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Introduction

This chapter consists of two parts: (1) A brief summary of the theory of
smooth harmonic maps between Riemannian manifolds; that should provide
background comparison to the main theme of the monograph. (2) A de-
scription of Riemannian polyhedra as harmonic and geodesic spaces; and
energy-minimizing maps between them.

The following terminology for maps f : X — Y between metric spaces is
adopted throughout this monograph (cf. Chapter 4):

e f is said to be Lip continuous if f is locally Lipschitz;

e f is called a Lip homeomorphism if f is bijective and if f and f~1!
are both Lip continuous. Equivalently, f is a locally bi-Lipschitz
bijection.

Similarly, f is said to be Hdélder continuous if f satifies a local Holder con-
dition.
If X is a manifold or polyhedron with boundary, that boundary is denoted

bX. The topological boundary of a subset A of a topological space is denoted
0A.

The smooth framework

Let M be a smooth manifold without boundary, endowed with a smooth
positive definite Riemannian metric g. The pair (M,g) is called a Rie-
mannian manifold. We shall only consider connected Riemannian mani-
folds. Each tangent vector space T,(M) is Euclidean, with inner product
(-s)z = g(z)(-,-). The volume measure py, on (M, g) has local representation
of the form (/det g(z) dz. Associated to g is a metric dpy on M compatible
with its underlying topology — defined before Definition 2.7 in terrns of the
Riemannian length of paths in (M, g).

For simplicity of exposition, assume here that M is compact. Define the
Hilbert space W12(M) (a Sobolev space) as the completion of the space of
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2 1. Introduction

smooth functions v : M — R with respect to the inner product

| {u(@)0(@) + (Vule), Vo(e)2} dugz),
where Vu denotes the gradient field of u, and

(Vu(@), Vo(e))e = 57 (2) 635) 6;;? :

The Dirichlet integral, or energy functional, of u is

1
=5 [ VU@ dis).
Its Fuler-Lagrange operator is the Laplace-Beltrami operator A, character-

ized b
Y dE(Ut d’U,t (IE)
= [ du@™2|_ dus(a)

Here (u;) is a 1-parameter deformation of u = uy. Locally,
Au = (det g)~1/28;(g" (det g)*/20;u),

where 8; = 8/0z,i=1,---,n

A function u on an open set U C M is harmonic if Au = 0 in the
distributional sense. Such a function is smooth (after correction on a null
set). For our main theme, two fundamental properties are emphasized:

(a) Dirichlet problem. For any small closed ball B in (M, g) and smooth
function f : B — R on its boundary, there is a unique smooth
function u : B — R such that ujsp = f and v, p is harmonic.

(b) Harnack’s monotone convergence property. For any increasing se-
quence (uy,) of harmonic functions on a connected open subset U of
M, the pointwise limit function 4 = sup,, u,, is either harmonic on
U, or u= 0.

Most of the qualitative aspects of smooth linear potential theory (as in
[GT 1998, Part I], [Hel 1969]) can be derived from those two properties.
That is the essence of Brelot’s harmonic spaces, see Chapter 2.

Now take a second smooth Riemannian manifold (N,h), and consider
a continuous map ¢ : M — N of class W12(M, N), i.e., the components
©* in terms of local coordinates y*, k = 1,--- ,n, are of class W12, The
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1. Introduction 3

energy density of ¢ is the integrable function e(p) : M — R given almost
everywhere by

o)) = } tracey (") = 30 () 2 DI ),

In other words, 2e(¢)(z) is the square of the Hilbert-Schmidt norm of the
differential dy(z), viewed as a linear map T (M) — T, ;) (N) between the
indicated Euclidean tangent spaces. The energy of ¢ is defined as the integral

B() = [ elolds

If ¢ is smooth, the Euler-Lagrange operator of that energy functional F
evaluated on the map ¢ is the tension field 7(), which is a vector field along
the map ¢:

dEtgtpt)L =0 /<T(<‘0)(x d‘Pt(Z‘)l > dpg(z)-

Again, (¢;) is a 1-parameter deformation of ¢ = g.
A continuous map ¢ € WH2(M, N) is said to be weakly harmonic if it
satisfies 7(¢) = 0, or in local coordinates

A = _(F(xﬁ ° SO) <v(pa, v¢ﬁ)» (11)

in the weak sense. It follows that ¢ (after correction on a null set) is C°-
smooth [ES 1964, §8]. Here is a simple bootstrap argument for this: The
right hand member of (1.1) is integrable (over the pre-image of the coordinate
patch in question), and it follows from (1.1) that ¢ is of class C** for some
A > 0. The right hand member of (1.1) is therefore of class C*, and so, by
(1.1), @ is C%2 etc

There are weakly harmonic maps which are not continuous, provided that
dim M > 2 [EL 1978, §3.5].

A continuous map ¢ € W12(M, N) is weakly harmonic iff ¢ is harmonic,
i.e., @ is bi-locally E-minimizing in the sense described below in the section
Harmonic maps (even for maps from an admissible Riemannian polyhedron,
cf. Definition 12.1).

Continuous maps which minimize E in a given homotopy class of maps
M — N are clearly bi-locally E-minimizing and hence harmonic.

A continuous map ¢ : M — N between smooth Riemannian manifolds is
said to be totally geodesic if it maps geodesics of M linearly to geodesics of
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4 1. Introduction

N. Equivalently, if ¢ preserves connections [EL 1983, Proposition 2.21]. A
totally geodesic map is harmonic.

Note that if N = R then the harmonic maps M — R are just the harmonic
functions. More generally, a special case of harmonic map ¢ : M — N arises
when ¢ is horizontally weakly conformal; i.e., if for any point © € M at which
the differential dp(x) # 0, its restriction to the orthogonal complement of
ker(dy(z)) in Tp(M) is conformal and surjective. A map ¢ : M — N is
harmonic and horizontally weakly conformal iff it is a harmonic morphism,
i.e., for every function v which is harmonic on an open subset V of N, the
composition v o ¢ is a harmonic function on p=*(V) C M.

T. Ishihara has characterized harmonic and totally geodesic maps in a
similar spirit: Say that a smooth function v : V — R is conver if its Hessian
V2y is positive semidefinite. And is subharmonic if Av (= trace VZv) > 0.
Then: A continuous map ¢ : M — N is harmonic, resp. totally geodesic, iff
it pulls germs of convex functions on N back to germs of subharmonic, resp.
convez, functions on M [Ish 1979].

The remaining sections of this Introduction describe the broad lines of
development in our text — first for Riemannian polyhedra as harmonic and
geodesic spaces; and then for maps, especially for various E-minimizers.

Harmonic and Dirichlet spaces

There are several natural frameworks for the qualitative aspects of poten-
tial theory on locally compact spaces. For instance (Chapter 2), [Br 1957;
1958a,b; 1959]:

1. Brelot harmonic spaces, identified and developed [Br 1969] as spaces
characterized (as already indicated) through

(a) local unique solvability of the Dirichlet problem for continuous bound-
ary functions, and
(b) Harnack’s monotone convergence property.

A more general notion, for somewhat different purposes, has been studied
by Bauer [Bau 1966]. See [CC 1972], [Bau 1984] for comparisons.

2. Dirichlet spaces of Beurling and Deny [BD 1959], [De 1970], [FOT 1994].
Here the starting point is a Dirichlet form F, abstracting key properties of
the classical Dirichlet integral D (in particular, Beurling’s observation that
D decreases under normal contractions).

By a theorem of Feyel and de La Pradelle [FP 1978], certain so-called
hypoelliptic Dirichlet spaces determine Brelot harmonic spaces.

It has been established in important work by Biroli and Mosco [BM 1991;
1995] that for certain so-called admissible Dirichlet spaces, the extremals of

© in this web service Cambridge University Press www.cambridge.org



www.cambridge.org
www.cambridge.org
www.cambridge.org/9780521773119

Cambridge University Press

978-0-521-77311-9 - Harmonic Maps between Riemannian Polyhedra
J. Eells and B. Fuglede

Excerpt

More information

1. Introduction 5

the Dirichlet form E are Holder continuous, in the presence of a suitable
Poincaré inequality. Admissibility requires that

{(a) a certain Carathéodory distance d on the underlying space X be a
pseudometric whose topology is the given one, and

(b) the Radon measure of the Dirichlet space satisfy a ball doubling
condition.

Sturm [St 1995b] has shown (even without (b)) that (X, d) (if complete) is
a geodesic space (meaning briefly that any two points in the same compo-
nent can be joined by a geodesic, i.e., a rectifiable path whose length is the
distance between the points).

The traditional examples of Brelot and Dirichlet spaces are analytical
in character: Spaces of solutions of second order linear elliptic operators,
possibly with discontinuous coefficients ([Her 1964; 1965], [HH 1969; 1972},
[Bo 1967], [La 1980]).

Riemannian polyhedra

By way of contrast, this monograph is primarily concerned with harmonic
spaces derived from and motivated by geometric considerations. In more
detail: A connected locally finite n-dimensional simplicial polyhedron X is
called admissible {cf. [Chen 1995)) if

(i) X is dimensionally n-homogeneous, i.e., every simplex is a face of an
n-simplex, and

(if) X is locally (n — 1)-chainable, i.e., relative to some triangulation, for
any simplex s, any two n-simplexes containing s are joinable by a
chain of contiguous (n — 1)- and n-simplexes containing s.

Examples 8.2 and 8.3 indicate that both these conditions are necessary for
Our purposes.

A polyhedron X becomes a Riemannian polyhedron when endowed with
a Riemannian structure g, defined by giving on each maximal simplex s
of X a Riemannian metric g, equivalent to a Euclidean metric on s. The
components of g, need not be smooth, but merely bounded measurable.

Adapting constructions by De Cecco and Palmieri [CP 1988; 1990], an
intrinsic distance dx (Carathéodory distance) is defined on X, which thereby
becomes a length space, and hence a geodesic space, if complete (Proposition
4.1).

On an admissible Riemannian polyhedron X the Sobolev space W%(X),
defined as the completion of a suitable space of Lipschitz continuous func-
tions in the Sobolev norm, is a Dirichlet space (Proposition 5.1).
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6 1. Introduction

Harmonic functions on X

On an admissible Riemannian polyhedron X define the energy functional
E:WL3(X) - Rby

loc

B(w) = 3 [ Vufdu,

Weakly harmonic (and subharmonic) functions are defined using the en-
ergy functional, and characterized variationally (Proposition 5.2, Theorem
5.2).

Theorem 5.3 is a maximum principle for weakly subharmonic functions
of class W12(X), of the sort due to Hervé [Her 1964] in the case where X
is a domain in R™ carrying a Riemannian metric with bounded measurable
coeflicients; our proof is different.

Harnack’s inequality for weakly harmonic functions on an admissible Rie-
mannian polyhedron X is established (Theorem 6.1), involving a careful and
leisurely adaptation of the argument of Moser [Mos 1961]. In the spirit of De
Giorgi {Gi 1957] and Moser [Mos 1960}, it is shown in Theorem 6.2 that every
weakly harmonic function on X is Hoélder continuous. (Simple examples il-
lustrate that such functions may not be Lipschitz continuous.) Furthermore
(Theorem 6.3), every locally uniformly bounded family of harmonic functions
on X s locally uniformly Hélder equicontinuous.

Continuous, weakly harmonic functions are called harmonic. Altogether
we are led to Theorem 7.1 which states that an admissible Riemannian
polyhedron has a natural Brelot harmonic space structure; and its harmonic
funtions are Hélder continuous (i.e., have Holder continuous versions). It
was first proved by Hervé [Her 1964] in the case where X is a domain in R™
with a bounded measurable Riemannian structure.

Now suppose that X satisfies the following Poincaré inequality (always
fulfilled locally):

(/. twidug)” < et®)B()

for any u € Lip.(X) (the compact Lip functions % : X — R). Then /E(u)
is a norm on Lip,(X), and the completion Ly*(X) of Lip,(X) in this norm
is a regular Dirichlet space of diffusion type (Proposition 7.3). In view of
the continuity of weakly harmonic functions the theorem of Feyel and de La
Pradelle [FP 1978] applies to the Dirichlet space L(l)’2(X ), and produces the
Brelot harmonic space of Theorem 7.1. That and constructions of Hervé
[Her 1962] combine to ensure (always in the presence of the above Poincaré
inequality) that every admissible Riemannian polyhedron has a unique sym-
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1. Introduction 7

metric Green function G, Hélder continuous off the diagonal (Theorem 7.3,
Propositon 7.4).

We show that G(z,y) is bounded above and below by constant multiples
of dx(z,y)?~™ when z and y vary in a compact set and n > 2 (Theorem 7.4).
Our proof of these estimates exploits the full local polyhedral structure of an
admissible Riemannian polyhedron, thus permitting us to adapt a method
used by Littman, Stampacchia and Weinberger [LSW 1963] in their proof of
Lemma 7.2 and Theorem 7.4 for the particular case of a ball X in R™ endowed
with a Riemannian metric with bounded measurable components. A key
ingredient in their proof is the use of a suitable homothetic transformation
in order to reduce the case of a variable point y to that of a fixed y. When X
is an admissible Riemannian polyhedron, a finite number of such homotheties
are applied in our proof of Theorem 7.4. The same technique is further used
in the proof of the Poincaré inequality for functions (Theorem 5.1), and in a
Harnack inequality for positive functions harmonic off a point (Proposition
6.2).

In their paper [BM 1995] Biroli and Mosco studied potential theory on a
very general type of metric space endowed with a Dirichlet form of diffusion
type, and even allowing for degeneracy. As an alternative approach to the
Harnack inequality and the Holder continuity of weakly harmonic functions
on an admissible Riemannian polyhedron, one could use our preparatory
results to verify the remaining axioms in the Biroli-Mosco theory in the
present case of an admissible Riemannian polyhedron (X, g). This leads
to the existence of the Green function on small balls in (X, g) and to our
estimates of it, invoking a uniform estimate of the volume of balls with
variable centre in a compact subset of X (Lemma 4.4).

Geometric examples

Various admissible Riemannian polyhedra are presented in Chapter 8. In-
cluded are the following examples which are also circuits (i.e., satisfying (i)
and a global version of (ii) above, and also requiring that every (n — 1)-sim-
plex is a face of exactly one or two n-simplexes, see Chapter 4):

e Smooth Riemannian manifolds, with or without boundary. (The as-
sociated harmonic functions are the local solutions u of the Laplace—
Beltrami equation Au = 0 in the interior, and having vanishing nor-
mal derivative at the boundary, see Remark 5.3.) Also triangulable
Riemannian Lipschitz manifolds.

e Riemannian joins of smooth Riemannian manifolds.

e Conical singular Riemannian spaces (Cheeger [Chee 1980; 1983}).
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8 1. Introduction

¢ Normal complex analytic spaces (Giesecke [Gie 1964] and Lojasiewicz
[Lo 1964]).

In a somewhat different context (Examples 8.12 and 8.13): Let K be a
compact group of isometries of a complete smooth Riemannian manifold M,
and 7 : M — M/K the orbit projection. The Brelot harmonic sheaf H s
of M determines the direct image sheaf 7, Hys on M/K, a Brelot harmonic
sheaf there.

Analogously, a Riemannian orbifold has such a harmonic space structure.
For instance, the leaf space M/F of a Riemannian foliation F with closed
leaves of a Riemannian manifold M (Reinhart [Rei 1961]).

Maps between polyhedra

Suppose that (X, g) is an admissible Riemannian polyhedron of dimension
m (compact, for simplicity) and that g is simplexwise smooth. Let (Y, dy)
be any separable metric space (to begin with).

A Riemannian domain is understood to be a connected open subset of a
Riemannian manifold (M, g) whose metric completion is compact in M.

For suitable maps ¢ of a Riemannian domain into Y an energy density
e(p) was defined by Korevaar and Schoen [KS 1993], via a deep subpar-
titioning lemma, as a certain limit of approximate energy densities e.(p);
the energy E(y) then equals [ e(y)dug. See Chapter 14 for a summary of
that construction.

Building on this concept of energy, and its properties, we consider analo-
gously the following approximate energy density of a measurable map

p:(X,9) — (Y,dy):

2
et = [ DA g,

The energy E{p) of ¢ is defined as

E(p)=  sup hmsup/ felp dﬂg (< 00).
FEC(X,[0,1]) \ &0

It is shown that a map ¢ : X — Y has finite energy iff there is an integrable
function e(p) on X (called the energy density of ) such that e.(¢) — e(p) as
€ — 0, in the sense of weak convergence of measures. This is also equivalent
to ¢ having a quasicontinuous version with restrictions of finite energy in
the sense of Korevaar-Schoen to the top-dimensional simplezes s of X. The
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1. Introduction 9

sum of these energies E(p|;) then equals E(p) (Theorem 9.1). (A map
¢ : X —Y is said to be quasicontinuous if ¢ has continuous restrictions to
closed sets with complements of arbitrarily small capacity.)

In case Y is a Riemannian C'-manifold (N, k) without boundary, we also
have the elementary concept of energy of a quasicontinuous map ¢ : X — N,
the energy density being given by e(y) = tracey ¢*h, in coordinate patches
V on N:

e(p) = (hap 0 ©)(V9*,VeP)  in o (V).

This makes immediate sense, by covariance, if ¢ is continuous or if N is
itself a patch. In any event, the pre-images ¢ ~1(V) are quasiopen, and the
components @1, -+, " are of class W12(U) in the sense of Kilpeldinen and
Maly, [KilM 1992, §2] (cf. the next to last section of Chapter 7 below). The
energy of ¢ is now defined by E{p) = [, e(¢) dug.

This concept of energy of maps ¢ of (X, g) into a Riemannian manifold
N is identified (Lemma 9.3) with the one suggested by Nash’s isometric
embedding theorem. The previous requirement that the Riemannian metric
g of X be simplexwise smooth is not needed for this energy concept. With
that requirement, however, the two concepts of energy of maps into manifolds
are identical, provided e.g., that ¢ is continuous or that N is compact. In
either of these cases, e.(¢) — e(p) as ¢ — 0 holds both in L'-norm and
pointwise almost everywhere in X, when ¢ has finite energy (Theorem 9.2).

There is a similar result for maps into a Riemannian polyhedron Y with
continuous Riemannian metric A (Theorem 9.3). When (Y, h) admits a Rie-
mannian embedding in some R? we recover the elementary expression for
energy used in [GS 1992] and [Chen 1995)].

The energy functional E on W2(X,Y) is lower semicontinuous, and
Wh2(X,Y) has a Rellich-style precompactness property if Y is also compact.

Assuming that ¥ admits a bi-Lipschitz embedding in a Euclidean space
(this holds for any compact Riemannian polyhedron), Poincaré’s inequality
for maps X — Y of finite energy is derived from that for functions (Propo-
sition 9.1).

This allows us to establish the Holder continuity of locally E-minimizing
maps into suitable targets, by adapting a line of arguments of Jost [J 1997a],
with underlying work by Jager—Kaul [JK 1979], Caffarelli [Caf 1982], Gia-
quinta—Giusti [GG 1982), Giaquinta—Hildebrandt [GH 1982], Meier [Mei
1984] and Sturm [St 1995a).

With our first concept of energy for maps from an admissible Riemannian
polyhedron X with simplexwise smooth Riemannian metric ¢ we obtain the
following local regularity property, assuming that Y is a simply connected
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10 1. Introduction

complete Riemannian polyhedron of nonpositive curvature (in the sense of
A.D. Alexandrov): If ¢ : X — Y is a local E-minimizer, then ¢ is Holder
continuous (Theorem 10.1).

Likewise, assuming that (Y,dy) is a complete Riemannian polyhedron
with curv(Y,dy) < K for some K > 0: Let ¢ : X — Y be a local E-
minimizer, and suppose that the range of ¢ is contained in a compact convex
set V C Y of diameter < 7/(2vK ) such that geodesics in V are uniquely
determined by their endpoints. Then ¢ is Holder continuous (Theorem 10.2).

In particular, every continuous locally E-minimizing map ¢ of X into a
Riemannian polyhedron Y with upper bounded curvature is Holder contin-
uous (Corollary 10.3).

Similar results with the second energy concept and hence with a manifold
target N are obtained in Propositions 12.1, 12.2 and Corollary 12.2. Some
limitation on the size of the range of ¢ is necessary, even for maps between
manifolds, see [HKW 1977, §6] (cf. Example 12.3 below).

With the above regularity theorems at hand it is possible to extend, by
known direct methods of variational theory, classical results on existence
of harmonic maps between Riemannian manifolds to the present setting of
maps between Riemannian polyhedra.

Consider first the case of a target Y of nonpositive curvature. A key fact
is that this curvature restriction implies strong convexity properties of E
[GS 1992, §4], [KS 1993, Chapter 2] and [J 1994, §2].

For the case of free homotopy we obtain, assuming that X and Y are
compact Riemannian polyhedra, X being admissible and Y of nonpositive
curvature: Every homotopy class of continuous maps X — Y has an E-
minimizer, and any such is Holder continuous (Theorem 11.1).

A more detailed analysis gives the following uniqueness property: If
wo, 1 : X — Y are homotopic E-minimizers which agree at some point
of X, then @g coincides with 1 on X (Corollary 11.1).

Theorem 11.1 is due to

(a) Eells and Sampson [ES 1964] in case X and Y are both smooth Rie-
mannian manifolds; the E-minimizers are smooth.

(b) Gromov and Schoen [GS 1992] when X is a smooth Riemannian mani-
fold. The E-minimizers are Lipschitz continuous.

Korevaar and Schoen [KS 1993] have extended [GS 1992], dropping the
polyhedral restriction on Y, permitting ¥ to be any geodesic space (compact
and of nonpositive curvature). Then, as mentioned above, E is defined as a
limit of approximating energy integrals.

(c) Chiang [Chi 1990], in case X is a Riemannian orbifold and Y a smooth
Riemannian manifold.
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