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Introduction

This book is about numerical methods for use in simulating dynamical phenom-

ena governed by conservative processes. In this chapter, we review a few basic

principles regarding conservative models. In general, we are concerned here with

initial value problems for systems of ordinary differential equations (ODEs) of the

form

d

dt
z = f (z), z(t0) = z0,

where z : R → R
k . The basic questions encountered early on in a first course

on ODEs concern existence and uniqueness of solutions, a topic addressed, for

example, by Picard’s theorem. Discussion then turns to various techniques for

analytically solving the differential equations when f has a prescribed form. In

particular, the scalar case k = 1 is an instance of a separable differential equa-

tion and such models are in principle solvable in quadratures (i.e. by evaluating

certain integrals and solving certain algebraic equations). Linear systems are ex-

actly solvable after determination of the eigenvalues and eigenvectors (or gen-

eralized eigenvectors, in the degenerate case). Beyond these and a few other

special cases, most models are not exactly integrable. In this book we are mostly

interested in complex models that do not admit exact solutions.

The emphasis of this book is on the particular models which are formulated

naturally as conservative systems of ODEs, most importantly Hamiltonian sys-

tems. As a general rule, mechanical systems resulting from physical principles are

Hamiltonian until (usually for prudent modeling purposes) subjected to simplifying

reductions or truncations. For example, in typical fluid dynamics applications, the

incorporation of diffusive effects due to friction with a boundary plays an essential

role in the modeling. However, in many situations, the conservative paradigm can

be retained and remains the most appropriate foundation for the construction of

models, since it is in no small measure due to properties such as conservation of

energy and angular momentum that matter behaves as it does.

The existence of Kepler’s laws which approximately describe the motion of

the planets in the solar system are reflections of the conservative nature of
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2 INTRODUCTION

gravitational dynamics. The celebrated Kolmogorov–Arnold–Moser theory which

discusses the local stability of nonlinear dynamical systems in the vicinity of cer-

tain critical points applies only to conservative systems. Even dissipative systems

typically retain certain conservation laws (for example conservation of mass in

fluid dynamics), and many of the ideas developed in this book are still applicable

to such problems.

1.1 N-body problems

Conservative dynamical systems most often originate through application of

Newton’s second law which describes the motion of a body in an applied force

field. In a classical N-body system (Fig. 1.1), several point masses are involved

and the forces acting on any one body arise from the presence of neighboring

bodies or some external field.

qi vi

Figure 1.1 An N-body system.

Let the ith body be assigned a mass mi , an instantaneous position qi (with

respect to some appropriate reference frame), and a velocity vi , i = 1, . . . , N. Let

Fi represent the force acting on body i (due, for example, to interactions with

the other particles). We assume that the force can be obtained as the negative

gradient of a potential energy function V with respect to the ith particle position

qi , i.e.

Fi = −∇qiV (q1, q2, ..., qN).

The N-point particles then move according to Newton’s equations of motion

d

dt
qi = vi , (1.1)

mi
d

dt
vi = Fi , i = 1, 2, . . . , N. (1.2)
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1.2 PROBLEMS AND APPLICATIONS 3

N-body problems can be naturally formulated to describe motion in any

Euclidean space R
ν , ν > 0, i.e. with qi , vi , and Fi all in R

ν . Such a system

is said to have νN degrees of freedom. We will say that the phase space of an

N-body problem is the 2νN-dimensional set consisting of all possible positions

q = (q1, q2, . . . , qN)T and velocities v = (v1, v2, . . . , vN)T of the particles. Under

mild smoothness assumptions on the potential energy function V , there exists,

at least locally through any point (q0, v0) of phase space, a unique trajectory of

the mechanical system: a solution of the equations (1.1)–(1.2) subject to the

initial conditions q(0) = q0, v(0) = v0. At a critical point q = q̄, all of the

forces acting on the particles in the system vanish; hence the trajectory through

(q̄, 0) reduces to a single point.

The total energy associated to the mechanical system (1.1)–(1.2) is the sum

of kinetic and potential terms

E(q, v) =
1

2

N∑
i=1

mi‖vi‖2 + V (q).

It is easy to see that the energy is constant along a trajectory, since

d

dt
E =

N∑
i=1

mivi · v̇i +
N∑
i=1

∇qiV (q) · q̇i

=
N∑
i=1

mivi ·
(

1

mi
Fi

)
−
N∑
i=1

Fi · vi = 0.

(Refer to the preface for details on the notation used in this derivation and later in

the book.) A system with an energy function constant along solutions is referred

to as a conservative system.

1.2 Problems and applications

Let us briefly survey a few of the most important recurring N-body applications.

Examples of these problems, along with a number of other types of models, are

developed in more detail in various places in the book.

The historical origin of the N-body problem lies in gravitational modeling,

and these problems remain of substantial current interest. Simulations are being

conducted on a wide variety of astronomical systems, including planetary systems

(for understanding both their formation and their long-term stability), systems

of interacting stars or binaries, galaxies, and globular clusters. Closely related

problems arise in semi-classical studies of atomic systems. As an example, the
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4 INTRODUCTION

three-body gravitational problem involving bodies of unequal mass has the po-

tential energy

V (q1, q2, q3) = − Gm1m2
‖q1 − q2‖ −

Gm2m3
‖q2 − q3‖ −

Gm1m3
‖q1 − q3‖ ,

where G is the universal gravitational constant. Such a three-body problem has

no general, analytical solution, so simulation is needed to enhance understand-

ing, sometimes in conjunction with partial theoretical analysis, for example to

determine the stability of certain configurations of the bodies. Chaotic solutions

of the three-body problem may include arbitrarily close approaches of the bod-

ies, in which case the singularity in the potential may cause significant difficulty

for numerical simulation and some sort of regularizing transformations of time

and/or coordinates are needed. We will return to consider some of these issues

in one of the book’s later chapters.

Classical mechanics is also the basis of many molecular models in chemistry,

physics, and biology, including those commonly used for studying liquids and

gases, materials, proteins, nucleic acids, and other polymers. In these applications,

V is composed of a sum of several heterogeneous nonlinear contributions based

on the distances between pairs of particles, varying both in functional form and in

relative intensity. These terms may be “local” (“short-range”) meaning that they

effectively involve only contributions from nearby particles, or they may be “long-

range.” A commonly treated system with only local interactions is the simplified

model of a gas or liquid, consisting of N identical atoms of a certain prescribed

mass, interacting in a Lennard–Jones pair potential

ϕL.J.(r) = ε

[(
r̄

r

)12
− 2

(
r̄

r

)6]
. (1.3)

The total potential energy is

V =
∑

1≤i<j≤N
ϕL.J.(‖qi − qj‖). (1.4)

Note that such models are always simplifications of vastly more complex quantum-

mechanical models. The parameters ε and r̄ of the Lennard–Jones potential pro-

vide a fit to experiment, but would depend on the temperature and pressure at

which the simulation is performed. Strictly speaking, the pair interactions be-

tween atoms would include all pairs, no matter how distant, but since the energy

decays like r−6, the forces are generally found to be so small outside of some

critical radius that the potential can simply be cut off beyond this distance. In

practice, this is usually done by introducing a smooth transition of the potential

energy function to a constant value.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521772907 - Simulating Hamiltonian Dynamics
Benedict Leimkuhler and Sebastian Reich
Excerpt
More information

http://www.cambridge.org/0521772907
http://www.cambridge.org
http://www.cambridge.org


1.2 PROBLEMS AND APPLICATIONS 5

Regardless of what other potentials may be present, the presence of the

Lennard–Jones potential ensures that the particle forces are ultimately strongly

repulsive at short range. These repulsive forces are a very important aspect of

molecular systems. The potential will be singular where particle positions overlap,

but otherwise, the potential is smooth and the solution is globally defined: solu-

tions started away from singularities can be extended without bound in t. Thus

molecular systems do not undergo the extreme collisions encountered in strictly

Coulombic problems such as gravitation.

Still other classes of conservative systems arise through discretization of par-

tial differential equations. A semi-linear wave equation of the form

utt = uxx − f (u), u = u(x, t),

is conservative under certain prescriptions of boundary and initial data. If we

assume, for example, that solutions are defined on the interval [0, L] and are

periodic with period L, then the energy functional is

E[u] =

∫ L
0

[
1

2
u2t +

1

2
u2x + F (u)

]
dx,

where F (u) =
∫ u
0 f (s)ds. The equations of motion could be written in the

“Newton-like” form

vt = −δuV [u], ut = v ,

where V [u] =
∫ L
0

[
1
2u
2
x + F (u)

]
dx represents the potential energy, and δu, termed

the variational derivative, is the analogue of the gradient appearing in the

Newtonian equations of motion,

(δuG[u], δu) = lim
ε→0

G[u + εδu]− G[u]

ε
, (1.5)

where G is a functional, like the potential energy V , that assigns a real number to

functions u(x) and the equality holds for all sufficiently regular periodic functions

δu(x), i.e. δu(x) = δu(x+L). This definition is formally equivalent to the defining

relation for the gradient mentioned in the preface with 〈., .〉 replaced by the L2
inner product,

(u, v) =

∫ L
0
u(x)v(x)dx.

Note that δuG[u] is itself a function of x .
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6 INTRODUCTION

The simplest centered finite difference spatial discretization takes the form,

for i = 1, 2, . . . , N,

d

dt
ui = vi ,

d

dt
vi =

ui−1 − 2ui + ui+1
∆x2

− f (ui),

where ui ≈ u(i∆x, t), ∆x = L/N, and the periodic boundary condition leads

to the definitions u0 ≡ uN , uN+1 ≡ u1. This is in the form of a standard N-

body system in one dimension with positions u = (u1, u2, . . . , uN)T , velocities

v = (v1, v2, . . . , vN)T , and potential

V (u) =
N∑
i=1

(
ui+1 − ui

∆x

)2
+
N∑
i=1

F (ui).

1.3 Constrained dynamics

In the setting of modern applications, we will need to consider generalizations of

the traditional N-body problem in which the basic modeling unit is not the point

particle moving in Euclidean space but an object moving in some constrained

space.

For instance, in molecular dynamics, the bond stretch between two atoms is

typically modeled by a spring with rest length L > 0, say

V12(q1, q2) =
α

2
(‖q1 − q2‖ − L)2 ,

where q1 and q2 are the positions of the atoms and α is a positive parameter.

When α is large, the vibrational frequency is also large, while the variation in the

length of the stretch from L will typically be small. It is then common practice to

replace one or more of these bonds by rigid length constraints, i.e. to introduce

a constraint of the form

‖q1 − q2‖2 = L2.

If enough constraints among a set of particles are imposed simultaneously, the

group becomes completely rigid. Such rigid bodies have very interesting dynamical

properties in and of themselves. For example, in molecular dynamics, it is standard

practice to replace small polyatomic molecules (for example, H2O) by rigid bodies.

As another illustration, while it may be appropriate to treat the bodies in the

solar system as point masses for many purposes, in more delicate situations,

the nonspherical rigid body structure of the planets may need to be taken into

consideration.
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1.3 CONSTRAINED DYNAMICS 7

Let us begin by extending Newton’s equations for particle motion to the

constrained case. Imagine a particle of mass m moving on a constraint surface

defined as the zero set of some smooth function g. At any time, the particle

is acted on by two types of forces: applied forces defined in the usual way by a

potential energy function V , and constraint forces which act in such a way as to

make the particle lie on the constraint surface. Although we do not in general

know anything about the directionality of the applied force, we may take as our

starting point the principle of D’Alembert: the constraint force acts along the

normal direction to the constraint surface, i.e. along the direction of the gradient

to the function g at the point of contact (Fig. 1.2).

g(q) = 0

Fg = λ∇qg(q)

q

Figure 1.2 D’Alembert’s Principle: the constraint force acts in the

normal direction to the constraint surface at the point of contact.

Thus, if we denote the constraint forces by Fg, we have

Fg | | ∇qg(q),

or

Fg = λ∇qg(q),

where λ is a scalar.

Using Newton’s second law, the equations of motion then take the form

mv̇ = −∇qV (q) + λ∇qg(q), (1.6)

q̇ = v , (1.7)

g(q) = 0. (1.8)

The parameter λ is an unknown which is uniquely determined by the condition

that q(t) satisfy (1.8) at all points on the trajectory and that the trajectory

be smooth. Specifically, if we differentiate the equation g(q(t)) = 0 twice with

respect to time, we find first

d

dt
g(q) = ∇qg(q) · q̇ = ∇qg(q) · v = 0, (1.9)
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8 INTRODUCTION

and, then

d2

dt2
g(q) = 〈v , gqq(q)v〉+ m−1∇qg(q) · [−∇qV (q) + λ∇qg(q)] = 0, (1.10)

where gqq(q) represents the Hessian matrix of g. Provided that ∇qg(q) �= 0, the

equation (1.10) has a unique solution λ = Λ(q, v)

Λ(q, v) =
m

‖∇qg(q)‖2
(

1

m
〈∇qg(q),∇qV (q)〉 − 〈v , gqq(q)v〉

)
.

Equations (1.6)–(1.8) are a special case of the constrained Euler–Lagrange

equations. As a simple illustration, we mention the example of a bead (of mass m)

moving in gravity in two dimensions (coordinates (x, z)) along a wire described by

the curve Γ : z = f (x). The constraint is g(x, z) := z − f (x), and the equations

of motion take the form

mẍ = −λf ′(x), (1.11)

mz̈ = −mg + λ, (1.12)

z = f (x). (1.13)

Here g represents the earth’s gravitational constant.

As a second illustration, consider the spherical pendulum consisting of a bob

of mass m suspended from a fixed point on a rigid massless rod of length L > 0.

We formulate the problem in cartesian coordinates (x, y , z) with energy

E =
1

2m
(ẋ2 + ẏ2 + ż2) + mgz,

and equations of motion

mẍ = 2λx,

mÿ = 2λy,

mz̈ = −mg + 2λz,

0 = x2 + y2 + z2 − L2.

1.4 Exercises

1. Scalar nonlinear models. Consider a single-degree-of-freedom problem of the

form

q̇ = v ,

mv̇ = −ϕ′(q).
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1.4 EXERCISES 9

a. Write the energy function E(q, v) for the above system and verify that

it is conserved along trajectories of the system.

b. Set the energy function to a constant value, say E0, and show that

the resulting equation can be solved for v as a function of q, subject

to a choice of the sign of v . Using this, together with the differential

equations, show that the equations of motion reduce to a first-order

differential equation for q of the form

q̇ = ±
√(

2

m

)
(E0 − ϕ(q)).

(Observe that this equation is separable, and hence the solution can in

principle be recovered by integration.)

Discuss first the case v �= 0 and continue with an investigation of the

solution behavior in the vicinity of v = 0.

2. Morse oscillator. (See problem 1 above.) The Morse oscillator is a one-

degree-of-freedom conservative system consisting of a single particle of unit

mass moving in the potential ϕ(q) = D(1 − e−βq)2. In the following set

D = 1 and β = 1.

a. Sketch the graph of ϕ as a function of q.

b. Sketch several of the level curves (E(q, v) = E0, E0 fixed) of the energy

function. In particular, observe that the system has bounded trajectories

for E < E∗. What is E∗? What can be said about an orbit with energy

E = E∗?

c. Sketch the graphs of several solution curves as functions of t. [Hint: the

velocity field can be sketched by using the result of problem 1b.]

3. Pendulum. The planar version of the pendulum is described by the equations

mẍ = 2λx,

mÿ = −mg + 2λy,

0 = x2 + y2 − L2.

Introduce coordinates x = L sin θ, y = −L cos θ and show that the equations

of motion can be reduced to a single second-order differential equation for θ

which is in the form of a nonlinear oscillator.
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10 INTRODUCTION

4. Bead-on-wire. Consider the “bead-on-wire” problem (1.11)–(1.13). Show

that the equations of motion can be reduced to a second-order unconstrained

differential equation for x of the form

ẍ = −f ′(x)
g + f ′′(x)ẋ2

1 + f ′(x)2
.

5. Variational derivative. Using the definition (1.5) of the variational derivative

and integration by parts, verify that

δuV [u] = −uxx + F ′(u),

for

V [u] =

∫ L
0

[
1

2
u2x + F (u)

]
dx.
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