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1. Preliminaries

1.1 Sets

A set is a collection of elements. If the setA consists of then elements
a1, a2, . . . , an then we express this by writing

A = {a1, a2, . . . , an}.
Thus, for instance, the set consisting of all the integers between 6 and
10 is given by

B = {6,7,8,9,10}.
A set can be defined either by specifying all its elements, as just shown,
or by specifying a defining property for its elements. Thus, the setB

could have been defined as

B = {integersi : |8− i| ≤ 2}.
That is,B could have been defined as the set of all integersi such that
the distance betweeni and 8 is less than or equal to 2.

A set consisting of a finite number of elements is said to be afinite set,
whereas one consisting of an infinite number of elements is said to be
an infinite set.The setN of all the nonnegative integers is an example
of an infinite set. It is convenient to define the set that does not consist
of any elements; we call this thenull set and denote it by∅.

We use the notationa ∈ A to indicate thata is an element ofA, and
we use the notationa /∈A to indicate thata is not a member ofA.

Example 1.1a Let S be the set of all possible outcomes when a pair
of dice are rolled. By an “outcome” we mean the pair(i, j), wherei is
the number of the side on which the first die lands andj is the number
of the side for the second die. Then, the set of all outcomes that result
in the sum of the dice being equal to 7 can be expressed as

S7 = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
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or, alternatively, as

S7 = {(i, j)∈ S : i + j = 7}.

If every element ofA is also an element ofB, then we say thatA is a
subsetof B and writeA ⊂ B. By this definition, every set is a subset of
itself and hence, for example,A ⊂ A. Also, since there are no elements
in the null set, it follows that every element of∅ is also an element of
A; thus,∅ is a subset of every other set. IfA ⊂ B andB ⊂ A then we
may writeA = B. That is, the setsA andB are said to be equal if every
element ofA is inB and every element ofB is inA.

If A andB are sets then we define the new setA∪B, called theunion
of A andB, to consist of all elements that are inA or inB (or in both).
Also, we define theintersectionof A andB, written either asA ∩ B or
justAB, to consist of all elements that are in bothA andB.

Example 1.1b In Example1.1a, ifA is the set of all outcomes for
which the sum of the dice is 5 and ifB is the set of outcomes for which
the value of the second die exceeds that of the first die by the amount 3,
then we have

A = {(1,4), (2,3), (3,2), (4,1)} and B = {(1,4), (2,5), (3,6)};
also,

A ∪ B = {(1,4), (2,3), (3,2), (4,1), (2,5), (3,6)} and

AB = {(1,4)}.
If we defineC to be the set of all outcomes whose sum is equal to 6, then
AC = ∅ because there are no outcomes whose sum is both 5 and 6.

A set is said to be auniversal setif it contains (as subsets) all other sets
under consideration. LetU be a universal set. For any setA, the setAc,
called thecomplementof A, is defined to be the set containing all the
elements of the universal setU that arenot in A.

Venn diagramsare often used to graphically represent sets. The uni-
versal setU is represented as consisting of all the points in a large rec-
tangle, and sets are represented as consisting of all the points in circles
within the rectangle. Particular sets of interest are indicated by shading
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Figure 1.1

appropriate regions of the diagram. For instance, the Venn diagrams of
Figure 1.1 indicate the setsA ∪ B, AB, andAc.

The operation of forming unions and intersections of sets obey cer-
tain rules that are similar to the rules of algebra. We list a few of them
as follows:

Commutative laws:A ∪ B = B ∪ A, AB = BA.
Associative laws:(A ∪ B) ∪ C = A ∪ (B ∪ C), (AB)C = A(BC).
Distributive laws:(A∪B)C = AC ∪BC, AB ∪C = (A∪C)(B ∪C).
These relations are verified by showing that any element that is con-
tained in the left-hand set is also contained in the right-hand one, and
vice versa. For instance, to prove that

(A ∪ B)C = AC ∪ BC,

note that ifx ∈ (A ∪ B)C thenx ∈ C andx is also in eitherA or B. If
x ∈A, then it is inAC and so is inAC ∪ BC; similarly, if x ∈B, then
it is in BC and so is inAC ∪ BC. Thus,x ∈AC ∪ BC, showing that

(A ∪ B)C ⊂ AC ∪ BC.

To go the other way, suppose thaty ∈ AC ∪ BC. Theny is either in
bothA andC or in bothB andC. Therefore, we can conclude thaty is
in C and is in at least one of the setsA andB. But this means thaty ∈
(A ∪ B)C, showing that

AC ∪ BC ⊂ (A ∪ B)C,
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Figure 1.2

and the verification is complete. (The result could also be shown by
using Venn diagrams; see Figure 1.2.)

We also define the intersection and union of more than two sets.
Specifically, for setsA1, . . . , An we define

⋃n
i=1Ai, the union of these

sets, to consist of all elements that are inA1, or inA2, or inA3, . . . , or
in An; that is,

⋃n
i=1Ai is the set of all elements that are in at least one

of the setsAi, i = 1, . . . , n. Similarly, we define
⋂n

i=1Ai, the intersec-
tion of these sets, to consist of all elements that are in each of the sets
Ai, i = 1, . . . , n.

1.2 Summation

If we let s be the sum of the four numbersx1, x2, x3, x4 then we can
write

s = x1+ x2+ x3+ x4.

More compactly, we can use the summation notation
∑
. Using this lat-

ter notation, we write

s =
4∑
i=1

xi,

which means thats is equal to the sum of thexi values asi ranges from
1 to 4. More generally, forj ≤ n, we use the notation

s =
n∑
i=j

xi
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to mean that
s = xj + xj+1+ · · · + xn.

Example 1.2a If xi = i2, find
∑6

i=3 xi.

Solution.

6∑
i=3

xi = x3+ x4+ x5+ x6 = 9+16+ 25+ 36= 86.

If S is a specified set of integers, then we use the notation∑
i∈S

xi

to represent the sum of all the valuesxi that have indices inS.

Example 1.2b If S = {2,4,6} then∑
i∈S

xi = x2+ x4+ x6.

Consider the sumT =∑2
i=0 x2+i . BecauseT is equal tox2+ x3+ x4,

it follows that we can also expressT asT = ∑4
j=2 xj . Therefore, we

see that
2∑
i=0

x2+i =
4∑

j=2

xj .

When equating the right-hand summation to the left, we say that we are
making the change of variablej = 2+ i. That is, summing the values
x2+i asi ranges from 0 to 2 is the same as summing the valuesxj asj
ranges from 2 to 4.

Example 1.2c Making the change of variablej = n − i in the sum-
mation

∑n
i=0 xn−i gives the equivalent sum

∑
xj asj ranges between

n and 0. That is,
n∑
i=0

xn−i =
n∑

j=0

xj .
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We are sometimes interested in numbers that are expressed in the form
xi,j, wherei andj both take values in some region. A quantity that is
often of interest is the following “double sum”D = ∑n

i=1

∑m
j=1xi,j,

where
n∑
i=1

m∑
j=1

xi,j =
n∑
i=1

( m∑
j=1

xi,j

)
.

Now arrange the numbersxi,j (i = 1, . . . , n, j = 1, . . . , m) in the fol-
lowing row–column array, which has the numberxi,j in row i, columnj.

x1,1 x1,2 x1,3 . . . x1,j . . . x1,m

x2,1 x2,2 x2,3 . . . x2,j . . . x2,m
...

...
...

...
...

...
...

xi,1 xi,2 xi,3 . . . xi,j . . . xi,m
...

...
...

...
...

...
...

xn,1 xn,2 xn,3 . . . xn,j . . . xn,m

Because
∑m

j=1xi,j is just the sum of them array elements in rowi, it
follows that the double sumD is equal to the sum of the row sums. In
other words,D is equal to the sum of all the elements in the array. Since
the sum of all the array values can also be obtained by adding all the
column sums and since the sum of the values of columnj is

∑n
i=1xi,j,

we have the following result.

Proposition 1.2.1

n∑
i=1

m∑
j=1

xi,j =
m∑
j=1

n∑
i=1

xi,j .

A corollary of this proposition is the following useful result.

Corollary 1.2.1
n∑
i=1

i∑
j=1

xi,j =
n∑
j=1

n∑
i=j

xi,j .

Proof. Consider data valuesxi,j,wherei andj both takes values from1
to n and wherexi,j = 0 whenj > i. Then apply Proposition 1.2.1.
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A pictorial proof of Corollary1.2.1 is obtained by noting that its left-hand
side,

n∑
i=1

i∑
j=1

xi,j =
1∑
j=1

x1,j +
2∑
j=1

x2,j + · · · +
n∑
j=1

xn,j,

is equal to the sum of all the row sums whereas the right-hand side,

n∑
j=1

n∑
i=j

xi,j =
n∑
i=1

xi,1+
n∑
i=2

xi,2+ · · · +
n∑
i=n

xi,n,

is the sum of all the column sums in the following array.

x1,1

x2,1 x2,2

x3,1 x3,2 x3,3
...

...
...

. . .

xn,1 xn,2 xn,3 . . . xn,n

Example 1.2d

3∑
i=1

i∑
j=1

(i − j) =
1∑
j=1

(1− j)+
2∑
j=1

(2− j)+
3∑
j=1

(3− j)

= 0+1+ 3= 4,

3∑
j=1

3∑
i=j
(i − j) =

3∑
i=1

(i −1)+
3∑
i=2

(i − 2)+
3∑
i=3

(i − 3)

= 3+1+ 0= 4.

Sincex
∑m

j=1yj =
∑m

j=1 xyj, it follows that

( n∑
i=1

xi

)( m∑
j=1

yj

)
=

m∑
j=1

( n∑
i=1

xi

)
yj =

m∑
j=1

n∑
i=1

xiyj .

Example 1.2e Expand(x1+ · · · + xn)2.
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Solution. ( n∑
i=1

xi

)2

=
( n∑
i=1

xi

)( n∑
j=1

xj

)
=
∑
i

∑
j

xi xj

=
∑
i

(
xi xi +

∑
j 6=i

xi xj

)
=
∑
i

x2
i +

∑
i

∑
j 6=i

xi xj .

For instance, the preceding yields

(x1+ x2)
2 = x2

1 + x2
2 + x1x2+ x2x1 = x2

1 + x2
2 + 2x1x2.

Similar to the notation for summations is our notation
∏

for products,

n∏
i=1

xi = x1x2 · · · xn.

Example 1.2f
4∏
i=1

i = 1 · 2 · 3 · 4= 24.

1.3 Mathematical Induction

Suppose that we have an infinite collection of statements, denoted
S1, S2, . . . , and that we want to prove that they are all true. A proof
by mathematical inductionis obtained in the following manner:

(i) first prove thatS1 is true;
(ii) then show that, for anyn,wheneverSn is true thenSn+1 is also true.

Once (i) and (ii) are established, then from (i) we know thatS1 is true;
which implies by (ii) thatS2 is true; which implies thatS3 is true; and
so on. Thus, it follows that all of theSn are true.

We now illustrate the use of mathematical induction by a series of
examples.
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Example 1.3a Prove that there are 2n subsets of a set consisting ofn
elements.

Solution. In order to prove this by mathematical induction, we must
first prove it forn = 1. But this is immediate, for if the set consists of
a single element (i.e., if the set is{s}) then it has the two subsets∅ and
{s}, where∅ is the empty set. Thus, part (i) of the mathematical induc-
tion approach is shown. To show part (ii),assumethat the result is true
for all sets of sizen (this is called theinduction hypothesis) and then
consider a setS of sizen+1. Focus attention on one of the elements of
S, call it s, and letS ′ denote the set consisting of then other elements
of S. Because every subset ofS that does not contains is a subset of
S ′, it follows from the induction hypothesis that there are 2n subsets of
S that do not contains. On the other hand, since any subset ofS that
containss can be obtained by addings to a subset ofS ′, it also follows
from the induction hypothesis that there are 2n of these subsets. Thus
the total number of subsets ofS is

2n + 2n = 2n(1+1) = 2n+1,

and the result is proved.

Example 1.3b For integern, which is larger: 2n or n2?

Solution. Let us try a few cases:

21 = 2, 12 = 1;
22 = 4, 22 = 4;
23 = 8, 32 = 9;
24 = 16, 42 = 16;
25 = 32, 52 = 25;
26 = 64, 62 = 36.

Thus, based on this enumeration, a reasonable conjecture is that 2n >

n2 for all values ofn ≥ 5. To prove this, we start by showing it to be
true whenn = 5; this was demonstrated by our preceding calculations.
So now assume that, for somen (n ≥ 5),
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2n > n2.

We must show that the preceding implies that 2n+1 > (n + 1)2, which
may be accomplished as follows.

First, note that
2n+1= 2 · 2n > 2n2,

where the inequality follows from the induction hypothesis. Hence, it
will suffice to show that, forn ≥ 5,

2n2 ≥ (n+1)2

or (equivalently)
2n2 ≥ n2+ 2n+1

or
n2− 2n−1≥ 0

or
(n−1)2− 2 ≥ 0

or
n−1≥

√
2,

which follows becausen ≥ 5.

Example 1.3c Derive a simple expression for the following function:

f(n) = 1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · +
1

n(n+1)
.

Solution. Again, let us begin by calculating the value off(n) for small
values ofn, hoping to discover a general pattern that we can then prove
by mathematical induction. Such a calculation gives

f(1) = 1/2,

f(2) = 1/2+1/6= 2/3,

f(3) = 2/3+1/12= 3/4,

f(4) = 3/4+1/20= 4/5.
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Thus, a reasonable conjecture is that

f(n) = n

n+1
.

Let us now prove this by induction. Since it is true whenn = 1, as-
sume that it is valid also for some othern and considerf(n + 1). We
have

f(n+1) = 1

1 · 2 +
1

2 · 3 + · · · +
1

n(n+1)
+ 1

(n+1)(n+ 2)

= f(n)+ 1

(n+1)(n+ 2)

= n

n+1
+ 1

(n+1)(n+ 2)
(by the induction hypothesis)

= n(n+ 2)+1

(n+1)(n+ 2)

= (n+1)2

(n+1)(n+ 2)

= n+1

n+ 2
.

Thus, the result is established. (As in any situation where one has proven
a particulary nice result by mathematical induction, it pays to see if there
is a more direct argument that establishes and alsoexplainsthe result;
see Exercise1.18.)

Example 1.3d If one has unlimited access to five-cent and seven-cent
stamps, show that any postage value greater than or equal to 24 cents
can be exactly met.

Solution. First note that a postage of 24 can be obtained by 2 fives and
2 sevens. Now assume that for somen ≥ 24 the postage valuen can be
exactly hit with a combination of five- and seven-cent stamps, and sup-
pose that we desire postage of valuen+1. To obtain this exact amount,
consider the combination that adds up ton. If it contains at least 2 seven-
cent stamps, then trade 2 sevens for 3 fives to obtain the postage value
n + 1. If the combination adding ton contains at least 4 fives, replace
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them by 3 sevens to obtain the valuen + 1. Thus, the result is shown
if the combination adding up ton contains either at least 2 sevens or at
least 4 fives. The alternative is that it contains at most 1 seven and at
most 3 fives; but this would imply thatn ≤ 22, which is not the case.
Thus, the result is shown.

Example 1.3e Show that, for any positive integern,

n∑
i=1

i = n(n+1)

2
.

Solution. We need to show that

1+ 2+ · · · + n = n(n+1)

2
.

This is true forn = 1, since both sides are equal to 1. So let us assume
that it is true for some integern. To verify it for n + 1, we reason as
follows:

1+ 2+ · · · + n+ n+1

= n(n+1)

2
+ n+1 (by the induction hypothesis)

= (n+1)

(
n

2
+1

)
= (n+1)(n+ 2)

2
,

and the induction proof is complete.

Example 1.3f Verify that, for any valuex 6= 1 and positive integern,

n∑
i=0

xi = 1− xn+1

1− x .

Solution. Let us use induction. Whenn = 1, the identity says that

1+ x = 1− x2

1− x ,
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which is true because

1− x2 = (1− x)(1+ x).

So assume that the identity is true for a specifiedn. To prove that it re-
mains true whenn is increased by 1, note the following:

n+1∑
i=0

xi =
n∑
i=0

xi + xn+1

= 1− xn+1

1− x + x
n+1 (by the induction hypothesis)

= 1− xn+1+ xn+1− xn+2

1− x

= 1− xn+2

1− x .

Thus, the identity is also valid forn+ 1, which shows that it is true for
all n.

Example 1.3g In a round-robin tennis tournament, every pair of com-
petitors play a match. Show that if such a tournament were played with
n players then there is a labeling of the playersp1, p2, . . . , pn such that

p1 beatp2, p2 beatp3, . . . , pn−1 beatpn. (1.1)

Solution. The verification is by induction. The result is immediate when
n = 2, so suppose it to be true whenever there aren players and consider
the case when there aren+ 1. Put one of the players, call herp, aside.
Then, by the induction hypothesis, there is an ordering of the othern

players such that(1.1)holds. Ifp did not beat any of the othern players
then

p1 beatp2, p2 beatp3, . . . , pn−1 beatpn, pn beatp.

On the other hand, ifp won at least one match then, withi equal to the
smallest integer such thatp beatpi,

p1 beatp2, . . . , pi−1 beatp, p beatpi, . . . , pn−1 beatpn.



14 Preliminaries

Thus the result is true whenever there aren + 1 players, which com-
pletes the induction proof.

The following result, although intuitively obvious, is quite useful.

Proposition 1.3.1 Every finite nonempty set of numbersA has a small-
est and a largest element.

Proof. We shall show by induction thatA always has a smallest and a
largest element wheneverA is a set ofn numbers. This is true when
n = 1 (since the lone number inA is both the smallest and largest num-
ber ofA), so assume it to be true for all sets ofn numbers. LetA be
a set consisting ofn + 1 numbers, sayA = {a1, . . . , an, an+1}. Then,
by the induction hypothesis, the subset{a1, . . . , an} has a smallest and
largest element (say,ai andaj resp.). But thenA has a smallest ele-
ment, namely the smaller ofai andan+1, and a largest element, namely
the larger ofaj andan+1. This completes the induction and, since a fi-
nite nonempty set must containn elements for somen, also establishes
the result.

The well-ordering property of the integers is a simple consequence of
Proposition 1.3.1.

Corollary 1.3.1 (Well-Ordering Property of Positive Integers)Every
setA containing at least one positive integer has a smallest positive in-
teger.

Proof. Let n be a positive integer inA. Any integer inA that is larger
thann cannot be the smallest positive integer inA. Hence it follows
that, if the setAn = {i : i is an integer,i ∈ A, i ≤ n} has a smallest
member, then that integer is also the smallest positive integer inA. But
sinceAn is a finite set, it has a smallest member.

We now use mathematical induction to prove a well-known mathemati-
cal result.

Proposition 1.3.2 (Hardy’s Lemma) Consider two collections of
numbers,
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a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn,

and suppose that we have to maken disjoint pairs from these collections,
each pair consisting of onea and oneb. Then the sum of the products
of the members of each pair is maximized whenai is paired withbi for
eachi = 1, . . . , n.

Proof. Whenn = 2 we must show that

a1b1+ a2b2 ≥ a1b2+ a2b1,

which is equivalent to

a2(b2− b1) ≥ a1(b2− b1)

or
(a2− a1)(b2− b1) ≥ 0;

this is true beause both factors are nonnegative. So assume that the re-
sult is true whenever there aren numbers in each collection, and suppose
now that there aren+ 1 valuesa1 ≤ · · · ≤ an+1 andn+ 1 valuesb1 ≤
· · · ≤ bn+1 to be paired up. Consider any pairing of then + 1 a andb
values in whicha1 is not paired withb1 – rather,a1 is paired with (say)
bi. Then, aside from this individual pairing, there remainnmembers of
each set to be paired up:

a2, . . . , ai, ai+1, . . . , an+1

to be paired up with

b1, . . . , bi−1, bi+1, . . . , bn+1.

By the induction hypothesis, the pairing that maximizes the sum of the
products from the remaining pairings – call this pairingM – will pair
a2 (the smallesta) with b1 (the smallestb). Thus the best pairing that
pairs upa1 with bi will also pair upa2 with b1. But by the result shown
whenn = 2, it is at least as good to pair upa1 with b1 anda2 with bi
and then pair the others as doesM. Thus, we need only consider pair-
ings that pair upa1 andb1; by the induction hypothesis, the best one of
this type also pairs upai with bi for eachi = 2, . . . , n+1, which com-
pletes the proof.
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The mathematical induction proof technique sometimes uses the follow-
ing, “strong” version of induction.

Strong Version of Mathematical Induction To prove that all the
statementsS1, S2, . . . are true:

(i) prove thatS1 is true;
(ii) show that, for anyn, if S1, . . . , Sn are all true thenSn+1 is also true.

The strong version is valid because – once (i) and (ii) are established –
from (i) we know thatS1 is true; which implies by (ii) thatS2 is true;
which implies, sinceS1 andS2 are both true, thatS3 is true; and so on.
Indeed, the strong version proof that all of the statementsSn are true
is equivalent to the standard mathematical induction proof of the state-
mentsS ∗n (n ≥ 1), whereS ∗n is the statement thatS1, . . . , Sn are all true.

Example 1.3h Let a1= 3, a2 = 7, and

an = 3an−1− 2an−2, n = 3,4, . . . .

Find an explicit expression foran and prove your result.

Solution. Let us start by evaluating some of the early values ofan in
the hope of discovering a pattern. This yields

a1 = 3,

a2 = 7,

a3 = 21− 6= 15,

a4 = 45−14= 31,

a5 = 93− 30= 63,

a6 = 189− 62= 127.

It is not difficult to spot thatan = 2n+1− 1 for all of the values ofn
between 1 and 6. To prove that this holds for alln, assume thatak =
2k+1−1 for all values less than or equal ton. Then
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an+1= 3an − 2an−1

= 3(2n+1−1)− 2(2n −1)

= 3 · 2n+1− 3− 2n+1+ 2

= 2 · 2n+1−1,

which completes the induction proof since 2· 2n+1= 2n+2.

1.4 Functions

A real-valued function is a rule that associates a real number to every
elementx of a setX. The function is symbolically represented asf, and
the value associated to the elementx is designated asf(x). The setX
is called thedomainof f.

Example 1.4a If X is the set of integers, then the function

f(i) = i2

associates to each integeri the valuei2.

Definition Let f be a function whose domain is the set of integers.
We say thatf is anincreasingfunction if, for every integeri,

f(i +1) ≥ f(i).

Similarly, we say thatf is adecreasingfunction if, for every integeri,

f(i +1) ≤ f(i).

Example 1.4b Are the following functions increasing, decreasing, or
neither?

(a) f(i) = 5i.

(b) f(i) = i2.

(c) f(i) = log(i).

(d) f(i) =
{

0 if i is even,
1 if i is odd.
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Solution. The function in (a) is increasing. The function in (b) is in-
creasing if the domain of the function is the set of nonnonegative inte-
gers; however, if the domain is the set of all integers then it is neither
increasing nor decreasing. Assuming that the domain of the function in
(c) is the set of positive integers, then the function is increasing. The
function in (d) is neither increasing nor decreasing.

If f is an increasing function on the integers, then it can be shown that

f(i) ≤ f(j) if i < j. (1.2)

One way to establish (1.2) is to note the sequence of inequalities

f(i) ≤ f(i +1) ≤ f(i + 2) ≤ · · · ≤ f(j).

A more formal proof would be to use mathematical induction to prove
that, for alln ≥ 0,

f(n+ i) ≥ f(i).

The preceding is true whenn = 1; assuming it true forn yields

f(n+1+ i) ≥ f(n+ i) (by the definition of an increasing function)

≥ f(i) (by the induction hypothesis),

which completes the more formal induction proof of equation (1.2).
If f andg are functions defined on the same domainX, then we say

that
f ≤ g (equivalently,g ≥ f )

if, for all x ∈X,
f(x) ≤ g(x).

Similarly, we say that
f = g

if, for all x ∈X,
f(x) = g(x).

The function that associates the same valuec to every element inX is
said to be aconstantfunction and is denoted byc. Hence, the notation
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f ≤ c

means thatf(x) ≤ c for all x ∈X. A functionf of the form

f(x) = a0+ a1x + a2x
2+ · · · + anxn

is said to be apolynomialfunction. The next example uses mathemati-
cal induction to verify a sufficient condition for a polynomial function
to be positive wheneverx ≥ 1.

Example 1.4c Prove that

n∑
i=0

ai x
i > 0 for all x ≥ 1,

provided that

an > 0,

an−1+ an > 0,

an−2+ an−1+ an > 0,
...

a0+ a1+ a2+ · · · + an−1+ an > 0.

Solution. Suppose the preceding conditions ona0, . . . , an and assume
thatx ≥ 1. Let

P(0) = an,
P(1) = an−1+ xan = an−1+ xP(0),
P(2) = an−2+ xan−1+ x2an = an−2+ xP(1),

...

P(j) = an−j + xan−j+1+ · · · + xjan = an−j + xP(j −1),

j = 1, . . . , n.

Thus, the objective is to show that

P(n) > 0 if x ≥ 1.
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We will accomplish this by using mathematical induction to prove that,
for all j = 0, . . . , n,

P(j) ≥ an−j + an−j+1+ · · · + an. (1.3)

Since the RHS of (1.3) is assumed to be positive, the result would then
be proven. Equation (1.3) holds whenj = 0, so assume that

P(j) ≥ an−j + an−j+1+ · · · + an > 0.

Then,

P(j +1) = an−j−1+ xP(j)
> an−j−1+ P(j) (sinceP(j) > 0 andx ≥ 1)

≥ an−j−1+ an−j + an−j+1+ · · · + an
(by the induction hypothesis),

and the proof by mathematical induction is complete.

Functions on the same domain can be combined to form new functions.
For instance, iff andg are functions on the integers then so are the
functionsf + g andfg, defined by

f + g(i) = f(i)+ g(i),
fg(i) = f(i)g(i).

That is, the values associated withi by the functionsf + g andfg are,
respectively,f(i)+ g(i) andf(i)g(i).

Definition Let f be a function whose domain is the set of integers,
and define the functiong by

g(i) = f(i)− f(i −1).

We say thatf is aconvexfunction if g is an increasing function; that is,
f is convex if for alli,

f(i +1)− f(i) ≥ f(i)− f(i −1).

Similarly, we say thatf is aconcavefunction if g is a decreasing func-
tion; that is, if for alli,

f(i +1)− f(i) ≤ f(i)− f(i −1).


