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1. Preliminaries

1.1 Sets

A setis a collection of elements. If the sgtconsists of thea elements
ai, az, ..., a, then we express this by writing

A ={ayay,...,a,}.

Thus, for instance, the set consisting of all the integers between 6 and
10 is given by
B =16,7,8,9,10}.

A set can be defined either by specifying all its elements, as just shown,
or by specifying a defining property for its elements. Thus, theBset
could have been defined as

B = {integersi : |8 —i| < 2}.

That is, B could have been defined as the set of all integessch that
the distance betweerand 8 is less than or equal to 2.

A set consisting of a finite number of elements is said to fist® set
whereas one consisting of an infinite number of elements is said to be
aninfinite set.The set\ of all the nonnegative integers is an example
of an infinite set. It is convenient to define the set that does not consist
of any elements; we call this thill set and denote it by.

We use the notation € A to indicate that: is an element oft, and
we use the notation ¢ A to indicate that is not a member oA.

Example 1.1a Let S be the set of all possible outcomes when a pair
of dice are rolled. By an “outcome” we mean the pairj), wherei is

the number of the side on which the first die lands arislthe number

of the side for the second die. Then, the set of all outcomes that result
in the sum of the dice being equal to 7 can be expressed as

S7=1{(16),(2,9),(34),(4,3),(5,2), (6,1}
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or, alternatively, as
S7={G, j)eS:i+j=T}. O

If every element ofA is also an element aB, then we say thatl is a
subsebf B and writeA C B. By this definition, every set is a subset of
itself and hence, for exampld, C A. Also, since there are no elements
in the null set, it follows that every element @fis also an element of
A; thus,( is a subset of every other set.AfC B andB C A then we
may writeA = B. That is, the setd andB are said to be equal if every
element ofA is in B and every element a8 isin A.

If A andB are sets then we define the new 4et B, called theunion
of A andB, to consist of all elements that arenor in B (or in both).
Also, we define théntersectionof A and B, written either asA N B or
just AB, to consist of all elements that are in bathand B.

Example 1.1b In Examplel.la, if A is the set of all outcomes for
which the sum of the dice is 5 and#fis the set of outcomes for which

the value of the second die exceeds that of the first die by the amount 3,
then we have

A=1{14),23),32,4 1} and B={14),(25), @3 6)};
also,

AUB=1{14),(2,3),(32,4,1,(2,5),(36)} and
AB = {1, 4)}.

If we defineC to be the set of all outcomes whose sum is equal to 6, then
AC = () because there are no outcomes whose sum is both 5 and 6.

A set is said to be aniversal seff it contains (as subsets) all other sets
under consideration. Lét be a universal set. For any séfthe setAc,
called thecomplemenbf A, is defined to be the set containing all the
elements of the universal détthat arenotin A.

Venn diagramsre often used to graphically represent sets. The uni-
versal set/ is represented as consisting of all the points in a large rec-
tangle, and sets are represented as consisting of all the points in circles
within the rectangle. Particular sets of interest are indicated by shading
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{ 4

AUB AB A

Figure 1.1

appropriate regions of the diagram. For instance, the Venn diagrams of
Figure 1.1 indicate the setsU B, AB, and A°.

The operation of forming unions and intersections of sets obey cer-
tain rules that are similar to the rules of algebra. We list a few of them
as follows:

Commutative lawsA U B = BU A, AB = BA.
Associative laws(AUB)UC =AU (BUC), (AB)C = A(BC).
Distributive laws:(AU B)C = ACUBC, ABUC = (AUC)(BUC).

These relations are verified by showing that any element that is con-
tained in the left-hand set is also contained in the right-hand one, and
vice versa. For instance, to prove that

(AUB)C = AC U BC,

note that ifx € (A U B)C thenx € C andx is also in eitherA or B. If
x €A, thenitisinAC and so is inAC U BC; similarly, if x € B, then
itisin BC and soisinAC U BC. Thus,x € AC U BC, showing that

(AU B)C C AC U BC.

To go the other way, suppose that AC U BC. Theny is either in
both A andC or in both B andC. Therefore, we can conclude thats
in C and is in at least one of the setsand B. But this means that
(A U B)C, showing that

ACUBC C (AU B)C,
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AC BC (AUB)C

Figure 1.2

and the verification is complete. (The result could also be shown by
using Venn diagrams; see Figure 1.2.)

We also define the intersection and union of more than two sets.
Specifically, for setsiy, ..., A, we defineUlf’:lAi, the union of these
sets, to consist of all elements that aredin) or in A,, orin As, ..., or
in A,; that is,U;’zlA,- is the set of all elements that are in at least one
of the setsA;, i =1, ..., n. Similarly, we defingd)!_, A;, the intersec-
tion of these sets, to consist of all elements that are in each of the sets
Al', i :1, e, .

1.2 Summation

If we let s be the sum of the four numbexs, x2, x3, x4 then we can
write
s =x1+ x2+ x3+ x3.

More compactly, we can use the summation notalionUsing this lat-
ter notation, we write A
i=1

which means that is equal to the sum of the values ag ranges from
1to 4. More generally, foj < n, we use the notation

n
s = E Xi
i=j
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to mean that
S=X;j+Xjp1+ -+ Xp.

Example 1.2a If x; = i2, find Y.°_; x;.

Solution.

6
Zx,-:x3+x4+x5+x6=9+16+25+36:86. O
i=3

If Sis a specified set of integers, then we use the notation
2
ieS

to represent the sum of all the valugghat have indices is.

Example 1.2b If § = {2, 4, 6} then

in=x2+x4+x6. 1

ieS

Consider the surif = Z,.ZZO x24;. Becausd is equal tavo + x3+ x4,
it follows that we can also expreg§sasT = Z;‘:z xj. Therefore, we

see that

When equating the right-hand summation to the left, we say that we are
making the change of variable= 2 + i. That is, summing the values
x24; asi ranges from 0 to 2 is the same as summing the vatyes j
ranges from 2 to 4.

Example 1.2c Making the change of variablge = n — i in the sum-
mation_"_, x,_; gives the equivalent sut x; asj ranges between

nand Q That s,
n n
i=0 j=0
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We are sometimes interested in numbers that are expressed in the form
x; j, wherei and j both take values in some region. A quantity that is
often of interest is the following “double sunD = > 7, > " x; ;,

where

n

i=1 j=1 i=1 N j=1

Now arrange the numbess ; (i =1,...,n, j =1,...,m) in the fol-
lowing row—column array, which has the numbgy in rowi, columnj.

X11 X12 X13 ... xl)j X1,m
X21 X22 X23 ... X2 ... Xonm
Xi1 Xi2 Xi,3 Xi,j Xi,m
Xnl Xp2 Xp,3 ... Xn,j oo Xn,m

Because) 7, x; ; is just the sum of the: array elements in row it
follows that the double sur® is equal to the sum of the row sums. In
other wordsD is equal to the sum of all the elements in the array. Since
the sum of all the array values can also be obtained by adding all the
column sums and since the sum of the values of colyns_}_, x; ;,

we have the following result.

Proposition 1.2.1

n m m n

E E xl-’j = X,"j.

i=1 j=1 j=1 i=1
A corollary of this proposition is the following useful result.

Corollary 1.2.1

n

Xn:ixi,.i = ZXn:Xw-

i=1 j=1 j=1i=j

Proof. Consider data values ;, wherei and; both takes values from 1
ton and wherex; ; = 0 when;j > i. Then apply Proposition 1.2.1.00
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A pictorial proof of Corollary 1.2.1is obtained by noting that its left-hand
side,

n i 1 2 n
PIDIENEDIENEDDEIE LD DL
i=1 j=1 j=1 j=1 j=1
is equal to the sum of all the row sums whereas the right-hand side,
> —Zm+2m+ D i
j=1i=j i=n
is the sum of all the column sums in the following array.

X1,1
X21 X272
X31 X32 X33

Xndl Xp,2 Xp,3 -.. Xpon

Example 1.2d

3 i 1 2 3
YD ==Y A=-N+Y C-pH+Y B-)
Jj=1 j=1 j=1

i=1 j=1 =
=0+1+3=4,

3 3 3 3 3

YD ==Y (-D+Y (-2+) (-3

j=1i=j i=1 i=2 i=3
=3+1+0=4 O

Sincex 3", y; = ", xy;, it follows that
m n m n

(Z)Z)-D(Z )T xe

j=1 j=1 i=1 j=1 i=1

Example 1.2e Expand(xi+ --- + x,,)2.
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(3] - (%))

J

= Z ;xixj
= Z (xixi + prc,-)

Solution.

Jj#i
= inz—FZ inxj.
i i j#i
For instance, the preceding yields
(x1+x2)% = xf+x§+x1x2—|—x2x1 :xf+x§—|—2x1x2. U

Similar to the notation for summations is our notat|drfor products,

n
Hxi = X1X2 ‘- Xp.
i=1

Example 1.2f
4

ﬂi=1.2.3.4=24. O
i=1

1.3 Mathematical Induction

Suppose that we have an infinite collection of statements, denoted
S1, S2, ..., and that we want to prove that they are all true. A proof
by mathematical inductiors obtained in the following manner:

(i) first prove thats; is true;
(i) then show that, for any, whenevels, is true thenS,,; is also true.

Once (i) and (ii) are established, then from (i) we know thais true;
which implies by (ii) thatS; is true; which implies tha$s is true; and
so on. Thus, it follows that all of th&, are true.

We now illustrate the use of mathematical induction by a series of
examples.
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Example 1.3a Prove that there are® Zubsets of a set consistingof
elements.

Solution. In order to prove this by mathematical induction, we must
first prove it forn = 1. But this is immediate, for if the set consists of
a single element (i.e., if the setfis}) then it has the two subsetisand

{s}, whered is the empty set. Thus, part (i) of the mathematical induc-
tion approach is shown. To show part (iRssumehat the result is true
for all sets of sizex (this is called thénduction hypothes)sand then
consider a sef of sizen + 1. Focus attention on one of the elements of
S, call it s, and letS’ denote the set consisting of theother elements
of S. Because every subset Sfthat does not contain is a subset of
S’, it follows from the induction hypothesis that there afesbsets of

S that do not contain. On the other hand, since any subsetSahat
containss can be obtained by addingo a subset of’, it also follows
from the induction hypothesis that there ared? these subsets. Thus
the total number of subsets §fis

2"+ 2" =2"(14+1 =2"",
and the result is proved. O

Example 1.3b For integem, which is larger: 2 or n??

Solution. Let us try a few cases:

2l=2 1?=1
22 =4, 22 = 4
22 =38, 3=9
2=16, 4°=16
25=32  52=25
=64  6°=36

Thus, based on this enumeration, a reasonable conjecture is'that 2
n? for all values ofn > 5. To prove this, we start by showing it to be
true whem = 5; this was demonstrated by our preceding calculations.
So now assume that, for som&n > 5),



10 Preliminaries

2" > n?.
We must show that the preceding implies that'2> (n + 1)?, which
may be accomplished as follows.

First, note that
2"l —=2.2" > 252,

where the inequality follows from the induction hypothesis. Hence, it
will suffice to show that, forn > 5,

2n? > (n+ 1)2

or (equivalently)
2n’ >n’+2n+1

or
n>—2n—-1>0
or
(n—1%°-2>0
or
n—1> «/5,
which follows because > 5. O

Example 1.3c Derive a simple expression for the following function:

1 1 1
o+

f =153 32t Tty

Solution. Again, let us begin by calculating the value ffr) for small
values ofiz, hoping to discover a general pattern that we can then prove
by mathematical induction. Such a calculation gives

fH =12,

f2)=12+1/6=2/3

fQ) =2/3+1/12=3/4,

f(4) =3/4+1/20=4/5.
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Thus, a reasonable conjecture is that

n

f(n)=n+1-

Let us now prove this by induction. Since it is true whee:= 1, as-
sume that it is valid also for some othemnd considerf(n + 1). We
have

( _|_1)—i+i+...+ 1 _|_ 1
Jnth=15%573 nntD T r D12

1

RCEIEES)
=~ il + T 1)l(n 2 (by the induction hypothesis)

nn+2)+1
T (4D +2)

(n+1)2

T D +2)

n+1
T nt2

= f(n)

Thus, the resultis established. (As in any situation where one has proven
a particulary nice result by mathematical induction, it pays to see if there
is a more direct argument that establishes and etptainsthe result;

see Exercisé.18.) O

Example 1.3d If one has unlimited access to five-cent and seven-cent
stamps, show that any postage value greater than or equal to 24 cents
can be exactly met.

Solution. First note that a postage of 24 can be obtained by 2 fives and
2 sevens. Now assume that for some 24 the postage valuecan be
exactly hit with a combination of five- and seven-cent stamps, and sup-
pose that we desire postage of vate 1. To obtain this exact amount,
consider the combination that adds up tdf it contains at least 2 seven-
cent stamps, then trade 2 sevens for 3 fives to obtain the postage value
n + 1 If the combination adding te contains at least 4 fives, replace
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them by 3 sevens to obtain the value- 1. Thus, the result is shown

if the combination adding up t@ contains either at least 2 sevens or at
least 4 fives. The alternative is that it contains at most 1 seven and at
most 3 fives; but this would imply that < 22, which is not the case.
Thus, the result is shown. O

Example 1.3e Show that, for any positive integet

n

Zi _n(n+1)

i=1 2

Solution. We need to show that

nn+1)
>

This is true forn = 1, since both sides are equal to 1. So let us assume
that it is true for some integer. To verify it for n + 1, we reason as
follows:

142+ +n=

1+2+ - +n+n+1

. nn+1
N 2

n
= D= +1
(n+ )<2 + )
_ (n+DH(n+2)
=D
and the induction proof is complete. O

+n+1 (bythe induction hypothesis)

Example 1.3f Verify that, for any valuer # 1 and positive integer,

n+1

" ;o 1—x
;x - 1—x

Solution. Let us use induction. When= 1, the identity says that

1—x2

1 = ,
t 1—x
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which is true because
1—-x2=@1—-x)Q+ x).

So assume that the identity is true for a specifiedo prove that it re-
mains true whem is increased by 1, note the following:

n+1 n

ST
i=0 i=0

1_xn+l
1«
1— xn+l+xn+l_ xn+2
1—x
l_xn+2
T 1«

+ x"*1 (by the induction hypothesis)

Thus, the identity is also valid for 4+ 1, which shows that it is true for
all n. O

Example 1.3g In around-robin tennis tournament, every pair of com-
petitors play a match. Show that if such a tournament were played with
n players then there is a labeling of the playgispo, ..., p, such that

p1 beatp,, p, beatps, ..., p,_1 beatp,. (D)

Solution. The verificationis by induction. The resultisimmediate when
n = 2, SO suppose it to be true whenever theresgslayers and consider
the case when there atet 1. Put one of the players, call het aside.
Then, by the induction hypothesis, there is an ordering of the ather
players such thdt.1)holds. If p did not beat any of the otherplayers
then

p1 beatp,, p, beatps, ..., p,_1 beatp,, p, beatp.

On the other hand, ip won at least one match then, witlequal to the
smallest integer such thatbeatp;,

p1 beatp,, ..., p;i_1 beatp, p beatp;, ..., p,_1 beatp,.
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Thus the result is true whenever there are 1 players, which com-
pletes the induction proof. O

The following result, although intuitively obvious, is quite useful.

Proposition 1.3.1 Every finite nonempty set of numbdrlas a small-
est and a largest element.

Proof. We shall show by induction that always has a smallest and a
largest element whenever is a set ofn numbers. This is true when
n = 1 (since the lone number i is both the smallest and largest num-
ber of A), so assume it to be true for all setsiohumbers. LetA be

a set consisting ok + 1 numbers, say = {as, ..., a,, a,41}. Then,
by the induction hypothesis, the subéet, ..., a,} has a smallest and
largest element (say,; anda; resp.). But them has a smallest ele-
ment, namely the smaller ef anda, 1, and a largest element, namely
the larger ofa; anda, 1. This completes the induction and, since a fi-
nite nonempty set must contairelements for some, also establishes
the result. O

The well-ordering property of the integers is a simple consequence of
Proposition 1.3.1.

Corollary 1.3.1 (Well-Ordering Property of Positive Integerslvery
setA containing at least one positive integer has a smallest positive in-
teger.

Proof. Letn be a positive integer id. Any integer inA that is larger
thann cannot be the smallest positive integerAn Hence it follows
that, if the setA,, = {i : i is an integerj € A, i < n} has a smallest
member, then that integer is also the smallest positive integér But
sinceA, is a finite set, it has a smallest member. O

We now use mathematical induction to prove a well-known mathemati-
cal result.

Proposition 1.3.2 (Hardy's Lemma) Consider two collections of
numbers,
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an<ax<---<a, and by <by<---<b,,

and suppose that we have to maldisjoint pairs from these collections,
each pair consisting of one and oneb. Then the sum of the products
of the members of each pair is maximized wheis paired withb; for
eachi =1, ..., n.

Proof. Whenn = 2 we must show that
aib1+ azxby > aiby + azby,
which is equivalent to

az(ba — b1) > ai(by — by)

or
(az —a1)(bo —b1) > 0;

this is true beause both factors are nonnegative. So assume that the re-
sultis true whenever there at@umbers in each collection, and suppose
now that there are + 1 valuesa; < --- < a,41 andn + 1 valuesh; <

- < b,y1to be paired up. Consider any pairing of the- 1 ¢ andb
values in whichu; is not paired withb; — rathera; is paired with (say)
b;. Then, aside from this individual pairing, there remaimembers of
each set to be paired up:

az, ..., a4;,4aij41, ..., dp41

to be paired up with
bl, cee bi—ls bi+1s ceey bn—‘rl'

By the induction hypothesis, the pairing that maximizes the sum of the
products from the remaining pairings — call this pairistg— will pair

ay (the smallest) with b; (the smallesb). Thus the best pairing that
pairs upa; with b; will also pair upa, with b;. But by the result shown
whenn = 2, it is at least as good to pair upg with b, anda, with b;

and then pair the others as da¥s Thus, we need only consider pair-
ings that pair upi; andbs; by the induction hypothesis, the best one of
this type also pairs ugp; with b; for eachi = 2, ..., n + 1, which com-
pletes the proof. O
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The mathematical induction proof technique sometimes uses the follow-
ing, “strong” version of induction.

Strong Version of Mathematical Induction To prove that all the
statementsy, S», ... are true:

(i) prove thatS; is true;
(i) show that, for any, if Sy, ..., S, are all true ther$,,, 1 is also true.

The strong version is valid because — once (i) and (ii) are established —
from (i) we know thatS; is true; which implies by (ii) thas is true;
which implies, sinces; andS, are both true, thafs is true; and so on.
Indeed, the strong version proof that all of the statemé&nptare true

is equivalent to the standard mathematical induction proof of the state-
mentsS;F (n > 1), whereS* is the statement tha, ..., S, are all true.

Example 1.3h Leta; =3, a, =7, and
a, =3a,-.1—2a,_», n=34,....

Find an explicit expression far, and prove your result.

Solution. Let us start by evaluating some of the early valueg,oin
the hope of discovering a pattern. This yields

a =3,
a» =1,
az3=21-6=15
as=45-14=31
as = 93— 30= 63
ag = 189— 62 =127
It is not difficult to spot thatz, = 2"+ — 1 for all of the values of:

between 1 and 6. To prove that this holds formllassume that;, =
2k+1 _ 1 for all values less than or equalo Then
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any1=3a, — 2a,-1
=321 -1 -22"-1
=3_2n+l_3_2n+1+2
— 2. ontl _ 1

which completes the induction proof since 2+ = 2"+2, O

1.4 Functions

A real-valued function is a rule that associates a real number to every
elementy of a setX. The function is symbolically represented gsand

the value associated to the elemeris designated ag(x). The setX

is called thedomainof f.

Example 1.4a If X is the set of integers, then the function
fi)=i?

associates to each integethe valuei®. O

Definition Let f be a function whose domain is the set of integers.
We say thatf is anincreasingfunction if, for every integer,

fE+D = f).

Similarly, we say thayf is adecreasindgunction if, for every integer,
G+ < f@.

Example 1.4b Are the following functions increasing, decreasing, or
neither?

(@) f(G) =5i.
(b) fG) =i
(c) f() = log(D).

q . 0 if iiseven,
()f(’)={1 it i is odd.
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Solution. The function in (a) is increasing. The function in (b) is in-
creasing if the domain of the function is the set of nonnonegative inte-
gers; however, if the domain is the set of all integers then it is neither
increasing nor decreasing. Assuming that the domain of the function in
(c) is the set of positive integers, then the function is increasing. The
function in (d) is neither increasing nor decreasing. O

If £ is an increasing function on the integers, then it can be shown that

fo =G ifi<j 1.2
One way to establish (1.2) is to note the sequence of inequalities

JO=fi+D=fi+2=<---= f).

A more formal proof would be to use mathematical induction to prove
that, for alln > 0,

fn+i) > f@).

The preceding is true when= 1; assuming it true fon yields

f(n+141i)> f(n+i) (bythe definition of an increasing function)
> f(@@) (by the induction hypothesis),
which completes the more formal induction proof of equation (1.2).

If f andg are functions defined on the same domairthen we say
that

f <g (equivalently,g > f)

if, forall x € X,

f(x) = g(x).
Similarly, we say that
f=g
if, for all x € X,
Fx) =g(x).

The function that associates the same valt@every element X is
said to be a&onstantfunction and is denoted hy. Hence, the notation
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f=c

means thaf'(x) < ¢ for all x € X. A function f of the form
f(x) =ao+aix +a2x2+...+anxn

is said to be golynomialfunction. The next example uses mathemati-
cal induction to verify a sufficient condition for a polynomial function
to be positive whenever > 1.

Example 1.4c Prove that

n
Za,-xi >0 forall x>1
i—0

provided that
a, >0,
ap—1 + a, > 07

ap_2+ay_1+a, > 01

ap+ai+ax+---+a,-1+a, > 0.

Solution. Suppose the preceding conditionsayj. .., a, and assume
thatx > 1. Let

P(O) = an,
P(1) =a,-1+ xa, = a,—1+ xP(0),
P(2) = a,_»+ xa, 1+ x%a, = a,_» + xP(1),

P(j) = an—j+xan—jr1+--- +xjan =dn—j +xP(j — 1),
j=1...,n.

Thus, the objective is to show that

Pn)>0 if x>1
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We will accomplish this by using mathematical induction to prove that,
forall j =0,...,n,

P(j)zan7j+anfj+1+"'+an- (13)

Since the RHS of (1.3) is assumed to be positive, the result would then
be proven. Equation (1.3) holds wh¢n= 0, so assume that

P(.]) = Aap—j +an7j+1+"'+an > 0.
Then,
P(j+1 =ayj-1+xP(j)
>a,_j_1+ P(j) (sinceP(j) > Oandx > 1)
Zap-j1tap—jtap_jr1+---+ay

(by the induction hypothesis),

and the proof by mathematical induction is complete. O

Functions on the same domain can be combined to form new functions.
For instance, iff andg are functions on the integers then so are the
functions f + g and fg, defined by

f+gl) = f0)+g@),
18@) = f()g@).
That is, the values associated withy the functionsf + g and fg are,

respectively,f (i) + g(i) and f(i)g(i).

Definition Let f be a function whose domain is the set of integers,
and define the functiog by

g) = f(@) - fG =1.

We say thatf is aconvexfunction if g is an increasing function; that is,
f is convex if for alli,

fG+D - f0) = fGO - fG -D.

Similarly, we say thayf is aconcavdunction if g is a decreasing func-
tion; that is, if for alli,

fG+D—f0) = fG)— fG -D.



