
1. Preliminaries

1.1 Sets

A set is a collection of elements. If the set A consists of the n elements
a1, a2, . . . , an then we express this by writing

A = {a1, a2, . . . , an}.
Thus, for instance, the set consisting of all the integers between 6 and
10 is given by

B = {6, 7, 8, 9,10}.
A set can be defined either by specifying all its elements, as just shown,
or by specifying a defining property for its elements. Thus, the set B

could have been defined as

B = {integers i : |8 − i| ≤ 2}.
That is, B could have been defined as the set of all integers i such that
the distance between i and 8 is less than or equal to 2.

A set consisting of a finite number of elements is said to be a finite set,
whereas one consisting of an infinite number of elements is said to be
an infinite set. The set N of all the nonnegative integers is an example
of an infinite set. It is convenient to define the set that does not consist
of any elements; we call this the null set and denote it by ∅.

We use the notation a ∈ A to indicate that a is an element of A, and
we use the notation a /∈ A to indicate that a is not a member of A.

Example 1.1a Let S be the set of all possible outcomes when a pair
of dice are rolled. By an “outcome” we mean the pair (i, j), where i is
the number of the side on which the first die lands and j is the number
of the side for the second die. Then, the set of all outcomes that result
in the sum of the dice being equal to 7 can be expressed as

S7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6,1)}
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2 Preliminaries

or, alternatively, as

S7 = {(i, j) ∈ S : i + j = 7}.

If every element of A is also an element of B, then we say that A is a
subset of B and write A ⊂ B. By this definition, every set is a subset of
itself and hence, for example, A ⊂ A. Also, since there are no elements
in the null set, it follows that every element of ∅ is also an element of
A; thus, ∅ is a subset of every other set. If A ⊂ B and B ⊂ A then we
may write A = B. That is, the sets A and B are said to be equal if every
element of A is in B and every element of B is in A.

If A and B are sets then we define the new set A∪B, called the union
of A and B, to consist of all elements that are in A or in B (or in both).
Also, we define the intersection of A and B, written either as A ∩ B or
just AB, to consist of all elements that are in both A and B.

Example 1.1b In Example 1.1a, if A is the set of all outcomes for
which the sum of the dice is 5 and if B is the set of outcomes for which
the value of the second die exceeds that of the first die by the amount 3,
then we have

A = {(1, 4), (2, 3), (3, 2), (4,1)} and B = {(1, 4), (2, 5), (3, 6)};
also,

A ∪ B = {(1, 4), (2, 3), (3, 2), (4,1), (2, 5), (3, 6)} and

AB = {(1, 4)}.
If we define C to be the set of all outcomes whose sum is equal to 6, then
AC = ∅ because there are no outcomes whose sum is both 5 and 6.

A set is said to be a universal set if it contains (as subsets) all other sets
under consideration. Let U be a universal set. For any set A, the set Ac,

called the complement of A, is defined to be the set containing all the
elements of the universal set U that are not in A.

Venn diagrams are often used to graphically represent sets. The uni-
versal set U is represented as consisting of all the points in a large rec-
tangle, and sets are represented as consisting of all the points in circles
within the rectangle. Particular sets of interest are indicated by shading
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Sets 3

Figure 1.1

appropriate regions of the diagram. For instance, the Venn diagrams of
Figure 1.1 indicate the sets A ∪ B, AB, and Ac.

The operation of forming unions and intersections of sets obey cer-
tain rules that are similar to the rules of algebra. We list a few of them
as follows:

Commutative laws: A ∪ B = B ∪ A, AB = BA.

Associative laws: (A ∪ B) ∪ C = A ∪ (B ∪ C), (AB)C = A(BC).

Distributive laws: (A∪B)C = AC ∪BC, AB ∪C = (A∪C)(B ∪C).

These relations are verified by showing that any element that is con-
tained in the left-hand set is also contained in the right-hand one, and
vice versa. For instance, to prove that

(A ∪ B)C = AC ∪ BC,

note that if x ∈ (A ∪ B)C then x ∈ C and x is also in either A or B. If
x ∈ A, then it is in AC and so is in AC ∪ BC; similarly, if x ∈ B, then
it is in BC and so is in AC ∪ BC. Thus, x ∈ AC ∪ BC, showing that

(A ∪ B)C ⊂ AC ∪ BC.

To go the other way, suppose that y ∈ AC ∪ BC. Then y is either in
both A and C or in both B and C. Therefore, we can conclude that y is
in C and is in at least one of the sets A and B. But this means that y ∈
(A ∪ B)C, showing that

AC ∪ BC ⊂ (A ∪ B)C,
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4 Preliminaries

Figure 1.2

and the verification is complete. (The result could also be shown by
using Venn diagrams; see Figure 1.2.)

We also define the intersection and union of more than two sets.
Specifically, for sets A1, . . . , An we define

⋃n
i=1 Ai, the union of these

sets, to consist of all elements that are in A1, or in A2, or in A3, . . . , or
in An; that is,

⋃n
i=1 Ai is the set of all elements that are in at least one

of the sets Ai, i = 1, . . . , n. Similarly, we define
⋂n

i=1 Ai, the intersec-
tion of these sets, to consist of all elements that are in each of the sets
Ai, i = 1, . . . , n.

1.2 Summation

If we let s be the sum of the four numbers x1, x2, x3, x4 then we can
write

s = x1 + x2 + x3 + x4.

More compactly, we can use the summation notation
∑

. Using this lat-
ter notation, we write

s =
4∑

i=1

xi,

which means that s is equal to the sum of the xi values as i ranges from
1 to 4. More generally, for j ≤ n, we use the notation

s =
n∑

i=j

xi
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Summation 5

to mean that
s = xj + xj+1 + · · · + xn.

Example 1.2a If xi = i2, find
∑6

i=3 xi.

Solution.

6∑
i=3

xi = x3 + x4 + x5 + x6 = 9 + 16 + 25 + 36 = 86.

If S is a specified set of integers, then we use the notation
∑
i∈S

xi

to represent the sum of all the values xi that have indices in S.

Example 1.2b If S = {2, 4, 6} then
∑
i∈S

xi = x2 + x4 + x6.

Consider the sum T = ∑2
i=0 x2+i . Because T is equal to x2 + x3 + x4,

it follows that we can also express T as T = ∑4
j=2 xj . Therefore, we

see that
2∑

i=0

x2+i =
4∑

j=2

xj .

When equating the right-hand summation to the left, we say that we are
making the change of variable j = 2 + i. That is, summing the values
x2+i as i ranges from 0 to 2 is the same as summing the values xj as j

ranges from 2 to 4.

Example 1.2c Making the change of variable j = n − i in the sum-
mation

∑n
i=0 xn−i gives the equivalent sum

∑
xj as j ranges between

n and 0. That is,
n∑

i=0

xn−i =
n∑

j=0

xj .
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6 Preliminaries

We are sometimes interested in numbers that are expressed in the form
xi,j, where i and j both take values in some region. A quantity that is
often of interest is the following “double sum” D = ∑n

i=1

∑m
j=1 xi,j,

where
n∑

i=1

m∑
j=1

xi,j =
n∑

i=1

( m∑
j=1

xi,j

)
.

Now arrange the numbers xi,j (i = 1, . . . , n, j = 1, . . . , m) in the fol-
lowing row–column array, which has the number xi,j in row i, column j.

x1,1 x1,2 x1,3 . . . x1,j . . . x1,m

x2,1 x2,2 x2,3 . . . x2,j . . . x2,m

...
...

...
...

...
...

...
xi,1 xi,2 xi,3 . . . xi,j . . . xi,m

...
...

...
...

...
...

...
xn,1 xn,2 xn,3 . . . xn,j . . . xn,m

Because
∑m

j=1 xi,j is just the sum of the m array elements in row i, it
follows that the double sum D is equal to the sum of the row sums. In
other words, D is equal to the sum of all the elements in the array. Since
the sum of all the array values can also be obtained by adding all the
column sums and since the sum of the values of column j is

∑n
i=1 xi,j,

we have the following result.

Proposition 1.2.1

n∑
i=1

m∑
j=1

xi,j =
m∑

j=1

n∑
i=1

xi,j .

A corollary of this proposition is the following useful result.

Corollary 1.2.1
n∑

i=1

i∑
j=1

xi,j =
n∑

j=1

n∑
i=j

xi,j .

Proof. Consider data values xi,j, where i and j both takes values from 1
to n and where xi,j = 0 when j > i. Then apply Proposition 1.2.1.
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Summation 7

A pictorial proof of Corollary1.2.1 is obtained by noting that its left-hand
side,

n∑
i=1

i∑
j=1

xi,j =
1∑

j=1

x1,j +
2∑

j=1

x2,j + · · · +
n∑

j=1

xn,j,

is equal to the sum of all the row sums whereas the right-hand side,

n∑
j=1

n∑
i=j

xi,j =
n∑

i=1

xi,1 +
n∑

i=2

xi,2 + · · · +
n∑

i=n

xi,n,

is the sum of all the column sums in the following array.

x1,1

x2,1 x2,2

x3,1 x3,2 x3,3
...

...
...

. . .

xn,1 xn,2 xn,3 . . . xn,n

Example 1.2d

3∑
i=1

i∑
j=1

(i − j) =
1∑

j=1

(1 − j) +
2∑

j=1

(2 − j) +
3∑

j=1

(3 − j)

= 0 + 1 + 3 = 4,

3∑
j=1

3∑
i=j

(i − j) =
3∑

i=1

(i − 1) +
3∑

i=2

(i − 2) +
3∑

i=3

(i − 3)

= 3 + 1 + 0 = 4.

Since x
∑m

j=1 yj = ∑m
j=1 xyj, it follows that

( n∑
i=1

xi

)( m∑
j=1

yj

)
=

m∑
j=1

( n∑
i=1

xi

)
yj =

m∑
j=1

n∑
i=1

xiyj .

Example 1.2e Expand (x1 + · · · + xn)
2.
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8 Preliminaries

Solution.
( n∑

i=1

xi

)2

=
( n∑

i=1

xi

)( n∑
j=1

xj

)

=
∑

i

∑
j

xi xj

=
∑

i

(
xi xi +

∑
j �=i

xi xj

)

=
∑

i

x2
i +

∑
i

∑
j �=i

xi xj .

For instance, the preceding yields

(x1 + x2)
2 = x2

1 + x2
2 + x1x2 + x2 x1 = x2

1 + x2
2 + 2x1x2.

Similar to the notation for summations is our notation
∏

for products,

n∏
i=1

xi = x1x2 · · · xn.

Example 1.2f
4∏

i=1

i = 1 · 2 · 3 · 4 = 24.

1.3 Mathematical Induction

Suppose that we have an infinite collection of statements, denoted
S1, S2, . . . , and that we want to prove that they are all true. A proof
by mathematical induction is obtained in the following manner:

(i) first prove that S1 is true;
(ii) then show that, for any n, whenever Sn is true then Sn+1 is also true.

Once (i) and (ii) are established, then from (i) we know that S1 is true;
which implies by (ii) that S2 is true; which implies that S3 is true; and
so on. Thus, it follows that all of the Sn are true.

We now illustrate the use of mathematical induction by a series of
examples.
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Mathematical Induction 9

Example 1.3a Prove that there are 2n subsets of a set consisting of n

elements.

Solution. In order to prove this by mathematical induction, we must
first prove it for n = 1. But this is immediate, for if the set consists of
a single element (i.e., if the set is {s}) then it has the two subsets ∅ and
{s}, where ∅ is the empty set. Thus, part (i) of the mathematical induc-
tion approach is shown. To show part (ii), assume that the result is true
for all sets of size n (this is called the induction hypothesis) and then
consider a set S of size n +1. Focus attention on one of the elements of
S, call it s, and let S ′ denote the set consisting of the n other elements
of S. Because every subset of S that does not contain s is a subset of
S ′, it follows from the induction hypothesis that there are 2n subsets of
S that do not contain s. On the other hand, since any subset of S that
contains s can be obtained by adding s to a subset of S ′, it also follows
from the induction hypothesis that there are 2n of these subsets. Thus
the total number of subsets of S is

2n + 2n = 2n(1 + 1) = 2n+1,

and the result is proved.

Example 1.3b For integer n, which is larger: 2n or n2?

Solution. Let us try a few cases:

21 = 2, 12 = 1;
22 = 4, 22 = 4;
23 = 8, 32 = 9;
24 = 16, 42 = 16;
25 = 32, 52 = 25;
26 = 64, 62 = 36.

Thus, based on this enumeration, a reasonable conjecture is that 2n >

n2 for all values of n ≥ 5. To prove this, we start by showing it to be
true when n = 5; this was demonstrated by our preceding calculations.
So now assume that, for some n (n ≥ 5),
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10 Preliminaries

2n > n2.

We must show that the preceding implies that 2n+1 > (n + 1)2, which
may be accomplished as follows.

First, note that
2n+1 = 2 · 2n > 2n2,

where the inequality follows from the induction hypothesis. Hence, it
will suffice to show that, for n ≥ 5,

2n2 ≥ (n + 1)2

or (equivalently)
2n2 ≥ n2 + 2n + 1

or
n2 − 2n − 1 ≥ 0

or
(n − 1)2 − 2 ≥ 0

or
n − 1 ≥

√
2,

which follows because n ≥ 5.

Example 1.3c Derive a simple expression for the following function:

f(n) = 1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

n(n + 1)
.

Solution. Again, let us begin by calculating the value of f(n) for small
values of n, hoping to discover a general pattern that we can then prove
by mathematical induction. Such a calculation gives

f(1) = 1/2,

f(2) = 1/2 + 1/6 = 2/3,

f(3) = 2/3 + 1/12 = 3/4,

f(4) = 3/4 + 1/20 = 4/5.
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