
P1: IXK/GDO P2: IXK

0521772516pre CB551-Vega-V1.cls May 13, 2003 19:24

Economics and the theory
of games

FERNANDO VEGA-REDONDO
Universidad de Alicante and Universitat
Pompeu Fabra, Spain

iii



P1: IXK/GDO P2: IXK

0521772516pre CB551-Vega-V1.cls May 13, 2003 19:24

         
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

  
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Fernando Vega-Redondo 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typeface Times 11/13 pt. System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data available

ISBN 0 521 77251 6 hardback
ISBN 0 521 77590 6 paperback

iv



P1: IXK/GDO P2: IXK

0521772516pre CB551-Vega-V1.cls May 13, 2003 19:24

Contents

Preface page xi

1 Theoretical framework 1
1.1 Introduction and examples 1
1.2 Representation of a game in extensive form 4
1.3 Representation of a game in strategic form 12
1.4 Mixed extension of a game 16

Supplementary material 18
1.5 Mixed and behavioral strategies 18
1.6 Representation of a game in coalitional form 23

Summary 26
Exercises 26

2 Strategic-form analysis: theory 30
2.1 Dominance and iterative dominance 30
2.2 Nash equilibrium 35
2.3 Zero-sum bilateral games 45

Supplementary material 50
2.4 Nash equilibrium: formal existence results 50
2.5 Strong and coalition-proof equilibria 53
2.6 Correlated equilibrium 56
2.7 Rationalizability 61

Summary 68
Exercises 69

3 Strategic-form analysis: applications 72
3.1 Oligopoly (I): static models 72
3.2 Mechanism design (I): efficient allocation of public goods 83
3.3 Mechanism design (II): Nash implementation 90
3.4 Markets (I): macroeconomic coordination failures 99

Summary 104
Exercises 105

4 Refinements of Nash equilibrium: theory 110
4.1 Introduction 110
4.2 Refinements excluding “incredible threats”: examples 110
4.3 Subgame-perfect equilibrium 115
4.4 Weak perfect Bayesian equilibrium 117

Supplementary material 120

vii



P1: IXK/GDO P2: IXK

0521772516pre CB551-Vega-V1.cls May 13, 2003 19:24

viii Contents

4.5 Refinements excluding “untenable beliefs”: examples 120
4.6 Sequential equilibrium 128
4.7 Perfect and proper equilibria 131
4.8 Strategic-form refinements 135

Summary 143
Exercises 144

5 Refinements of Nash equilibrium: applications 151
5.1 Oligopoly (II): sequential moves 151
5.2 Markets (II): decentralized price formation 159
5.3 Oligopoly (III): differentiated products 171
5.4 Mechanism design (III): efficient allocation of an indivisible object 176

Summary 182
Exercises 184

6 Incomplete information: theory 188
6.1 Introduction and examples 188
6.2 Bayesian games 191
6.3 Bayes-Nash equilibrium 196
6.4 Signaling games 204

Supplementary material 217
6.5 Mixed strategies, revisited: a purification approach 217
6.6 Forward induction 221

Summary 225
Exercises 226

7 Incomplete information: applications 231
7.1 Markets (III): signaling in the labor market 231
7.2 Markets (IV): insurance markets and adverse selection 244
7.3 Mechanism design (IV): one-sided auctions 254
7.4 Mechanism design (V): buyer–seller trade 267

Summary 275
Exercises 276

8 Repeated interaction: theory 281
8.1 Introduction and examples 281
8.2 Repeated games: basic theoretical framework 283
8.3 Folk theorems: Nash equilibrium 286
8.4 Reputation and “irrationality”: informal discussion 294

Supplementary material 300
8.5 Folk theorems: subgame-perfect equilibrium 300
8.6 Reputation and “irrationality”: formal analysis 311

Summary 319
Exercises 321

9 Repeated interaction: applications 324
9.1 Oligopoly (IV): intertemporal collusion in a Cournot scenario 324
9.2 Oligopoly (V): intertemporal collusion in a Bertrand scenario 334
9.3 Markets (V): efficiency wages and unemployment 341

Summary 351
Exercises 352



P1: IXK/GDO P2: IXK

0521772516pre CB551-Vega-V1.cls May 13, 2003 19:24

Contents ix

10 Evolution and rationality 355
10.1 Introduction 355
10.2 Static analysis 356
10.3 Basic dynamic analysis 363
10.4 Evolution in social environments 372
10.5 Evolution of cooperation: an example 387

Summary 393
Exercises 394

11 Learning to play 398
11.1 Introduction 398
11.2 Reinforcement learning 399
11.3 Static perceptions and myopic behavior 412
11.4 Memory, expectations, and foresight 420

Summary 441
Exercises 442

12 Social learning and equilibrium selection 446
12.1 Introduction 446
12.2 Evolutionary games: theoretical framework 447
12.3 Evolutionary games: alternative scenarios 449
12.4 Stochastic stability and equilibrium selection 453
12.5 Experimental evidence 470

Supplementary material 474
12.6 Perturbed Markov processes: basic concepts and techniques 474
12.7 Reinforcement learning with flexible aspirations 482

Summary 495
Exercises 496

Bibliography 501
Index 507



P1: GHK/IJU P2: GHK

0521772516c01 CB551-Vega-V1.cls May 12, 2003 10:10

CHAPTER 1

Theoretical framework

1.1 Introduction and examples

In ordinary language, we speak of a “game” as a (generally amusing) process of
interaction that involves a given population of individuals, is subject to some fixed
rules, and has a prespecified collection of payoffs associated to every possible
outcome. Here, the concept of a game mostly embodies the same idea. However, in
contrast to the common use of this term, the kind of interaction to be studied may
be far from amusing, as illustrated by the following example.

Consider the game usually known as the prisoner’s dilemma (PD). It involves
two individuals, labeled 1 and 2, who have been arrested on the suspicion of having
committed jointly a certain crime. They are placed in separate cells and each of them
is given the option by the prosecutor of providing enough evidence to incriminate
the other. If only one of them chooses this option (i.e., “defects” on his partner), he
is rewarded with freedom while the other individual is condemned to a stiff sentence
of twelve years in prison. On the other hand, if both defect on (i.e., incriminate)
each other, the available evidence leads to a rather long sentence for both of, say,
ten years in prison. Finally, let us assume that if neither of them collaborates with
the prosecutor (i.e., they both “cooperate” with each other), there is just basis for a
relatively light sentence of one year for each.

The payoff table corresponding to this situation (where payoffs are identified
with the negative of prison years) is shown in Table 1.1.

Table 1.1: Prisoner’s dilemma

2
1 D C

D −10, −10 0, −12
C −12, 0 −1, −1

What would be your prediction on the most likely outcome of this situation? It
seems clear that the prediction must be (D, D) because D is a dominant strategy,
i.e., it is better than the alternative C , no matter what the other individual might
choose to do; and this is so despite the fact that (C, C) would indisputably be a better
“agreement” for both. However, unless the agents are somehow able to enforce such
an agreement (e.g., through a credible threat of future revenge), they will not be
able to achieve that preferred outcome. If both individuals are rational (in the sense

1
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2 Theoretical framework

of aiming to maximize their individual payoffs), choosing D is the only course of
action that makes sense under the circumstances described.

It is important to emphasize that the former line of argument continues to apply
even if the individuals are not isolated in separate cells and may instead com-
municate with each other. As long as their decisions have to be taken indepen-
dently (e.g., in the prosecutor’s office, one by one), the same reasoning applies.
No matter what they might have agreed beforehand, when the time comes to imple-
ment a decision, the fact that D is a dominant choice should lead both of them to
adopt it.

The game just outlined is paradigmatic of many situations of interest. For ex-
ample, the same qualitative dilemma arises when two firms are sharing a certain
market and each one must decide whether to undertake an aggressive or concil-
iatory price policy (see Chapter 3). Now, we turn to another example with a very
different flavor: the so-called battle of the sexes. It involves a certain young couple
who have just decided to go out on a date but still have to choose where to meet
and what to do on that occasion. They already anticipate the possibilities: they may
either attend a basketball game or go shopping. If they decide on the first option,
they should meet by the stadium at the time when the game starts. If they decide
on the second possibility, they should meet at the entrance of a particular shopping
mall at that same time.

Let us assume they have no phone (or e-mail), so a decision must be made at this
time. The preferences displayed by each one of them over the different alternatives
are as follows. The girl prefers attending the basketball game rather than going
shopping, whereas the boy prefers the opposite. In any case, they always prefer
doing something together rather than canceling the date. To fix ideas, suppose
payoffs are quantified as in Table 1.2.

Table 1.2: Battle of the sexes

Boy
Girl B S

B 3, 2 1, 1
S 0, 0 2, 3

where B and S are mnemonic for “basketball” and “shopping,” respectively, and the
pairs of numbers specified quantify the utilities obtained by each individual (first
the girl’s, second the boy’s) for each choice combination. In principle, the couple
could “agree” on implementing any pair of choices on the day in question. However,
only (B, B) and (S, S) represent robust (or stable) agreements in the sense that if
they settle on any of them and each believes that the other side is going to abide by
it, both have incentives to follow suit. Each of these agreements will be labeled a
Nash equilibrium and either of them may be viewed as a sensible prediction for the
game. The problem, of course, is that there is an unavoidable multiplicity in the task
of singling out ex ante which one of the two possible equilibria could (or should)
be played. In contrast with the previous PD game, there is no natural basis to favor
any one of those outcomes as more likely or robust than the alternative one.
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Figure 1.1: Battle of the sexes, sequential version.

Let us now explore a slight variation of the previous story that is not subject to the
aforementioned multiplicity problem. On the day set for the date, rather than both
individuals being out of reach, it turns out that the boy (only he) is at his home, where
he can be contacted by phone. Suppose that the girl knows this and that, initially
(i.e., when the plans were drawn), the boy managed to impose the “agreement” that
they both would go shopping. The girl, angry at this state of affairs, may still resort
to the following course of action: she can arrive at the stadium on the specified day
and, shortly before the boy is ready to leave for the shopping mall, use the phone to
let him know unambiguously where she is. Assume that it is no longer possible for
the girl to reach the shopping mall on time. In this case, she has placed the boy in a
difficult position. For, taking as given the fact that the girl is (and will continue to
be) at the stadium waiting for him, the boy has no other reasonable option (if he is
rational) than to “give in,” i.e., go to the stadium and meet the girl there. What has
changed in this second scenario that, in contrast to the former one, has led to a single
prediction? Simply, the time structure has been modified, turning from one where
the decisions were independent and “simultaneous” to one where the decisions are
sequential: first the girl, then the boy.

A useful way of representing such a sequential decision process diagrammati-
cally is through what could be called a “multiagent decision tree,” as illustrated
in Figure 1.1. In this tree, play unfolds from left to right, every intermediate
(i.e., nonfinal) node standing for a decision point by one of the agents (the boy
or the girl) and a particular history of previous decisions, e.g., what was the girl’s
choice at the point when it is the boy’s turn to choose. On the other hand, every final
node embodies a complete description of play (i.e., corresponds to one of the four
possible outcomes of the game), and therefore has some payoff vector associated
to it.

In the present sequential version of the game, it should be clear that the only
intuitive outcome is (B, B). It is true that, at the time when the plans for the date
are discussed, the boy may threaten to go shopping (i.e., choose S) even if the girl
phones him from the stadium on the specified day (i.e., even if she chooses B).
However, as explained above, this is not a credible threat. Or, in the terminology
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to be introduced in Chapter 4, such a threat does not belong to a (subgame)
“perfect” equilibrium – only (B, B) defines a perfect equilibrium in the present
case.

The representation of a game by means of a multiagent decision tree permits
an explicit description of the order of movement of the different players as well
as their information and possible actions at each point in the game. It is called
its extensive-form representation and provides the most fundamental and complete
way of defining any game. The next section formalizes this theoretical construct in
a general and rigorous manner.

1.2 Representation of a game in extensive form

1.2.1 Formalization

The extensive form of a game requires the description of the following items.

1. The set of players. It will be denoted by N = {0, 1, 2, . . . , n}, where
player 0 represents “Nature.” Nature performs every action that is exoge-
nous to the game (whether it rains, some player wins a lottery, etc.). When
it has no specific role to play, this fictitious player will be simply eliminated
from the description of the game.

2. The order of events. It is given by a certain binary relation, R, defined
on a set of nodes, K . More precisely, the set K is identified with the col-
lection of events that can materialize along the game, whereas the relation
R embodies a suitable criterion of precedence (not necessarily temporal,
possibly only logical) applied to those events.1 Here, the notion of event is
the usual one, i.e., a description of “what is possible” at any given juncture
in the game. Thus, in particular, an “elementary event”2 is to be conceived
simply as a sufficient description of a complete path of play, whereas the
“sure event” refers to the situation that prevails at the beginning of the game
(where still any path of play is attainable). As the players make their choices,
the game advances along a decreasing (or nested) sequence of events, with
a progressively narrower set of possibilities (i.e., paths of play) becoming
attainable. Formally, this is captured through the relation R, which, for any
pair of nodes x, y ∈ K , declares that x Ry whenever every path of play that
is (possible) in y is (possible) as well in x . Thus, for example, if y stands
for the event “both agents attend the basketball game” in the sequential
battle of the sexes represented in Figure 1.1, the event x given by “the girl
attends the basketball game” precedes y. Thus, by writing x Ry in this case,

1 A binary relation R on K is defined as some subset of the Cartesian product K × K . If (x, y) ∈ R, then we say
that x is related to y and typically write x Ry.

2 In the language of traditional decision theory [see, e.g., Savage (1954)], an elementary event is the primitive
specification of matters that would correspond to the notion of a “state,” i.e., a description of all relevant aspects
of the situation at hand. For a formal elaboration of this approach, the reader is referred to the recent (and
somewhat technical) book by Ritzberger (2002).
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we mean that x logically precedes y in the set of occurrences that underlie
the latter event – therefore, if y occurs, so does x as well.

Given the interpretation of R as embodying some notion of precedence,
it is natural to postulate that this binary relation is a (strict) partial ordering
on K , i.e., it displays the following properties3:

Irreflexivity : ∀x ∈ K , ¬(x Rx).

Transitivity : ∀x, x ′, x ′′ ∈ K , [x Rx ′ ∧ x ′ Rx ′′] ⇒ x Rx ′′.

Associated to R, it is useful to define a binary relation, P , of immediate
precedence in the following manner:

x Px ′ ⇔ [(x Rx ′) ∧ (�x ′′ : x Rx ′′ ∧ x ′′ Rx ′)].

Correspondingly, we may define the set of immediate predecessors of any
given x ∈ K as follows:

P(x) ≡ {x ′ ∈ K : x ′ Px}
and the set of its immediate successors by

P−1(x) = {x ′ ∈ K : x Px ′}.
Having interpreted (K , R) as the set of partially ordered events that reflect
the unfolding of play in the game, it is useful to postulate that every y ∈ K
uniquely defines the set of its preceding events – or, expressing it somewhat
differently, that y uniquely induces the chain (or history)4 of occurrences
that give rise to it. In essence, this is equivalent to saying that (K , R) must
have the structure of a tree of events, thus displaying the following two
properties:
(a) There exists a unique root (or initial node) x0 that has no immediate

predecessor (P(x0) = ∅) and precedes all other nodes (i.e., ∀x �= x0,

x0 Rx). This initial node is to be viewed as the beginning of the game.
(b) For each x̂ ∈ K , x̂ �= x0, there exists a unique (finite) path of prede-

cessors {x1, x2, . . . , xr } joining x̂ to the root x0 – i.e., xq ∈ P(xq+1),
for all q = 0, 1, . . . , r − 1, and xr ∈ P(x̂).

As intended, (a) and (b) permit identifying each node in K with a (unique)
particular history of the game – possibly partial and incomplete if it is an
intermediate node, or even “empty” if it is the initial x0. Also note that,
from (a) and (b), it follows that every x �= x0 has a unique immediate
predecessor (i.e., P(x) is a singleton). Indeed, this is precisely the key
feature that allows one to associate to every node the set of its preceding
events (i.e., the underlying history) in a univocal fashion. A possible such

3 As customary, we use the symbol ¬(·) to denote the negation of the statement in question, or ∧, ∨ to join
two statements by “and,” “or.” An alternative way of expressing negation is by superimposing / on a certain
symbol, e.g., � stands for the negation of existence.

4 Its temporal connotations notwithstanding, the term “history” is typically used in game theory to describe the
unfolding of a path of play even when the implied irreversibility does not involve the passage of time. An
illustration of this point may be obtained from some of our upcoming examples in Subsection 1.3.2.
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x0

x

x'
z

z'

z''

x''

P (x) = P(x'' ) P –1(x'' )

Figure 1.2: Tree of events with x0 P x P x ′ P z; x0 P x P z′; x0 P x ′′ P z′′.

tree of events is graphically illustrated in Figure 1.2, where the play of the
game unfolds from left to right and any two nodes linked by a line segment
are taken to be immediately adjacent according to the relation P.

For simplicity, let us posit here that every path of the game reaches a
definite end.5 Denote by Z ≡ {x ∈ K : P−1(x) = ∅} the set of final nodes,
i.e., those nodes with no successors (for example, the nodes z, z′, and z′′

in Figure 1.2). As explained, the interpretation of any such node is that of
a primitive event, a complete history, or simply a game play. It is worth
emphasizing that every final node includes not only information on the
“characteristics” of the final outcome of the game but also describes in full
detail its underlying history. To illustrate this point, consider for example
the event “wearing the two gloves” resulting from the concatenation of the
intermediate events “not wearing any glove” and “wearing just one glove.”
Then, the two different ways in which one may end up wearing the two
gloves (either the right or the left glove first) give rise to two different final
nodes, even though they both display the same relevant features.

3. Order of moves. The set K\Z of intermediate nodes is partitioned into
n + 1 subsets K0, K1, . . . , Kn. If x ∈ Ki , this simply means that when the
event reflected by x materializes, it is player i’s turn to take an action. For
convenience, it is typically assumed that, if Nature moves in the game, it
does so first, thus resolving once and for all any bit of exogenous uncertainty
that may affect the course of play. In terms of our previous formalization,
this amounts to making K0 ⊆ {x0} – of course, K0 is empty if Nature does
not have any move in the game.

4. Available actions. Let x ∈ Ki be any node at which some player i ∈ N
moves. The set of actions available to player i at that node is denoted by

5 Some of the game-theoretic models proposed at later points in this book (cf., for example, Subsections 5.2.1
and 8.2) admit the possibility that the game never ends, a case that requires a natural extension of the present
formulation. Then, every infinite history must be interpreted as a different “end node,” which again embodies
a full description of the whole turn of events that underlie it.



P1: GHK/IJU P2: GHK

0521772516c01 CB551-Vega-V1.cls May 12, 2003 10:10

Representation of a game in extensive form 7

A(x). Naturally, the cardinality of A(x) must be identical to that of P−1(x),
the set of immediate successors of x . This simply reflects the fact that it
is player i who decides how the game proceeds after x along one of the
possible ensuing directions. Formally, what is required is that the sets A(x)
and P−1(x) be isomorphic, i.e., each immediate successor of x must have
a unique and different action a in the set A(x) associated to it, and vice
versa.

5. Information sets. For every player i, we postulate that her corresponding
set of decision nodes Ki can be partitioned into a set Hi of disjoint sets, i.e.,
Ki = ⋃

h∈Hi
h with h ∩ h′ = ∅ for all h, h′ ∈ Hi (h �= h′). Each of these

sets h ∈ Hi is called an information set and has the following interpretation:
player i is unable to discriminate among the nodes in h when choosing an
action at any one of them. Intuitively, if player i cannot distinguish between
two different nodes x, x ′ ∈ h, it must be that player i did not observe (or has
forgotten – see Section 1.4) the preceding occurrences (choices) on which
x and x ′ differ. Obviously, this interpretation requires that A(x) = A(x ′) –
that is, there must exist the same set of available actions at both x and
x ′. Otherwise, the inconsistency would arise that player i could in fact
distinguish between x and x ′ on the basis of the different set of actions
available at each node (an information that of course player i should have
because she is the decision maker at both of those nodes).

6. Payoffs. Associated with every possible game play (i.e., final node or
complete history of the game) there is a certain payoff for each of the
different players. Thus, for every one of the final nodes z ∈ Z , we assign
an n-dimensional real vector π (z) = (πi (z))n

i=1, each πi (z) identified as
the payoff achieved by player i = 1, 2, . . . , n if the final node z is reached.
These real numbers embody how players evaluate any possible outcome
of play and thus reflect every consideration they might deem relevant –
pecuniary or not, selfish or altruistic. Payoffs for Nature are not specified
since its behavior is postulated exogenously. (Fictitiously, one could simply
posit constant payoffs for Nature over all final nodes.)

Payoff magnitudes are interpreted as von Neumann–Morgenstern util-
ities and, therefore, we may invoke the well-known theorem of expected
utility6 when evaluating random outcomes. That is, the payoff or utility of a
certain “lottery” over possible plays (or final nodes) is identified with its ex-
pected payoff, the weights associated with each one of those plays given by
their respective ex ante probability. This implies that payoffs have a cardinal
interpretation (i.e., payoff differences have meaning) and embody players’
attitude to risk. Formally, it amounts to saying that the specification of the
payoffs in the game is unique only up to monotone affine transformations.7

Finally, note that even though “payoff accounting” is formally performed
at the end of the game (i.e., payoffs are associated with final nodes alone),

6 See, e.g., Kreps (1990) for a classical textbook treatment of this topic.
7 A monotone affine transformation of a utility function U (·) is any function Ũ (·) over the same domain, which

may be written as follows: Ũ (·) = α + βU (·) for any real numbers α, β, with β > 0.
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this does not rule out that partial payoffs may materialize at intermediate
stages. In those cases, the payoff associated with any final node is to be
interpreted as the overall evaluation of the whole stream of payoffs earned
along the unique history that leads to it.

The above six components define a game in extensive form. Often, we shall rely on
a graphical description of matters where

� the unfolding events x ∈ K induced by players’ actions are represented
through a tree structure of the sort illustrated in Figure 1.2;

� intermediate nodes are labeled with the index i ∈ N of the player who takes
a decision at that point;

� the edges departing from intermediate nodes x ∈ K are labeled with the
respective actions a ∈ A(x) leading to each of its different successors in
P−1(x);

� the intermediate nodes {x ∈ h} that belong to the same information set h
are joined by a dashed line;

� the final nodes z ∈ Z have real vectors π (z) associated with them, express-
ing the payoffs attained by each player in that game play.

A simple illustration of such a graphical way of describing a game in extensive
form is displayed in Figure 1.3.

1.2.2 Examples

1.2.2.1 A simple entry game. Consider two firms, 1 and 2, involved in the following
game. Firm 1 is considering whether to enter the market originally occupied by a
single incumbent, firm 2. In deciding what to do (enter (E) or not (N )), firm 1
must anticipate what will be the reaction of the incumbent (fight (F) or concede
(C)), a decision the latter will implement only after it learns that firm 1 has entered
the market. Assume that the monopoly (or collusive) profits to be derived from the

2

2

(0, 2, 0)

B
a

(0, 1, 1)

(1, 0, 0)

1

A

C

a

α

β

b

b

3

(5, 1, 0)

(5, 0, 1)

(–5, 2, 3)

Figure 1.3: A game in extensive form.
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1

2

N

E F

C

(–1, –1)

(1, 1)

(0, 2)

Figure 1.4: A simple entry game, extensive form.

market are given by two million dollars, which firm 2 either can enjoy alone if it
remains the sole firm or must share with firm 1 if it concedes entry. On the other
hand, if firm 2 fights entry, both firms are assumed to incur a net loss of one million
dollars because of the reciprocal predatory policies then pursued.

The extensive-form representation of the entry game considered is described in
Figure 1.4. In this simple extensive form, each firm has just one information set
consisting of only one node. Thus, in both of these information sets, the corre-
sponding firm is fully informed of what has happened at preceding points in the
game. With this information at hand, each firm has two possible actions to choose
from (N or E for firm 1; F or C for firm 2).

1.2.2.2 A matching-pennies game. Consider the following game. Two players si-
multaneously choose “heads” or “tails.” If their choices coincide (i.e., both select
heads, or both select tails) player 2 pays a dollar to player 1; in the opposite cases,
player 1 pays this amount to player 2.

As explained above, the extensive form is to be conceived as the most basic and
complete way of representing a game. However, since an extensive-form represen-
tation displays, by construction, a sequential decision structure (i.e., any decision
node can belong to only a single agent), one might be tempted to think that it is
inherently unsuited to model any simultaneity of choices such as the one proposed
here. To resolve this puzzle, the key step is to grasp the appropriate interpretation
of the notion of “simultaneity” in a strategic context. In any given game, the fact
that certain actions are described as “simultaneous” does not necessarily reflect the
idea that they are chosen at the same moment in real time. Rather, the only essential
requirement in this respect is that at the time when one of the players takes her
decision, she does not know any of the “simultaneous” decisions taken by the other
players.

To formalize such a notion of simultaneity, we rely on the concept of information
set, as formulated in Subsection 1.2.1. This allows us to model the matching-pennies
game through any of the two extensive-form representations displayed in Figures 1.5
and 1.6 (recall the graphical conventions illustrated in Figure 1.3). In either of
these alternative representations, each player has just one information set and two
possible actions (heads (H ) or tails (T )). However, while in the first representation
it is player 1 who “fictitiously” starts the game and then player 2 follows, the second
representation has the formal roles of the players reversed. Clearly, both of these
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2
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H

T

T H

T

(1, –1)

(1, –1)

(–1, 1)

(–1, 1)

Figure 1.5: A matching-pennies game in extensive form, alternative 1.

2

1

1

H

H

T

T H

T

(1, –1)

(1, –1)

(–1, 1)

(–1, 1)

Figure 1.6: A matching-pennies game in extensive form, alternative 2.

alternative extensive-form representations of the game should be viewed by the
players as strategically equivalent. In both of them, no player is informed of the
action played by the opponent, either because she moves first or because she is
unable to distinguish between the possible “prior” moves of the other player.

1.2.2.3 Battle of the sexes. Along the lines pursued for the previous example,
we may return to the battle of the sexes introduced in Section 1.1 and describe
the extensive-form representation of its simultaneous version as displayed in
Figure 1.7.

Again, the alternative representation of the simultaneous battle of the sexes where
the formal roles of the boy and the girl are reversed is strategically equivalent to
the one described in Figure 1.7. Of course, this is no longer the case if we consider
instead the sequential version of the game where the girl moves first. Such a game
has the extensive-form representation described in Figure 1.1. In it, the girl still
has only one information set (she moves without knowing the decision her partner
will make), but the boy has two information sets (he already knows the decision
adopted by the girl at the time he makes his own decision). As explained in our
informal discussion of Section 1.1, this sequential version of the game leads to a
rather strong strategic position for the girl. It is obvious, however, that the relative
strength of the strategic positions is reversed if the roles of the players (i.e., their
order of move) is permuted. Thus, in contrast with the simultaneous version, such
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Boy

Boy

(3, 2)

B

B

S

S

B

S

(1, 1)

(0, 0)

(2, 3)

Girl

Figure 1.7: Battle of the sexes, simultaneous version; extensive form.

a permutation does not produce strategically equivalent extensive-form games in
this case.

1.2.2.4 The highest-card game. Two players use a “pack” of three distinct cards,
C ≡ {h(high), m(medium), l(low)}, to participate in the following game. First,
player 1 picks a card, sees it, and then decides to either “bet” (B) or “pass” (P). If
player 1 bets, then player 2 picks a card out of the two remaining ones, sees it, and
chooses as well to either “bet” (B ′) or “pass” (P ′). If both players bet, the player
who has the highest card (no ties are possible) receives a hundred dollars from the
opponent. On the other hand, if at least one of the players does not bet, no payments
at all are made.

The extensive-form representation of this game is displayed in Figure 1.8. First,
Nature moves at the root of the game (recall Subsection 1.2.1) and chooses one
of the six possible card assignments for the two players in the set D ≡ {(c1, c2) ∈
C × C : c1 �= c2}. Next, there are three possible information sets for player 1, as
she is informed of her own card but not of that of the opponent. (Again, we use
the convention of joining the nodes included in the same information set by a
discontinuous line.) In each of these information sets there are two nodes (those
that correspond to the opponent receiving one of the two cards she herself has not
received) and the same two choices available (B or P).8 In case player 1 decides
to bet, three further information sets for player 2 follow, each of them reflecting
analogous information considerations for this player. If both bet (i.e., choose B and
B ′, respectively), the induced final nodes have a payoff vector that assigns 100 to
the player with the highest card and −100 to the opponent. On the other hand, if
one of them does not bet (i.e., passes), the corresponding final node has a payoff
vector (0, 0) associated with it.

8 Note that, for notational simplicity, the same label (P or B) is attributed to pass or bet in different information
sets of player 1. To be fully rigorous, however, we should have different labels in different information sets
because their respective actions of passing and betting should be conceived as different in each of them. Of
course, the same comment applies to the action labels of player 2 in the subsequent information sets.
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Figure 1.8: The highest-card game, extensive form.

1.3 Representation of a game in strategic form

1.3.1 Formalization

Consider a game in extensive form:

	 = {
N , {Ki }n

i=0, R, {Hi }n
i=0, {A(x)}x∈K\Z ,

{
[πi (z)]n

i=1

}
z∈Z

}
(1.1)

where each of its components has been formally defined in Subsection 1.2.1. All
players involved in the game are assumed to be perfectly informed of its underlying
structure, i.e., they know each of the components listed in 	. Therefore, every one
of them can precisely identify the different situations in which she might be called
upon to play and consider, hypothetically, what her decision would be in every
case. In modeling players who can perform ex ante such an exhaustive range of
hypothetical considerations, we are led to the fundamental notion of strategy.

For each player, a strategy in 	 is a complete collection of contingent choices
that prescribe what this player would do in each of the occasions in which she
might have to act (i.e., make some decision). Thus, a strategy has to anticipate
every possible situation in which the player could be asked to play and, for each
of them, determine a particular choice among the alternative options available.
Obviously, since it is impossible to demand from a player that she make a decision
that depends on information she does not hold, a strategy must prescribe the same
action for all the nodes included in any particular information set. Or, rephrasing
it somewhat differently, a strategy can make players’ decisions contingent only on
their respective information sets, not on the particular decision nodes (among which
they are not always able to discriminate).
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A different and complementary perspective on the concept of strategy is to view
it as a sufficient set of instructions that, if the player were to convey them to some
intermediary, would allow the former to leave the game and have the latter act on
her behalf. Only if this set of instructions can never leave the intermediary at a
loss (i.e., not knowing how to proceed in some circumstances), can we say that it
properly defines a strategy for the player in question.

To proceed now formally, recall that, for each player i ∈ N , Hi denotes the par-
tition of her respective decision nodes Ki in disjoint informations sets. For any
h ∈ Hi and x ∈ h, consider the simplifying notation A(h) ≡ A(x), and denote
Ai ≡ ⋃

h∈Hi
A(h). Then, as explained above, a strategy for player i is simply a

function

si : Hi → Ai , (1.2)

with the requirement that

∀h ∈ Hi , si (h) ∈ A(h), (1.3)

i.e., any of the actions selected at given information set h must belong to the
corresponding set of available actions A(h).

Note that since any strategy si of player i ∈ N embodies an exhaustively contin-
gent plan of choice, every particular strategy profile s ≡ (s0, s1, s2, . . . , sn) speci-
fying the strategy followed by each one of the n + 1 players uniquely induces an
associated path of play. Denote by ζ (s) ∈ Z the final node representing this path
of play. Because all players are taken to be fully informed of the game 	 (i.e.,
know the different items specified in (1.1)), every player can be assumed to know
as well the mapping ζ : S0 × S1 × · · · × Sn → Z . Therefore, the decision prob-
lem faced by each player i can be suitably formulated in the following fashion:
choose strategy si ∈ Si under some anticipation, conjecture, or guess concerning
the strategies s j ∈ Sj to be chosen by the remaining players j �= i . But then, if
players may approach the strategic situation from such an ex ante viewpoint (i.e.,
by focusing on their own and others’ plans of action), the same must apply to us,
game theorists, who aim to model their behavior. Indeed, this is in essence the per-
spective adopted by the model of a game that is known as its strategic (or normal)
form representation, which is denoted by G(	).9 It consists of the following list of
items:

G(	) = {
N , {Si }n

i=0, {πi }n
i=1

}
,

where

1. N is the set of players.
2. For each player i = 1, 2, . . . , n, Si is her strategy space, i.e., the set of

possible mappings of the form given by (1.2)–(1.3). Often, if we denote
by |Hi | the cardinality of the set Hi , it will be convenient to think of Si

9 The notation G(	) responds to the idea that 	 is taken to be the most fundamental representation of the game,
whereas G(	) is conceived as a “derived” representation. Nevertheless, we often find it convenient to formulate
a game directly in strategic form, thus dispensing with the explicit detail of its extensive-form structure.
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Table 1.3: A simple entry game,
strategic form

2
1 F C

N 0, 2 0, 2
E −1, −1 1, 1

as contained in the Cartesian product A|Hi |
i , a set that is isomorphic to the

family of functions of the form (1.2).10

3. For each player i = 1, 2, . . . , n,

πi : S0 × S1 × · · · × Sn → R (1.4)

is her payoff function where, abusing former notation, the payoff associated
to every strategy profile s ≡ (s0, s1, s2, . . . , sn) is identified with the payoff
πi (ζ (s)) earned by player i in the final node z = ζ (s) uniquely induced by
those strategies.

The apparent simplicity displayed by the strategic-form representation of a game
is somewhat misleading. For if the underlying game is complex (e.g., displays an
involved sequential structure), a complete specification of the strategy spaces may
become a quite heavy task. Then, the full richness of detail (order of movement,
dispersion of information, player asymmetries, etc.), which is explicitly described
by the representation of the game in extensive form, becomes implicitly “encoded”
by a large set of quite complex strategies. To illustrate matters, we now focus on
the collection of leading examples introduced in Subsection 1.2.2 and describe for
each of them in turn their corresponding strategic form.

1.3.2 Examples

1.3.2.1 A simple entry game (continued). Consider the entry game whose exten-
sive form is described in Figure 1.4. In this game, both players have only one
information set. Therefore, their respective strategy sets can be simply identi-
fied with the set of possible actions for each of them. That is, S1 = {N , E} and
S2 = {F, C}. To complete the specification of the strategic form, one still has to
define the players’ payoff functions. These may be characterized by a list of payoff
pairs [(πi (s1, s2))i=1,2](s1, s2)∈S1×S2 , as displayed in Table 1.3, where each row and
column, respectively, is associated with one of the strategies of individuals 1 and 2.

1.3.2.2 A matching-pennies game (continued). Consider now the matching-
pennies game whose two equivalent extensive-form representations are described
in Figures 1.5 and 1.6. Again in this case, because each player has only one

10 Let the elements of Hi be indexed as h1, h2, . . . , hr . Then, any y = ( y1, y2, . . . , yr ) ∈ A|Hi |
i can be identified

with the mapping si (·) such that si (hk ) = yk . Of course, for such a mapping to qualify as a proper strategy, it
has to satisfy (1.3).
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Table 1.4: A matching-pennies game,
strategic form

2
1 H T

H 1, −1 −1, 1
T −1, 1 1, −1

Table 1.5: Battle of the sexes, sequential version; strategic form

Boy
Girl (B, B) (B, S) (S, B) (S, S)

B 3, 2 3, 2 1, 1 1, 1
S 0, 0 2, 3 0, 0 2, 3

information set, her strategies can be identified with the actions available in that
single information set. That is, S1 = {H, T }, S2 = {H, T } where, for simplicity, we
do not distinguish notationally between each player’s strategies. Finally, to define
the payoff functions, the induced payoff pairs are arranged in Table 1.4 with the
aforementioned conventions.

1.3.2.3 Battle of the sexes (continued). The simultaneous version of the battle of
the sexes (cf. Figure 1.7) is formally analogous to the previous example, its payoffs
as given by Table 1.2. On the other hand, its sequential version, whose extensive-
form representation is given by Figure 1.1, has the girl displaying one information
set and the boy displaying two of them. Thus, for the girl, her strategy set is simply
Sg = {B, S}, whereas for the boy we have Sb = {(B, B), (B, S), (S, B), (S, S)}.
Here (recall Subsection 1.3.1), we view each of the boy’s strategies as an element of
{B, S}|Hb| = {B, S}2, with the information sets indexed downward (i.e., the upper
one first, the lower one second). With this notational convention, the payoff functions
are as indicated in Table 1.5.

An interesting point to note in this case is that the payoff table displays a number
of payoff-vector equalities across pairs of different cells. This simply reflects the
fact that, given any particular girl’s strategy, only that part of the boy’s strategy
that pertains to the information set induced by the girl’s decision is payoff relevant.
Therefore, the two different boy’s strategies that differ only in the information set not
reached (given the girl’s chosen strategy) lead to the same payoff for both players.

1.3.2.4 The highest-card game (continued). Consider the game whose extensive-
form representation is described in Figure 1.8. In this game, the players’ strategy
spaces (including Nature in this case) are as follows:

� Nature: S0 = {(c1, c2) ∈ C × C : c1 �= c2}.
� Player 1: S1 = {s1 : C −→ {Bet (B), Pass (P)}} = {B, P}|C |.
� Player 2: S2 = {s2 : C −→ {Bet (B ′), Pass (P ′)}} = {B ′, P ′}|C |.


