

CONTENTS

	Preface to the second edition	ix
	Preface to the first edition	xi
	How to use this book	$x\nu$
1	Introduction to physiological calculation: approximation and units	1
1.1	Arithmetic – speed, approximation and error	1
1.2	Units	3
1.3	How attention to units can ease calculations, prevent mistakes and	
	provide a check on formulae	5
1.4	Analysis of units in expressions involving exponents (indices)	13
1.5	Logarithms	15
2	Quantifying the body: interrelationships amongst 'representative' or 'textbook' quantities	18
3	Energy and metabolism	27
3.1	Measures of energy	27
3.2	Energy in food and food reserves; relationships between energy	
	and oxygen consumption	28
3.3	Basal metabolic rate	30
3.4	Oxygen in a small dark cell	31
3.5	Energy costs of walking, and of being a student	32
3.6	Fat storage and the control of appetite	33
3.7	Cold drinks, hot drinks, temperature regulation	34
3.8	Oxygen and glucose in blood	36
3.9	Adenosine triphosphate and metabolic efficiency	37
3.10	Basal metabolic rate in relation to body size	40
3.11	Drug dosage and body size	43
3.12	Further aspects of allometry – life span and the heart	44
3.13	The contribution of so dium transport to metabolic rate	46

vi Contents

3.14	Production of metabolic water in human and mouse	46
4	The cardiovascular system	48
4.1	Erythrocytes and haematocrit (packed cell volume)	48
	Optimum haematocrit – the viscosity of blood	53
4.3	Peripheral resistance	55
4.4	Blood flow and gas exchange	57
4.5	Arteriolar smooth muscle – the law of Laplace	58
4.6	Extending William Harvey's argument: 'what goes in must come out'	60
4.7	The work of the heart	61
5	Respiration	65
5.1	Correcting gas volumes for temperature, pressure, humidity and	
	respiratory exchange ratio	65
5.2	Dissolved O2 and CO2 in blood plasma	70
5.3	P co $_2$ inside cells	70
	Gas tensions at sea level and at altitude	72
5.5	Why are alveolar and arterial P_{CO_2} close to 40 mmHg?	74
5.6	Water loss in expired air	77
5.7	Renewal of alveolar gas	78
5.8	Variations in lung dimensions during breathing	82
5.9	The number of alveoli in a pair of lungs	82
5.10	Surface tensions in the lungs	84
5.11	Pulmonary lymph formation and oedema	85
5.12	The pleural space	89
6	Renal function	92
6.1	The composition of the glomerular filtrate	92
6.2	The influence of colloid os motic pressure on glomerular filtration rate	95
6.3	Glomerular filtration rate and renal plasma flow; clearances of	
	inulin, <i>para</i> -aminohippurate and drugs	97
6.4	The concentrating of tubular fluid by reabsorption of water	100
6.5	Urea: clearance and reabsorption	101
6.6	So dium and bicarbonate-rates of filtration and reabsorption	104
6.7	Is fluid reabsorption in the proximal convoluted tubule really	
	isosmotic?	106
6.8	Workperformedbythekidneysinsodiumreabsorption	107
6.9	$Me chan is ms\ of\ renal\ so dium\ reabsorption$	109
6.10	Autoregulation of glomerular filtration rate; glomerulot ubular	
	halance	112

	Contents	vii
6.11	Renal regulation of extracellular fluid volume and blood pressure	113
6.12	Daily output of solute in urine	114
6.13	The flow and concentration of urine	116
6.14	Beer drinker's hyponatraemia	119
6.15	The medullary countercurrent mechanism in antidiuresis –	
	applying the principle of mass balance	120
6.16	Renal mitochondria: an exercise involving allometry	128
7	Body fluids	132
7.1	The sensitivity of hypothalamic osmoreceptors	132
7.2	Cells as 'buffers' of extracellular potassium	133
7.3	Assessing movements of sodium between body compartments – a	
	practical difficulty	134
7.4	The role of bone mineral in the regulation of extracellular calcium	
	and phosphate	136
7.5	The amounts of calcium and bone in the body	138
7.6	The principle of electroneutrality	140
7.7	Donnan equilibrium	143
7.8	Colloid osmotic pressure	145
7.9	Molar and molal concentrations	148
7.10	Osmolarity and osmolality	150
7.11	Gradients of sodium across cell membranes	151
7.12	Membrane potentials – simplifying the Goldman equation	155
8	Acid-base balance	159
8.1	pH and hydrogen ion activity	160
8.2	$The CO_2-HCO_3equilibrium: theHenderson-Hasselbalchequation$	162
8.3	Intracellular pH and bicarbonate	166
8.4	Mitochondrial pH	169
8.5	Why bicarbonate concentration does not vary with Pco_2 in simple	
	solutions lacking non-bicarbonate buffers	172
8.6	Carbonate ions in body fluids	174
8.7	Buffering of lactic acid	176
8.8	The role of in tracellular buffers in the regulation of extracellular pH	178
8.9	The role of bone mineral in acid-base balance	182
8.10	Is there a postprandial alkaline tide?	183
9	Nerve and muscle	185
9.1	Myelinated axons – saltatory conduction	185
9.2	Non-myelinated fibres	187

iii		Contents	
	9.3	Musical interlude – a feel for time	188
	9.4	Muscular work – chinning the bar, saltatory bushbabies	190
	9.5	Creatine phosphate in muscular contraction	193
	9.6	Calciumionsandproteinfilamentsinskeletalmuscle	194
		Appendix A: Some useful quantities	198
		Appendix B: Exponents and logarithms	200
		References	205
		Notes and Answers	209
		Index	232