
1 Sequences and the One-Dimensional
Fourier Transform

An alphabet is a set of symbols. Some alphabets are infinite, such as the set of real
numbers or the set of complex numbers. Usually, we will be interested in finite alpha-
bets. A sequence is a string of symbols from a given alphabet. A sequence may be of
infinite length. An infinite sequence may be periodic or aperiodic; infinite aperiodic
sequences may become periodic after some initial segment. Any infinite sequence that
we will consider has a fixed beginning, but is unending. It is possible, however, that an
infinite sequence has neither a beginning nor an end.

A finite sequence is a string of symbols of finite length from the given alphabet. The
blocklength of the sequence, denoted n, is the number of symbols in the sequence.
Sometimes the blocklength is not explicitly specified, but is known implicitly only by
counting the number of symbols in the sequence after that specific sequence is given.
In other situations, the blocklength n is explicitly specified, and only sequences of
blocklength n are under consideration.

There are a great many aspects to the study of sequences. One may study the structure
and repetition of various subpatterns within a given sequence of symbols. Such studies
do not need to presuppose any algebraic or arithmetic structure on the alphabet of the
sequence. This, however, is not the aspect of the study of sequences that we shall
pursue. We are interested mainly in sequences – usually of finite blocklength – over
alphabets that have a special arithmetic structure, the structure known as an algebraic
field. In such a case, a sequence of a fixed finite blocklength will also be called a vector.

We can treat sequences over fields by using algebraic methods. We shall study such
sequences by using the ideas of the linear recursion, the cyclic convolution, and the
Fourier transform. We shall study here only the structure of individual sequences (and
only those whose symbol alphabet is an algebraic field – usually a finite field ), sets of
sequences of finite blocklength n (called codes), and the componentwise difference of
pairs of sequences (now called codewords) from a given code.

An important property of an individual vector over a field is its Hamming weight (or
weight), which is defined as the number of components at which the vector is nonzero.
An important property of a pair of vectors over a field is the Hamming distance (or
distance) between them, which is defined as the number of coordinates in which the
two vectors differ. We shall devote much effort to determining the weights of vectors
and the distances between pairs of vectors.
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2 Sequences and the One-Dimensional Fourier Transform

1.1 Fields

Loosely, an algebraic field is any arithmetic system in which one can add, subtract,
multiply, or divide such that the usual arithmetic properties of associativity, commuta-
tivity, and distributivity are satisfied. The fields familiar to most of us are: the rational
field , which is denoted Q and consists of all numbers of the form a/b where a and b
are integers, b not equal to zero; the real field , which is denoted R and consists of all
finite or infinite decimals; and the complex field , which is denoted C and consists of
all numbers of the form a + ib where a and b are real numbers. The rules of addition,
subtraction, multiplication, and division are well known in each of these fields.

Some familiar arithmetic systems are not fields. The set of integers
{. . . , −3, −2, −1, 0, 1, 2, 3, . . .}, which is denoted Z, is not a field under ordinary addi-
tion and multiplication. Likewise, the set of natural numbers {0, 1, 2, . . .}, which is
denoted N , is not a field.

There are many other examples of fields, some with an infinite number of elements
and some with a finite number of elements. Fields with a finite number of elements
are called finite fields or Galois fields. The Galois field with q elements is denoted
GF(q), or Fq. The set of nonzero elements of a finite field is denoted GF(q)∗. “The”
Galois field GF(q) exists only if q equals a prime p or a prime power pm, with m an
integer larger than one. For other values of the integer q, no definition of addition and
multiplication will satisfy the formal axioms of a field.

We may define the field F as a set that has two operations defined on pairs of elements
of F ; these operations are called “addition” and “multiplication,” and the following
properties must be satisfied.

(1) Addition axioms. The field F is closed under addition, and addition is associative
and commutative,

a + (b + c) = (a + b) + c,

a + b = b + a.

There is a unique element called zero, denoted 0, such that a + 0 = a, and for
every element a there is a unique element called the negative of a and denoted −a
such that a + (−a) = 0. Subtraction a − b is defined as a + (−b).

(2) Multiplication axioms. The field F is closed under multiplication, and multipli-
cation is associative and commutative

a(bc) = (ab)c,

ab = ba.
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3 1.1 Fields

There is a unique element not equal to zero called one, denoted 1, such that 1a = a,
and for every element a except zero, there is a unique element called the inverse
of a and denoted a−1 such that aa−1 = 1. Division a ÷ b (or a/b) is defined
as ab−1.

(3) Joint axiom. The distributive law

(a + b)c = ac + bc

holds for all elements a, b, and c in the field F .

The structure of the finite field GF(q) is simple to describe if q is equal to a prime p.
Then

GF( p) = {0, 1, 2, . . . , p − 1},

and addition and multiplication are modulo-p addition and modulo-p multiplication.
This is all the specification needed to determine GF( p) completely; all of the field
axioms can be verified to hold under this definition. Any other attempt to define a field
with p elements may produce a structure that appears to be different, but is actually this
same structure defined from a different point of view or with a different notation. Thus
for every prime p, the finite field GF( p) is unique but for notation. In this sense, only
one field exists with p elements. A similar remark could be made for the field GF( pm)

for any prime p and integer m larger than 1.
We can easily write down addition and multiplication tables for GF(2), GF(3), and

GF(5); see Table 1.1.
The field GF(4) can not have this modulo-p structure because 2 × 2 = 0 modulo 4,

and 2 does not have an inverse under multiplication modulo 4. We will construct GF(4)

in a different way as an extension of GF(2). In general, any field that contains the field
F is called an extension field of F . In such a discussion, F itself is sometimes called
the ground field. A field of the form GF( pm) is formed as an extension of GF( p) by
means of a simple polynomial construction akin to the procedure used to construct the
complex field from the real field. Eventually, we want to describe the general form of
this construction, but first we shall construct the complex field C as an extension of the
real field R in the manner of the general construction.

The extension field will consist of pairs of real numbers to which we attach a definition
of addition and of multiplication. We will temporarily refer to this extension field using
the notation R(2) = {(a, b) | a ∈ R, b ∈ R}. The extension field R(2) must not be
confused with the vector space R2. We also remark that there may be more than one
way of defining addition and multiplication on R(2). To define the arithmetic for the
extension field R(2), we represent the elements of the extension field by polynomials.
We will use the symbol z to construct polynomials for such purposes, leaving the symbol
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4 Sequences and the One-Dimensional Fourier Transform

Table 1.1. Arithmetic tables for some small fields

GF(2)
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

GF(3)

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

GF(5)

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

x for other things. Thus redefine the extension field as follows:

R(2) = {a + bz | a ∈ R, b ∈ R},

where a + bz is a new and useful name for (a, b). Next, find a polynomial of degree 2
over R that cannot be factored over R. The polynomial

p(z) = z2 + 1

cannot be factored over R. Although there are many other polynomials of degree 2 that
also cannot be factored over R (e.g., z2 + z +1), this p(z) is the usual choice because of
its extreme simplicity. Define the extension field as the set of polynomials with degrees
smaller than the degree of p(z) and with coefficients in R. Addition and multiplication in
R(2) are defined as addition and multiplication of polynomials modulo1 the polynomial
p(z). Thus

(a + bz) + (c + dz) = (a + c) + (b + d)z

and

(a + bz)(c + dz) = ac + (ad + bc)z + bdz2 (mod z2 + 1)

= (ac − bd) + (ad + bc)z.

1 The phrase “modulo p(z),” abbreviated (mod p(z)), means to take the remainder resulting from the usual
polynomial division operation with p(z) as the divisor.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-77194-8 - Algebraic Codes on Lines, Planes, and Curves
Richard E. Blahut
Excerpt
More information

http://www.cambridge.org/0521771943
http://www.cambridge.org
http://www.cambridge.org


5 1.1 Fields

This is exactly the form of the usual multiplication of complex numbers if the con-
ventional symbol i = √−1 is used in place of z because dividing by z2 + 1 and
keeping the remainder is equivalent to replacing z2 by −1. The extension field that
we have constructed is actually the complex field C. Moreover, it can be shown that
any other construction that forms such an extension field R(2) also gives an alternative
representation of the complex field C, but for notation.

Similarly, to extend the field GF(2) to the field GF(4), choose the polynomial

p(z) = z2 + z + 1.

This polynomial cannot be factored over GF(2), as can be verified by noting that z
and z + 1 are the only polynomials of degree 1 over GF(2) and neither is a factor of
z2 + z + 1. Then

GF(4) = {a + bz | a ∈ GF(2), b ∈ GF(2)}.

The field GF(4) has four elements. Addition and multiplication in GF(4) are defined
as addition and multiplication of polynomials modulo p(z). Thus

(a + bz) + (c + dz) = (a + c) + (b + d)z

and

(a + bz)(c + dz) = ac + (ad + bc)z + bdz2 (mod z2 + z + 1)

= (ac + bd) + (ad + bc + bd)z

(using the fact that “−” and “+” are the same operation in GF(2)). Denoting the four
elements 0, 1, z, and z + 1 of GF(4) by 0, 1, 2, and 3, the addition and multiplication
tables of GF(4) now can be written as in Table 1.2.

The notation used here may cause confusion because, for example, with this notation
1 + 1 = 0 and 2 + 3 = 1 in this field. It is a commonly used notation, however, in
engineering applications.

To extend any field F to a field F (m), first find any polynomial p(z) of degree m over
F that cannot be factored in F . Such a polynomial is called an irreducible polynomial
over F . An irreducible polynomial p(z) of degree m need not exist over the field F
(e.g., there is no irreducible cubic polynomial over R). Then F (m) does not exist. For
a finite field GF(q), however, an irreducible polynomial of degree m does exist for
every positive integer m. If more than one such irreducible polynomial of degree m
exists, then there may be more than one such extension field. Over finite fields, all such
extension fields formed from irreducible polynomials of degree m are the same, except
for notation. They are said to be isomorphic copies of the same field.
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6 Sequences and the One-Dimensional Fourier Transform

Table 1.2. Arithmetic table for GF (4)

GF(4)

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Write the set of polynomials of degree smaller than m as

F (m) = {am−1zm−1 + am−2zm−2 + · · · + a1z + a0 | ai ∈ F}.

The symbol z can be thought of as a kind of place marker that is useful to facilitate
the definition of multiplication. Addition in F (m) is defined as addition of polynomials.
Multiplication in F (m) is defined as multiplication of polynomials modulo p(z).

The construction makes it evident that if F is GF(q), the finite field with q elements,
then the extension field is also a finite field and has qm elements. Thus it is the field
GF(qm), which is unique up to notation. Every finite field GF(q) can be constructed
in this way as GF( p�) for some prime p and some positive integer �. The prime p is
called the characteristic of GF(q).

For example, to construct GF(16) as an extension of GF(2), choose2

p(z) = z4 + z + 1. This polynomial is an irreducible polynomial over GF(2), and it
has an even more important property as follows. If p(z) is used to construct GF(16),
then the polynomial z represents a field element that has order 15 under the multipli-
cation operation. (The order of an element γ is the smallest positive integer n such
that γ n = 1.) Because the order of the polynomial z is equal to the number of nonzero
elements of GF(16), every nonzero element of GF(16) must be a power of z.

Any polynomial p(z) over the ground field GF(q) for which the order of z modulo
p(z) is equal to qm − 1 is called a primitive polynomial over GF(q), and the element
z is called a primitive element of the extension field GF(qm). The reason for using a
primitive polynomial to construct GF(q) can be seen by writing the fifteen nonzero
field elements of GF(16), {1, z, z +1, z2, z2 +1, z2 +z, z2 +z +1, z3, z3 +1, z3 +z, z3 +
z +1, z3 + z2, z3 + z2 +1, z3 + z2 + z, z3 + z2 + z +1}, as powers of the field element z.
In this role, a primitive element z generates the field because all fifteen nonzero field
elements are powers of z. When we wish to emphasize its role as a primitive element,
we shall denote z by α. We may regard α as the abstract field element, and z as the
polynomial representation of α. In GF(16), the nonzero field elements are expressed
as powers of α (or of z) as follows:

α1 = z,

α2 = z2,

2 The use of p both for a prime and to designate a polynomial should not cause confusion.
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7 1.1 Fields

α3 = z3,

α4 = z + 1, (because z4 = z + 1 (mod z4 + z + 1)),

α5 = z2 + z,

α6 = z3 + z2,

α7 = z3 + z + 1,

α8 = z2 + 1,

α9 = z3 + z,

α10 = z2 + z + 1,

α11 = z3 + z2 + z,

α12 = z3 + z2 + z + 1,

α13 = z3 + z2 + 1,

α14 = z3 + 1,

α15 = 1 = α0.

The field arithmetic of GF(16) works as follows. To add the field elements z3 + z2 and
z2 + z + 1, add them as polynomials with coefficients added modulo 2. (Writing only
the coefficients, this can be expressed as 1100 + 0111 = 1011.) To multiply 1100 by
0111 (here 1100 and 0111 are abbreviations for the field elements denoted previously
as z3 + z2 and z2 + z + 1), write

(1100)(0111) = (z3 + z2)(z2 + z + 1) = α6 · α10 = α16 = α · α15

= α · 1 = α = z

= (0010).

To divide 1100 by 0111, write

(1100)/(0111) = (z3 + z2)/(z2 + z + 1) = α6/α10 = α6α5

= α11 = z3 + z2 + z

= (1110)

(using the fact that 1/α10 = α5 because α5 · α10 = 1).
The field GF(256) is constructed in the same way, now using the irreducible

polynomial

p(z) = z8 + z4 + z3 + z2 + 1
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8 Sequences and the One-Dimensional Fourier Transform

(which, in fact, is a primitive polynomial) or any other irreducible polynomial over
GF(2) of degree 8.

In any field, most of the methods of elementary algebra, including matrix algebra and
the theory of vector spaces, are valid. In particular, the Fourier transform of blocklength
n is defined in any field F , providing that F contains an element of order n. The finite
field GF(q) contains an element of order n for every n that divides q−1, because GF(q)

always has a primitive element α, which has order q − 1. Every nonzero element of
the field is a power of α, so there is always a power of α that has order n if n divides
q − 1. If n does not divide q − 1, there is no element of order n.

One reason for using a finite field (rather than the real field) in an engineering problem
is to eliminate problems of round-off error and overflow from computations. However,
the arithmetic of a finite field is not well matched to everyday computations. This is
why finite fields are most frequently found in those engineering applications in which
the computations are introduced artificially as a way of manipulating bits for some
purpose such as error control or cryptography.

1.2 The Fourier transform

The (discrete) Fourier transform, when defined in the complex field, is a fundamental
tool in the subject of signal processing; its rich set of properties is part of the engineer’s
workaday intuition. The Fourier transform exists in any field. Since most of the proper-
ties of the Fourier transform follow from the abstract properties of a field, but not from
the specific structure of a particular field, most of the familiar properties of the Fourier
transform hold in any field.

The Fourier transform is defined on the vector space of n-tuples, denoted Fn. Avector
v in the vector space Fn consists of a block of n elements of the field F , written as

v = [v0, v1, . . . , vn−1].

The vector v is multiplied by the element γ of the field F by multiplying each component
of v by γ . Thus

γ v = [γ v0, γ v1, . . . , γ vn−1].

Here the field element γ is called a scalar. Two vectors v and u are added by adding
components

v + u = [v0 + u0, v1 + u1, . . . , vn−1 + un−1].

Definition 1.2.1 Let v be a vector of blocklength n over the field F. Let ω be an
element of F of order n. The Fourier transform of v is another vector V of blocklength

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-77194-8 - Algebraic Codes on Lines, Planes, and Curves
Richard E. Blahut
Excerpt
More information

http://www.cambridge.org/0521771943
http://www.cambridge.org
http://www.cambridge.org


9 1.2 The Fourier transform

n over the field F whose components are given by

Vj =
n−1∑

i=0

ωijvi j = 0, . . . , n − 1.

The vector V is also called the spectrum of v, and the components of V are called
spectral components. The components of the Fourier transform of a vector will always
be indexed by j, whereas the components of the original vector v will be indexed by i.
Of course, V is itself a vector so this indexing convention presumes that it is clear
which vector is the original vector and which is the spectrum. The Fourier transform
relationship is sometimes denoted by v ↔ V .

The Fourier transform can also be understood as the evaluation of a polynomial. The
polynomial representation of the vector v = [vi | i = 0, . . . , n − 1] is the polynomial

v(x) =
n−1∑

i=0

vix
i.

The evaluation of the polynomial v(x) at β is the field element v(β), where

v(β) =
n−1∑

i=0

viβ
i.

The Fourier transform, then, is the evaluation of the polynomial v(x) on the n powers
of ω, an element of order n. Thus component Vj equals v(ω j) for j = 0, . . . , n − 1.
If F is the finite field GF(q) and ω is a primitive element, then the Fourier transform
evaluates v(x) at all q − 1 nonzero elements of the field.

The Fourier transform has a number of useful properties, making it one of the
strongest tools in our toolbox. Its many properties are summarized in Section 1, 3.
We conclude this section with a lengthy list of examples of the Fourier transform.

(1) Q or R: ω = +1 has order 1, and ω = −1 has order 2. For no other n is there an
ω in Q or R of order n. Hence only trivial Fourier transforms exist in Q or R. To
obtain a Fourier transform over R of blocklength larger than 2, one must regard R

as embedded into C.
There is, however, a multidimensional Fourier transform over Q or R with 2m

elements. It uses ω = −1 and a Fourier transform of length 2 on each dimension of
a two by two by . . . by two m-dimensional array, and it is a nontrivial example of a
multidimensional Fourier transform in the fields Q and R. (This transform is more
commonly expressed in a form known as the (one-dimensional) Walsh–Hadamard
transform by viewing any vector of length 2m over R as an m-dimensional two by
two by · · · by two array.)
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10 Sequences and the One-Dimensional Fourier Transform

(2) C: ω = e−i2π/n has order n, where i = √−1. A Fourier transform exists in C

for any blocklength n. There are unconventional choices for ω that work also. For
example, ω = (e−i2π/n)3 works if n is not a multiple of 3.

(3) GF(5): ω = 2 has order 4. Therefore

Vj =
3∑

i=0

2ijvi j = 0, . . . , 3

is a Fourier transform of blocklength 4 in GF(5).
(4) GF(31): ω = 2 has order 5. Therefore

Vj =
4∑

i=0

2ijvi j = 0, . . . , 4

is a Fourier transform of blocklength 5 in GF(31). Also ω = 3 has order 30 in
GF(31). Therefore

Vj =
29∑

i=0

3ijvi j = 0, . . . , 29

is a Fourier transform of blocklength 30 in GF(31).
(5) GF(216 + 1). Because 216 + 1 is prime, an element ω of order n exists if n divides

216 + 1 − 1. Thus elements of order 2� exist for � = 1, . . . , 16. Hence for each
power of 2 up to 216, GF(216 + 1) contains a Fourier transform of blocklength n
equal to that power of 2.

(6) GF((217 − 1)2). This field is constructed as an extension of GF(217 − 1), using
a polynomial of degree 2 that is irreducible over GF(217 − 1). An element ω of
order n exists in the extension field if n divides (217 − 1)2 − 1 = 218(216 − 1).
In particular, for each power of 2 up to 218, GF((217 − 1)2) contains a Fourier
transform of blocklength equal to that power of 2.

(7) GF(16). If GF(16) is constructed with the primitive polynomial p(z) = z4 + z +1,
then z has order 15. Thus ω = z is an element of order 15, so we have the 15-point
Fourier transform

Vj =
14∑

i=0

zijvi j = 0, . . . , 14.

The components vi (and Vj), as elements of GF(16), can be represented as poly-
nomials of degree at most 3 over GF(2), with polynomial multiplication reduced
by z4 = z + 1.
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